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Abstract. In this paper, we study one dimensional fractional Dirac type systems which
include the right-sided Caputo and the left-sided Riemann-Liouvile fractional deriva-
tives of the same order α, α ∈ (0, 1) . We investigate the properties of the eigenvalues
and the eigenfunctions of this system.
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1. Introduction

It is well known that classical calculus is based on integer order differentiation
and integration. Fractional calculus generalizes integrals and derivatives to non-
integer orders. The subject has a long history. Since 1695, many mathematicians,
among them Liouville, Riemann, Leibniz, Grunwald, Letnikov Riesz and Caputo,
have studied this subject. Fractional calculus has important applications to many
real-world phenomena studies in engineering, chemistry, mechanics, physics, finance,
etc. There is an extensive literature on this subject, see for example [9, 10, 16, 17,
19, 20, 22, 23, 24] and references therein.

Recently, the study of boundary value problems for fractional Sturm-Liouville
equations recently has attracted a great deal of attention from many researchers. In
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[4], the authors investigated some basic spectral properties of the fractional Sturm-
Liouville problem with Generalized Dirichlet conditions. They proved that this
problem has an infinite sequence of real eigenvalues and the corresponding eigen-
functions form a complete orthonormal system in the Hilbert space L2[a, b]. In [11],
the authors studied the properties of the eigenfunctions and the eigenvalues of the
regular Generalized Fractional Sturm-Liouville Problem. In [6], the authors stud-
ied the fractional Sturm–Liouville problem associated with the Weber fractional
derivative of order α. In [15], the authors proved existence of strong solutions for
the space–time fractional diffusion equations. Using the method of separating vari-
ables, they solved several types of fractional diffusion equations. Klimek et al. [13]
studied to the regular fractional Sturm–Liouville eigenvalue problem. By apply-
ing the methods of fractional variational analysis, they proved the existence of a
countable set of orthogonal solutions and corresponding eigenvalues. Klimek and
Argawal [12] defined some fractional Sturm–Liouville operators and introduced two
classes of fractional Sturm–Liouville problems namely regular and singular frac-
tional Sturm–Liouville problems. They investigated the eigenvalue and eigenfunc-
tion properties of this classes. Baş [2] gave the theory of spectral properties for
eigenvalues and eigenfunctions of Bessel type of fractional singular Sturm-Liouville
problem. Baş and Metin [3] studied a fractional singular Sturm-Liouville opera-
tor having Coulomb potential of type. Klimek and Blasik [14] studied a regular
fractional Sturm-Liouville problem with left and right Liouville-Caputo derivatives
of order in the range (1/2, 1). They proved that it has an infinite countable set
of positive eigenvalues and its continuous eigenvectors form a basis in the space of
square-integrable functions. Rivero et al. [21] studied some of the basic properties of
the fractional version of the Sturm-Liouville problem. Zayernouri and Karniadakis
[27] studied new classes of the regular and singular fractional Sturm–Liouville Prob-
lems and obtained some explicit forms of the eigenfunctions.

While the theory of fractional Sturm-Liouville equations is well developed, the
literature involving fractional Dirac system is scarce. In [7], Ferreira and Vieira
derived fundamental solutions for the fractional Dirac operator which factorizes the
fractional Laplace operator. In [8], the authors obtained eigenfunctions and fun-
damental solutions for the three parameter fractional Laplace operator defined via
fractional Liouville-Caputo derivatives. They also obtained a family of fundamental
solutions of the corresponding fractional Dirac operator. In [5], the author proved
Lieb–Thirring type bounds for fractional Schrödinger operators and Dirac operators
with complex-valued potentials. In [1], the authors studied a regular q-fractional
Dirac type system. In the present paper, we consider the fractional Dirac type
system defined by(

0 CDα
b−

Dα
a+ 0

)(
y1

y2

)
+

(
p (x) 0

0 r (x)

