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Abstract.We define pseudo-Hermitian magnetic curves in Sasakian manifolds endowed
with the Tanaka-Webster connection. After we have given a complete classification
theorem, we shall construct parametrizations of pseudo-Hermitian magnetic curves in
R

2n+1(−3).
Keywords: magnetic curve; slant curve; Sasakian manifold; the Tanaka-Webster con-
nection.

1. Introduction

The study of the motion of a charged particle in a constant and time-independent
static magnetic field on a Riemannian surface is known as the Landau–Hall problem
[16]. The main problem is to study the movement of a charged particle moving in the
Euclidean plane E

2. The solution of the Lorentz equation (called also the Newton
equation) corresponds to the motion of the particle. The trajectory of a charged
particle moving on a Riemannian manifold under the action of the magnetic field
is a very interesting problem from a geometric point of view [16].

Let (N, g) be a Riemannian manifold, and F a closed 2-form, Φ the Lorentz
force, which is a (1, 1)-type tensor field on N . F is called a magnetic field if it is
associated to Φ by the relation

F (X,Y ) = g(ΦX,Y ),(1.1)

whereX and Y are vector fields onN (see [1], [3] and [8]). Let∇ be the Riemannian
connection on N and consider a differentiable curve α : I → N , where I denotes an
open interval of R. α is said to be a magnetic curve for the magnetic field F, if it
is a solution of the Lorentz equation given by

∇α′(t)α
′(t) = Φ(α′(t)).(1.2)
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From the definition of magnetic curves, it is straightforward to see that their speed
is constant. Specifically, unit-speed magnetic curves are called normal magnetic
curves [9].

In [9], Druţă-Romaniuc, Inoguchi, Munteanu and Nistor studied magnetic curves
in a Sasakian manifold. Magnetic curves in cosymplectic manifolds were studied in
[10] by the same authors. In [13], 3-dimensional Berger spheres and their magnetic
curves were considered by Inoguchi and Munteanu. Magnetic trajectories of an
almost contact metric manifold were studied in [14], by Jleli, Munteanu and Nistor.
The classification of all uniform magnetic trajectories of a charged particle moving
on a surface under the action of a uniform magnetic field was obtained in [19], by
Munteanu. Furthermore, normal magnetic curves in para-Kaehler manifolds were
researched in [15], by Jleli and Munteanu. In [17], Munteanu and Nistor obtained
the complete classification of unit-speed Killing magnetic curves in S

2×R. Moreover,
in [18], they studied magnetic curves on S

2n+1. 3-dimensional normal para-contact
metric manifolds and their magnetic curves of a Killing vector field were investigated
in [5], by Calvaruso, Munteanu and Perrone. In [20], the present authors studied
slant curves in contact Riemannian 3-manifolds with pseudo-Hermitian proper mean
curvature vector field and pseudo-Hermitian harmonic mean curvature vector field
for the Tanaka-Webster connection in the tangent and normal bundles, respectively.
The second author gave the parametric equations of all normal magnetic curves in
the 3-dimensional Heisenberg group in [21]. Recently, the present authors have also
considered slant magnetic curves in S-manifolds in [11].

These studies motivate us to investigate pseudo-Hermitian magnetic curves in
(2n + 1)-dimensional Sasakian manifolds endowed with the Tanaka-Webster con-
nection. In Section 2, we summarize the fundamental definitions and properties of
Sasakian manifolds and the unique connection, namely the Tanaka-Webster con-
nection. We give the main classification theorems for pseudo-Hermitian magnetic
curves in Section 3. We show that a pseudo-Hermitian magnetic curve cannot
have osculating order greater than 3. In the last section, after a brief information
on R

2n+1(−3), we obtain the parametric equations of pseudo-Hermitian magnetic
curves in R

2n+1(−3) endowed with the Tanaka-Webster connection.

2. Preliminaries

Let N be a (2n+ 1)-dimensional Riemannian manifold satisfying the following
equations

φ2(X) = −X + η(X)ξ, η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0,(2.1)

g(X, ξ) = η(X), g(X,Y ) = g(φX, φY ) + η(X)η(Y ),(2.2)

for all vector fields X,Y on N , where φ is a (1, 1)-type tensor field, η is a 1-form, ξ
is a vector field and g is a Riemannian metric on N . In this case, (N,φ, ξ, η, g) is
said to be an almost contact metric manifold [2]. Moreover, if dη(X,Y ) = Φ(X,Y ),
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where Φ(X,Y ) = g(X,φY ) is the fundamental 2-form of the manifold, then N is
said to be a contact metric manifold [2].

Furthermore, if we denote the Nijenhuis torsion of φ by [φ, φ], for all X,Y
∈ χ(N), the condition given by

[φ, φ](X,Y ) = −2dη(X,Y )ξ

is called the normality condition of the almost contact metric structure. An almost
contact metric manifold turns into a Sasakian manifold if the normality condition
is satisfied [2].

From Lie differentiation operator in the characteristic direction ξ, the operator
h is defined by

h =
1

2
Lξφ.

It is directly found that the structural operator h is symmetric. It also validates
the equations below, where we denote the Levi-Civita connection by ∇:

hξ = 0, hφ = −φh, ∇Xξ = −φX − φhX,(2.3)

(see [2]).

If we denote the Tanaka-Webster connection on N by ∇̂ ([22], [24]), then we
have

∇̂XY = ∇XY + η(X)φY + (∇̂Xη)(Y )ξ − η(Y )∇Xξ

for all vector fields X,Y on N . By the use of equations (2.3), the Tanaka-Webster
connection can be calculated as

∇̂XY = ∇XY + η(X)φY + η(Y )(φX + φhX)− g(φX + φhX, Y )ξ.(2.4)

The torsion of the Tanaka-Webster connection is

T̂ (X,Y ) = 2g(X,φY )ξ + η(Y )φhX − η(X)φhY.(2.5)

In a Sasakian manifold, from the fact that h = 0 (see [2]), the equations (2.4) and
(2.5) can be rewritten as:

∇̂XY = ∇XY + η(X)φY + η(Y )φX − g(φX, Y )ξ,(2.6)

T̂ (X,Y ) = 2g(X,φY )ξ.

The following proposition states why the Tanaka-Webster connection is unique:

Proposition 2.1. [23] The Tanaka-Webster connection on a contact Riemannian
manifold N = (N,φ, ξ, η, g) is the unique linear connection satisfying the following
four conditions:

(a) ∇̂η = 0, ∇̂ξ = 0;

(b) ∇̂g = 0, ∇̂φ = 0;

(c) T̂ (X,Y ) = −η([X,Y ])ξ, ∀X,Y ∈ D;

(d) T̂ (ξ, φY ) = −φT̂ (ξ, Y ), ∀Y ∈ D.
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3. Magnetic Curves with respect to the Tanaka-Webster Connection

Let (N,φ, ξ, η, g) be an n-dimensional Riemannian manifold and α : I → N
a curve parametrized by arc-length. If there exists g-orthonormal vector fields
E1, E2, ..., Er along α such that

E1 = α′,

∇̂E1
E1 = k̂1E2,

∇̂E1
E2 = −k̂1E1 + k̂2E3,(3.1)

...

∇̂E1
Er = −k̂r−1Er−1,

then α is called a Frenet curve for ∇̂ of osculating order r , (1 ≤ r ≤ n). Here

k̂1, ..., k̂r−1 are called pseudo-Hermitian curvature functions of α and these func-

tions are positive valued on I. A geodesic for ∇̂ (or pseudo-Hermitian geodesic) is

a Frenet curve of osculating order 1 for ∇̂. If r = 2 and k̂1 is a constant, then α
is called a pseudo-Hermitian circle. A pseudo-Hermitian helix of order r (r ≥ 3) is

a Frenet curve for ∇̂ of osculating order r with non-zero positive constant pseudo-
Hermitian curvatures k̂1, ..., k̂r−1. If we shortly state pseudo-Hermitian helix, we
mean its osculating order is 3 [7].

Let N =
(
N2n+1, φ, ξ, η, g

)
be a Sasakian manifold endowed with the Tanaka-

Webster connection ∇̂. Let us denote the fundamental 2-form of N by Ω. Then, we
have

Ω(X,Y ) = g(X,φY ),(3.2)

(see [2]). From the fact that N is a Sasakian manifold, we have Ω = dη. Hence,
dΩ = 0, i.e., it is closed. Thus, we can define a magnetic field Fq on N by

Fq(X,Y ) = qΩ(X,Y ),

namely the contact magnetic field with strength q, where X,Y ∈ χ(N) and q ∈ R

[14]. We will assume that q 6= 0 to avoid the absence of the strength of magnetic
field (see [4] and [9]).