)(
y1

y2

)
= λ

(
ω1y1

ω2y2

)
where p, r, ω1 and ω2 are real-valued continuous functions defined on [a, b] and ωi (x) >
0, ∀x ∈ [a, b] , (i = 1, 2) , λ is a complex spectral parameter. If we take α → 1
in this system, then we get the one dimensional Dirac type system. This system
is one of the basic models of one-dimensional quantum mechanics. For example, a
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relativistic electron in the electrostatic field Ω (x) is described by the system

(1.1)

(
0 − d

dx
d
dx 0

)
f (x) +

(
Ω (x)− mc

h kx−1

kx−1 Ω (x) + mc
h

)
f (x) =

λ

hc
f (x)

where c > 0 is the velocity of light, k ∈ Z\ {0} , Ω (x) is a spherically symmetric
potential, m > 0 is the mass of the particle ([26]). Basic properties of the one
dimensional Dirac systems have been considered in [18], [26], [25] and the references
therein.

2. Preliminaries

In this section, we provide some basic definitions and properties of the fractional
calculus theory. These concepts and properties can be found in [20],[16],[22],[10],
and references therein.

Definition 2.1. (see [20]) Let 0 < α ≤ 1 and f ∈ L1 (a, b) . The right-sided
and left-sided Riemann-Liouville integrals of order α are given by the formulas,
respectively

(Iαb−f) (x) = 1
Γ(α)

b∫
x

f (s) (s− x)
α−1

ds, x < b,(2.1)

(Iαa+f) (x) = 1
Γ(α)

x∫
a

f (s) (x− s)α−1
ds, x > a,(2.2)

where Γ denotes the gamma function.

Definition 2.2. (see [20]) Let 0 < α ≤ 1 and f ∈ L1 (a, b) . The right-sided
and respectively left-sided Riemann-Liouville derivatives of order α are defined,
respectively, as follows

(Dα
b−f) (x) = −D

(
I1−α
b− f

)
(x) , x < b,(2.3)

(Dα
a+f) (x) = D

(
I1−α
a+ f

)
(x) , x > a.(2.4)

Analogous formulas yield the right-sided and left-sided Liouville-Caputo derivatives
of order α, respectively:(

CDα
b−f

)
(x) =

(
I1−α
b− (−D) f

)
(x) , x < b,(2.5) (

CDα
a+f

)
(x) =

(
I1−α
a+ Df

)
(x) , x > a.(2.6)

Property 1: Let f, g ∈ C[a, b]. Then, the fractional differential operators de-
fined in (2.3)-(2.5) satisfy the following identities:

(2.7) (i)

b∫
a

f (x)Dα
b−g (x) dx =

b∫
a

g (x)
C
Dα
a+f (x) dx− f (x) I1−α

b− g (x) |ba,
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(2.8) (ii)

b∫
a

f (x)Dα
a+g (x) dx =

b∫
a

g (x)
C
Dα
b−f (x) dx+ f (x) I1−α

a+ g (x) |ba .

Property 2 (see [11]): Assume that α ∈ (0, 1) , β > α, and f ∈ C [a, b] . Then
the relations

Dα
a+I

α
a+f (x) = f (x) ,

CDα
a+I

α
a+f (x) = f (x) ,(2.9)

Dα
a+I

β
a+f (x) = Iβ−αa+ f (x) ,(2.10)

Dα
b+I

β
b−f (x) = Iβ−αb− f (x) ,(2.11)

Dα
b−I

α
b−f (x) = f (x) ,

CDα
b−I

α
b−f (x) = f (x) ,(2.12)

hold for any x ∈ [a, b] . Furthermore, the integral operators defined in (2.1)-(2.2)
satisfy the following semi-group properties:

Iαa+I
β
a+ = Iα+β

a+ ;(2.13)

Iαb−I
β
b− = Iα+β

b− .(2.14)

Now, we introduce convenient Hilbert space L2
ω((a, b);E) (E := C2) of vector-

valued functions using the inner product

(f, g) :=
∫ b
a
f1(x)g1(x)ω1 (x) dx

+
∫ b
a
f2(x)g2(x)ω2 (x) dx,

where

f (x) =

(
f1 (x)
f2 (x)

)
, g (x) =

(
g1 (x)
g2 (x)

)
,

fi, gi and ωi are real-valued continuous functions defined on [a, b] and ωi (x) >
0, ∀x ∈ [a, b] , (i = 1, 2) .