From (1.1) and (3.2), the Lorentz force Φ associated to the contact magnetic
field Fq can be written as

Φ = −qφ.

So the Lorentz equation (1.2) is

∇E1
E1 = −qφE1,(3.3)

where α : I → N is a curve with arc-length parameter, E1 = α′ is the tangent
vector field and ∇ is the Levi-Civita connection (see [9] and [14]). By the use of
equations (2.6) and (3.3), we have

∇̂E1
E1 = [−q + 2η(E1)]φE1.(3.4)
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Definition 3.1. Let α : I → N be a unit-speed curve in a Sasakian manifold
N =

(
N2n+1, φ, ξ, η, g

)
endowed with the Tanaka-Webster connection ∇̂. Then it

is called a normal magnetic curve with respect to the Tanaka-Webster connection
∇̂ (or shortly a pseudo-Hermitian magnetic curve) if it satisfies equation (3.4).

If η(E1) = cos θ is a constant, then α is called a slant curve [6]. From the
definition of pseudo-Hermitian magnetic curves, we have the following direct result
as in the Levi-Civita case:

Proposition 3.1. If α is a pseudo-Hermitian magnetic curve in a Sasakian man-
ifold, then it is a slant curve.

Proof. Let α : I → N be a pseudo-Hermitian magnetic curve. Then, we find

d

dt
g(E1, ξ) = g(∇̂E1

E1, ξ) + g(E1, ∇̂E1
ξ)

= g([−q + 2η(E1)]φE1, ξ)

= 0.

So we obtain
η(E1) = cos θ = constant,

which completes the proof.

As a result, we can rewrite equation (3.4) as

∇̂E1
E1 = (−q + 2 cos θ)φE1,(3.5)

where θ is the contact angle of α. Now, we can state the following theorem:

Theorem 3.1. Let
(
N2n+1, φ, ξ, η, g

)
be a Sasakian manifold endowed with the

Tanaka-Webster connection ∇̂. Then α : I → N is a pseudo-Hermitian magnetic
curve if and only if it belongs to the following list:

(a) pseudo-Hermitian non-Legendre slant geodesics (including pseudo-Hermitian
geodesics as integral curves of ξ);

(b) pseudo-Hermitian Legendre circles with k̂1 = |q| and having the Frenet frame

field (for ∇̂)
{E1,−sgn(q)φE1} ;

(c) pseudo-Hermitian slant helices with

k̂1 = |−q + 2 cos θ| sin θ, k̂2 = |−q + 2 cos θ| ε cos θ

and having the Frenet frame field (for ∇̂)
{
E1,

δ

sin θ
φE1,

ε

sin θ
(ξ − cos θE1)

}
,

where δ = sgn(−q + 2 cos θ), ε = sgn(cos θ) and cos θ 6= q
2 .
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Proof. Let us assume that α : I → N is a normal magnetic curve with respect
to ∇̂. Consequently, equation (3.5) must be validated. Let us assume k̂1 = 0.
Hence, we have cos θ = q

2 or φE1 = 0. If cos θ = q
2 , then α is a pseudo-Hermitian

non-Legendre slant geodesic. Otherwise, φE1 = 0 gives us E1 = ±ξ. Thus, α is a
pseudo-Hermitian geodesic as an integral curve of ±ξ. So we have just proved that
α belongs to (a) from the list, if the osculating order r = 1. Now, let k̂1 6= 0. From

equation (3.5) and the Frenet equations for ∇̂, we find

∇̂E1
E1 = k̂1E2 = (−q + 2 cos θ)φE1.(3.6)

Since E1 is unit, the equation (2.2) gives us

g(φE1, φE1) = sin2 θ.(3.7)

By the use of (3.6) and (3.7), we obtain

k̂1 = |−q + 2 cos θ| sin θ,(3.8)

which is a constant. Let us denote δ = sgn(−q+ 2 cos θ). From (3.8), we can write

φE1 = δ sin θE2.(3.9)

Let us assume k̂2 = 0, that is, r = 2. From the fact that k̂1 is a constant, α is a
pseudo-Hermitian circle. (3.9) gives us

η (φE1) = 0 = δ sin θη (E2) ,

which is equivalent to
η (E2) = 0.

Differentiating this last equation with respect to ∇̂, we obtain

∇̂E1
η (E2) = 0 = g

(
∇̂E1

E2, ξ
)
+ g

(
E2, ∇̂E1

ξ
)
.

Since ∇̂ξ = 0 and r = 2, we have

g(−k̂1E1, ξ) = 0,

that is, η(E1) = 0. Hence, α is Legendre and cos θ = 0. From equation (3.8), we

get k̂1 = |q|. In this case, we also obtain δ = −sgn(q) and E2 = −sgn(q)φE1. We
have proved that α belongs to (b) from the list, if the osculating order r = 2. Now,

let us assume k̂2 6= 0. If we use ∇̂φ = 0, we calculate

∇̂E1
φE1 = k̂1φE2.(3.10)

From (2.1) and (3.9), we find

φ2E1 = −E1 + cos θξ = δ sin θφE2,(3.11)
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which gives us

φE2 =
δ

sin θ
(−E1 + cos θξ) .

So equation (3.10) becomes

∇̂E1
φE1 = k̂1

δ

sin θ
(−E1 + cos θξ) .(3.12)

If we differentiate the equation (3.9) with respect to ∇̂, we also have

∇̂E1
φE1 = δ sin θ∇̂E1

E2(3.13)

= δ sin θ
(
−k̂1E1 + k̂2E3

)
.

By the use of (3.12) and (3.13), we obtain

k̂1 cot θ (ξ − cos θE1) = k̂2 sin θE3.(3.14)

One can easily see that

g(ξ − cos θE1, ξ − cos θE1) = sin2 θ.

From (3.14), we calculate

k̂2 = |−q + 2 cos θ| ε cos θ,

where we denote ε = sgn(cos θ). As a result, we get

E3 =
ε

sin θ
(ξ − cos θE1) ,(3.15)

E2 =
δ

sin θ
φE1.

If we differentiate (3.15) with respect to ∇̂, since φE1 ‖ E2, we find k̂3 = 0. So

we have just completed the proof of (c). Considering the fact that k̂3 = 0, the
Gram-Schmidt process ends. Thus, the list is complete.

Conversely, let α : I → N belong to the given list. It is easy to show that
equation (3.5) is satisfied. Hence, α is a pseudo-Hermitian magnetic curve.

A pseudo-Hermitian geodesic is said to be a pseudo-Hermitian φ-curve if the set
sp {E1, φE1, ξ} is φ-invariant. A Frenet curve of osculating order r = 2 is said to
be a pseudo-Hermitian φ-curve if sp {E1, E2, ξ} is φ-invariant. A Frenet curve of
osculating order r ≥ 3 is said to be a pseudo-Hermitian φ-curve if sp {E1, E2, ..., Er}
is φ-invariant.

Theorem 3.2. Let α : I → N be a pseudo-Hermitian φ-helix of order r ≤ 3, where
N =

(
N2n+1, φ, ξ, η, g

)
is a Sasakian manifold endowed with the Tanaka-Webster

connection ∇̂. Then:
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(a) If cos θ = ±1, then it is an integral curve of ξ, i.e. a pseudo-Hermitian
geodesic and it is a pseudo-Hermitian magnetic curve for Fq for arbitrary q;

(b) If cos θ /∈ {−1, 0, 1} and k̂1 = 0, then it is a pseudo-Hermitian non-Legendre
slant geodesic and it is a pseudo-Hermitian magnetic curve for F2 cos θ;

(c) If cos θ = 0 and k̂1 6= 0, i.e. α is a Legendre φ-curve, then it is a pseudo-
Hermitian magnetic circle generated by F

−δk̂1
, where δ = sgn(g(φE1, E2));

(d) If cos θ = εk̂2√
k̂2
1
+k̂2

2

and k̂2 6= 0, then it is a pseudo-Hermitian magnetic curve

for F
−δ

√
k̂2
1
+k̂2

2
+

2εk̂2√
k̂2
1
+k̂2

2

, where δ = sgn(g(φE1, E2)) and ε = sgn(cos θ).

(e) Except above cases, α cannot be a pseudo-Hermitian magnetic curve for any
Fq.

Proof. Firstly, let us assume cos θ = ±1, that is, E1 = ±ξ. As a result, we have

∇̂E1
E1 = 0, φE1 = 0.

Hence, equation (3.5) is satisfied for arbitrary q. This proves (a). Now, let us take

cos θ /∈ {−1, 0, 1} and k̂1 = 0. In this case, we obtain

∇̂E1
E1 = 0, φE1 6= 0.