3. Main Results

In the present section, our goal is to study the fractional Dirac type system which
includes the right-sided Liouville-Caputo and the left-sided Riemann-Liouvile frac-
tional derivatives of same order α. Throughout this section, we assume α ∈ (0, 1) .

Let

Υy =

(
0 CDα

b−

Dα
a+ 0

)(
y1

y2

)
+

(
p (x) 0

0 r (x)

)(
y1

y2

)
=

(
CDα

b−y2 + p (x) y1

Dα
a+y1 + r (x) y2

)
,



Regular fractional Dirac type systems 493

where y :=

(
y1

y2

)
. With this notation, we consider the fractional Dirac type

system:

(3.1) Υyλ = λωyλ, a ≤ x ≤ b <∞,

where yλ =

(
yλ1

yλ2

)
, p, r are real-valued continuous functions defined on [a, b], ω (x) =(

ω1 (x) 0
0 ω2 (x)

)
, ωi are real-valued continuous functions defined on [a, b] and ωi (x) >

0, ∀x ∈ [a, b] , (i = 1, 2) , λ is a complex spectral parameter and boundary condi-
tions

a11I
1−α
a+ yλ1 (a) + a12yλ2 (a) = 0,(3.2)

a21I
1−α
a+ yλ1 (b) + a22yλ2 (b) = 0,(3.3)

with a2
11 + a2

12 6= 0 and a2
21 + a2

22 6= 0.

Theorem 3.1. The operator T := ω−1Υ generated by fractional Dirac type system
(FD) defined by (3.1)-(3.3) is formally self-adjoint on L2

ω((a, b);E) .

Proof. Let y (.) , z (.) ∈ L2((a, b);E). Then, we have

(Ty, z)− (y, Tz) =
∫ b
a

(
Dα
a+y1 + r (x) y2

)
z2dx

+
∫ b
a

(
CDα

b−y2 + p (x) y1

)
z1dx

−
∫ b
a
y2

(
Dα
a+z1 + r (x) z2

)
dx

−
∫ b
a
y1

(
CDα

b−z2 + p (x) z1

)
dx

=
∫ b
a

(
Dα
a+y1

)
z2dx+

∫ b
a

(
CDα

b−y2

)
z1dx

−
∫ b
a
y2

(
Dα
a+z1

)
dx−

∫ b
a
y1

(
CDα

b−z2

)
dx

Since ∫ a
0

(
CDα

b−y2

)
z1ω1dx =

∫ b
a
y2

(
Dα
a+z1

)
ω1dx

−
[
y2 (b) I1−α

a+ z1 (b)− y2 (a) I1−α
a+ z1 (a)

]
and ∫ b

a
y1

(
CDα

b−z2

)
dx =

∫ b
a

(
Dα
a+y1

)
z2dx

−
[
z2 (b)I1−α

a+ y1 (b)− z2 (a)z2 (a) I1−α
a+ y1 (a)

]
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we get

(3.4) (Ty, z)− (y, Tz) = [y, z]b − [y, z]a ,

where [y, z]x := z2 (x)I1−α
a+ y1 (x) − y2 (x) I1−α

a+ z1 (x). We proceed to show that the
equality (Ty, z) = (y, Tz) for any y (.) , z (.) ∈ L2((a, b);E). From the boundary
conditions (3.2) and (3.3), we get [y, z]b = 0 and [y, z]a = 0. Consequently,

(3.5) (Ty, z) = (y, Tz) .

This completes the proof.

Lemma 3.1. All eigenvalues of the FD system defined by (3.1)-(3.3) are real.

Proof. Let µ be an eigenvalue with an eigenfunction z (x) . From the equality (3.5),
we get

(3.6) (Tz, z) = (z, Tz) = (z, µz) = µ (z, z) .