So equation (3.5) is valid for q = 2 cos θ. The proof of (b) is over. Next, let us

assume cos θ = 0 and k̂1 6= 0. One can easily see that α has the Frenet frame field
(for ∇̂)

{E1, δφE1}

where δ corresponds to the sign of g(φE1, E2). Consequently, we get

∇̂E1
E1 = δk̂1φE1,

that is, α is a pseudo-Hermitian magnetic curve for q = −δk̂1. We have just proven

(c). Finally, let cos θ = εk̂2√
k̂2
1
+k̂2

2

and k̂2 6= 0. So α has the Frenet frame field (for ∇̂)

{
E1,

δ

sin θ
φE1,

ε

sin θ
(ξ − cos θE1)

}
,

where δ = sgn(g(φE1, E2)) and ε = sgn(cos θ). After calculations, it is easy to

show that equation (3.5) is satisfied for q = −δ

√
k̂21 + k̂22 + 2εk̂2√

k̂2
1
+k̂2

2

. Hence, the

proof of (d) is completed. Except above cases, from Theorem 3.1, α cannot be a
pseudo-Hermitian magnetic curve for any Fq.
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4. Parametrizations of pseudo-Hermitian magnetic curves in R
2n+1(−3)

In this section, our aim is to obtain parametrizations of pseudo-Hermitian mag-
netic curves in R

2n+1(−3). To do this, we need to recall some notions from [2]. Let
N = R

2n+1. Let us denote the coordinate functions ofN with (x1, ..., xn, y1, ..., yn, z).
One may define a structure on N by η = 1

2 (dz −
∑n

i=1 yidxi), which is a contact
structure, since η ∧ (dη)n 6= 0. This contact structure has the characteristic vector
field ξ = 2 ∂

∂z
. Let us also consider a (1, 1)-type tensor field φ given by the matrix

form as

φ =




0 δij 0
−δij 0 0
0 yj 0


 .

Finally, let us take the Riemannian metric onN given by g = η⊗η+ 1
4

∑n
i=1((dxi)

2+
(dyi)

2). It is known that (N,φ, ξ, η, g) is a Sasakian space form and its φ-sectional
curvature is c = −3. This special Sasakian space form is denoted by R

2n+1(−3) [2].
One can easily show that the vector fields

Xi = 2
∂

∂yi
, Xn+i = φXi = 2(

∂

∂xi

+ yi
∂

∂z
), i = 1, n, ξ = 2

∂

∂z
(4.1)

are g-unit and g-orthogonal. Hence, they form a g-orthonormal basis [2]. Using this
basis, the Levi-Civita connection of R2n+1(−3) can be obtained as

∇Xi
Xj = ∇Xm+i

Xm+j = 0, ∇Xi
Xm+j = δijξ, ∇Xm+i

Xj = −δijξ,

∇Xi
ξ = ∇ξXi = −Xm+i, ∇Xm+i

ξ = ∇ξXm+i = Xi,

(see [2]). As a result, the Tanaka-Webster connection of R2n+1(−3) is

∇̂Xi
Xj = ∇̂Xm+i

Xm+j = ∇̂Xi
Xm+j = ∇̂Xm+i

Xj =

∇̂Xi
ξ = ∇̂ξXi = ∇̂Xm+i

ξ = ∇̂ξXm+i = 0,

which was calculated in [12]. Now, we can investigate the parametric equations of
pseudo-Hermitian magnetic curves in R

2n+1(−3) endowed with the Tanaka-Webster
connection.

Let N = R
2n+1(−3) endowed with the Tanaka-Webster connection ∇̂. Let

α : I ⊆ R → N, α = (α1, α2, ..., αn, αn+1, ..., α2n, α2n+1) be a pseudo-Hermitian
magnetic curve. Then, the tangential vector field of α can be written as

E1 =
n∑

i=1

α′

i

∂

∂xi

+
n∑

i=1

α′

n+i

∂

∂yi
+ α′

2n+1

∂

∂z
.

In terms of the g-orthonormal basis, E1 is rewritten as

E1 =
1

2

[
n∑

i=1

α′

n+iXi +

n∑

i=1

α′

iXn+i +

(
α′

2n+1 −
n∑

i=1

α′

iαn+i

)
ξ

]
.
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From Proposition 3.1, α is a slant curve. Hence, we have

η(E1) = cos θ = constant,

which is equivalent to

α′

2n+1 = 2 cos θ +
n∑

i=1

α′

iαn+i.(4.2)

From the fact that α is parametrized by arc-length, we also have

g(E1, E1) = 1,

that is,
2n∑

i=1

(α′

i)
2
= 4 sin2 θ.(4.3)

Differentiating E1 with respect to ∇̂, we obtain

∇̂E1
E1 =

1

2

(
n∑

i=1

α′′

n+iXi +
n∑

i=1

α′′

i Xn+i

)
.

We also easily find

φE1 =
1

2

(
−

n∑

i=1

α′

iXi +

n∑

i=1

α′

n+iXn+i

)
.

Since α is a pseudo-Hermitian magnetic curve, it must satisfy

∇̂E1
E1 = (−q + 2 cos θ)φE1.

Then, we can write

α′′

n+1

−α′

1

= ... =
α′′

2n

−α′

n

=
α′′

1

α′

n+1

= ... =
α′′

n

α′

2n

= −λ,

where λ = q − 2 cos θ. From the last equations, we can select the pairs

α′′

n+1

−α′

1

=
α′′

1

α′

n+1

, ... ,
α′′

2n

−α′

n

=
α′′

n

α′

2n

.(4.4)

Firstly, let λ 6= 0. Solving the ODEs, we have

(α′

i)
2
+
(
α′

n+i

)2
= c2i , i = 1, ..., n

for some arbitrary constants ci (i = 1, ..., n) such that

n∑

i=1

c2i = 4 sin2 θ.
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So we have

α′

i = ci cos fi, α′

n+i = ci sin fi

for some differentiable functions fi : I → R (i = 1, ..., n). From (4.4), we get

α′′

n+i

−α′

i

= −f ′

i = −λ,

which gives us

fi = λt+ di

for some arbitrary constants di (i = 1, ..., n). Here, t denotes the arc-length param-
eter. Then, we find

α′

i = ci cos (λt+ di) , α′

n+i = ci sin (λt+ di) .

Finally, we obtain

αi =
ci
λ
sin (λt+ di) + hi,

αn+i =
−ci
λ

cos (λt+ di) + hn+i,

α2n+1 = 2t cos θ +
n∑

i=1

{−c2i
4λ2

[2 (λt+ di) + sin (2 (λt+ di))]

+
cihn+i

λ
sin (λt+ di)

}
+ h2n+1

for some arbitrary constants hi (i = 1, ..., 2n+ 1).

Secondly, let λ = 0. In this case, q = 2 cos θ and k̂1 = 0. Hence, we have

∇̂E1
E1 =

1

2

(
n∑

i=1

α′′

n+iXi +
n∑

i=1

α′′

i Xn+i

)
= 0,

which gives us

αi = cit+ di, i = 1, ..., 2n,

α2n+1 = 2t cos θ +

n∑

i=1

ci

(cn+i

2
t2 + dn+it

)
+ c2n+1,

where ci (i = 1, 2, ..., 2n + 1) and di (i = 1, 2, ..., 2n) are arbitrary constants such
that

2n∑

i=1

c2i = 4 sin2 θ.

To conclude, we can state the following theorem:
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Theorem 4.1. The pseudo-Hermitian magnetic curves on R
2n+1(−3) endowed

with the Tanaka-Webster connection have the parametric equations

α : I ⊆ R → R
2n+1(−3), α = (α1, α2, ..., αn, αn+1, ..., α2n, α2n+1) ,

where αi (i = 1, ..., 2n+ 1) satisfies either

(a)

αi =
ci
λ
sin (λt+ di) + hi,

αn+i =
−ci
λ

cos (λt+ di) + hn+i,

α2n+1 = 2 cos θt+

n∑

i=1

{−c2i
4λ2

[2 (λt+ di) + sin (2 (λt+ di))]

+
cihn+i

λ
sin (λt+ di)

}
+ h2n+1,

where λ = q− 2 cos θ 6= 0, ci, di (i = 1, ..., n) and hi (i = 1, ..., 2n+1) are arbitrary
constants such that

n∑

i=1

c2i = 4 sin2 θ;

or

(b)

αi = cit+ di,

α2n+1 = 2t cos θ +

n∑

i=1

ci

(cn+i

2
t2 + dn+it

)
+ c2n+1,

where q = 2 cos θ and ci (i = 1, 2, ..., 2n + 1), di (i = 1, 2, ..., 2n) are arbitrary
constants such that

q2 +

2n∑

i=1

c2i = 4.
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