On the other hand,

(3.7) (Tz, z) = (µz, z) = µ (z, z) .

It follows from (3.6) and (3.7) that

µ (z, z) = µ (z, z) , (µ− µ) (z, z) = 0.

Since z (x) 6= 0, we get µ = µ.

Lemma 3.2. If µ1 and µ2 are two different eigenvalues of the FD system defined
by (3.1)-(3.3), then the corresponding eigenfunctions θ and η are orthogonal in the
space L2

ω((a, b);E).

Proof. Let µ1 and µ2 be two different real eigenvalues with corresponding eigen-
functions θ and η, respectively. From (3.5), we obtain

(Tθ, η) = (θ, Tη) , (µ1θ, η) = (θ, µ2η) , (µ1 − µ2) (θ, η) = 0.

Since µ1 6= µ2, we obtain that θ (x) and η (x) are orthogonal in L2
ω((a, b);E).

Now let y (x) =

(
y1 (x)
y2 (x)

)
, z (x) =

(
z1 (x)
z2 (x)

)
∈ L2 ((a, b) ;E) . Then, we

define the Wronskian of y (x) and z (x) by

W (y, z) (x) = I1−α
a+ y1 (x) z2 (x)− I1−α

a+ z1 (x) y2 (x) .
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Theorem 3.2. The Wronskian of any solution of Eq. (3.1) is independent of x.

Proof. Let y (x) and z (x) be two solutions of Eq. (3.1). By Green’s formula (3.4),
we have

(Ty, z)− (y, Tz) = [y, z]b − [y, z]a .

Since Ty = λy and Tz = λz, we have

(λy, z)− (y, λz) = [y, z]b − [y, z]a ,(
λ− λ

)
(y, z) = [y, z]b − [y, z]a .

Since λ ∈ R, we have [y, z]b = [y, z]a = W (y, z) (a) , i.e., the Wronskian is indepen-
dent of x.

Corollary 3.1. If y (x) and z (x) are both solutions of Equation (3.1), then either
W (y, z) (x) = 0 or W (y, z) (x) 6= 0 for all x ∈ [a, b] .

Theorem 3.3. Any two solutions of the equation (3.1) are linearly dependent if
and only if their Wronskian is zero.

Proof. Let y (x) and z (x) be two linearly dependent solutions of Equation (3.1).
Then, there exists a constant c > 0 such that y (x) = c z (x) . Hence

W (y, z) =

∣∣∣∣ I1−α
a+ y1 (x) y2 (x)
I1−α
a+ z1 (x) z2 (x)

∣∣∣∣ =

∣∣∣∣ cI1−α
a+ z1 (x) cz2 (x)

I1−α
a+ z1 (x) z2 (x)

∣∣∣∣ = 0.

Conversely, the Wronskian W (y, z) = 0 and therefore, y (x) = cz (x) , i.e., y (x) and
z (x) are linearly dependent.

Before proceeding further, we need the following auxiliary functions.

We introduce the function φ (x) :=

(
(Iαa+1)(x)
(Iαb−1)(x)

)
. Further, the general solution

of the equation Υψ = 0, i.e.,(
0 CDα

b−

Dα
a+ 0

)(
ψ1

ψ2

)
= 0

is given by

ψ =

(
ξ1Φ (α, a, x)

ξ2

)
,

where

(3.8) Φ (α, a, x) =
(x− a)

α−1

Γ (α)
.
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Lemma 3.3. Let
∆ := a11a12 − a11a21

and

(3.9) Yλ (y) := {V − λω} yλ,

where V (x) :=

(
p (x) 0

0 r (x)

)
. Assume ∆ 6= 0. Then on the space C[a, b], the

FD system defined by (3.1)-(3.3) is equivalent to the integral equation

yλ (x) = −MYλ (y) +A (x)T +B (x)Z,

where the coefficients M,A, T,B and Z are

M :=

(
0 Iαa+
Iαb− 0

)
,

A (x) :=

(
a12a22

∆ Φ (α, a, x)
−a21a12∆

)
,

T := −Iαb−Yλ1 (y) |x=a,

B (x) :=

(
−a12a21∆ Φ (α, a, x)

a21a11
∆

)
,

Z := −I1
a+Yλ2 (y) |x=b,

and the function Φ (α, a, x) is defined in (3.8).

Proof. Using fractional composition rules and (3.9), we can rewrite the equation
(3.1) as follows:

Υ [yλ (x) +MYλ (y)] = 0.

Thus, we get

yλ (x) +MYλ (y) =

(
ξ1Φ (α, a, x)

ξ2

)
,

i.e.,

(3.10) yλ (x) = −MYλ (y) +

(
ξ1Φ (α, a, x)

ξ2

)
.

Now, we shall connect the coefficients ξi (i = 1, 2) to the values aij (i, j = 1, 2) in
the boundary conditions (3.2)-(3.3). From the equation (3.10), we obtain

Kyλ (x) = −KMYλ (y) +K

(
ξ1Φ (α, a, x)

ξ2

)
,
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where K :=

(
I1−α
a+ 0
0 1

)
. Then we have

(
I1−α
a+ yλ1

yλ2

)
= −

(
0 I1

a+

Iαb− 1

)
Yλ (y) +

(
I1−α
a+ [ξ1Φ (α, a, x)]

ξ2

)
,

i.e., (
I1−α
a+ yλ1

yλ2

)
=

(
−I1

a+Yλ2 (y)
−Iαb−Yλ1 (y)

)
+

(
ξ1
ξ2

)
.

By virtue of (3.2) and (3.3), we conclude that

I1−α
a+ yλ1 (a) = ξ1,

I1−α
a+ yλ1 (b) = −I1

a+Yλ2 (y) |x=b +ξ1,

yλ2 (a) = −Iαb−Yλ1 (y) |x=a +ξ2,

yλ2 (b) = ξ2.

This leads to the system of equations

a11ξ1 + a12ξ2 = a12T

a21ξ1 + a22ξ2 = a12Z.

Since ∆ 6= 0, the solution for coefficients ξj , j = 1, 2 is unique:

ξ1 = a11(a22T−a21Z)
∆ ,

ξ2 = a21(a11Z−a12T )
∆ .

We have finished the proof of the lemma.

Now, we prove the existence and uniqueness of eigenfunction of the regular FD
system defined by (3.1)-(3.3). In the next result, we use the following notation:

A := ‖A (x)‖C , B := ‖B (x)‖C , Sφ := ‖φ (x)‖C ,

where ‖.‖C denotes the supremum norm on the space C ([a, b], E) .

Theorem 3.4. Let α ∈ (0, 1) and assume ∆ 6= 0. Then unique continuous function
yλ for the regular FD system defined by (3.1)-(3.3) corresponding to each eigenvalue
obeying

(3.11) ‖V − λω‖C ≤
1

Sφ +A ‖φ (a)‖C +B (b− a)

exists and such eigenvalue is simple.
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Proof. Let us define the mapping L : C ([a, b], E)→ C ([a, b], E) by

Lf := −MYλ (f) +A (x)T +B (x)Z,

Now, we show that the equation (3.1) can be interpreted as a fixed point condition
on the space C ([a, b], E) . Using the following estimate

‖Yλ (g)− Yλ (h)‖C ≤ ‖g − h‖C ‖V − λω‖C ,

we conclude that

‖Lg − Lh‖C ≤ ‖g − h‖C ‖V − λω‖C Sφ +A ‖g − h‖C ‖φ (a)‖C
+B (b− a) ‖g − h‖C ‖V − λω‖C

= ‖V − λω‖C ‖g − h‖C (Sφ +A ‖φ (a)‖C +B (b− a))

= Π ‖g − h‖C ,

where Π = ‖V − λω‖C (Sφ +A ‖φ (a)‖C +B (b− a)) . By the condition (3.11), the
mapping L is a contraction on the space C ([a, b], E) so it has a unique fixed point.
Therefore, such eigenvalue is simple.
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