
FACTA UNIVERSITATIS (NIŠ)
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Abstract. In this paper, the (1/G′)-expansion method is proposed to construct hyper-
bolic type solutions of the nonlinear evolution equations. To asses the applicability and
effectiveness of the method, two cases of the coupled Boiti-Leon-Pempinelli (CBLP)
system have been investigated in this study. It is shown that, with the help of symbolic
computation, the (1/G′)-expansion method provides a powerful and straightforward
mathematical tool for solving nonlinear partial differential equations.
Keywords: nonlinear evolution equations; partial differential equations; symbolic com-
putation.

1. Introduction

Nonlinear evolution equations usually used to describe the nonlinear phenomena
of waves in plasma physics, ocean engineering, quantum mechanics, fluid dynam-
ics, solid state physics, hydrodynamics and many other branches of sciences and
engineering. These types of equations have been used to describe the liquid flow
containing gas bubbles, the propagation of waves, fluid flow in elastic oceans, rivers,
tubes, lakes as well as a gravity waves in a smaller domain and Spatio-temporal
rescaling of the nonlinear wave motion.
There are several approaches for finding solutions of nonlinear partial differential
equations which have been developed and employed successfully. Some of these are
a new sub equation method [1], homotopy analysis method [2, 3], homotopy-Pade
method [4], homotopy perturbation method [5, 6], (G′/G)-expansion method [7, 8],
modified variational iteration algorithm-I [9, 10, 11], sub equation method [12],
Variational iteration method with an auxiliary parameter [13, 14, 15, 16], sumudu
transform approach [17], (1/G′)-expansion method [18, 19], variational iteration
method [20, 21], auto-Bäcklund transformation method [22], Clarkson–Kruskal di-
rect method [23], Bernoulli sub-equation function technique [24], decomposition
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method [25, 26, 27, 28], modified variational iteration algorithm-II [29, 30, 31],
first integral method [32], homogeneous balance method [33], modified Kudryashov
technique [34], residual power series approach [35], collocation method [36], ex-
tended rational SGEEM [37], sine-Gordon expansion method [38, 39] and many
more [40, 41, 42, 43].

Consider the following coupled Boiti-Leon-Pempinelli System [44]

uty =
(

u2 − ux

)

xy
+ 2vxxx,

vt = vxx + 2uvx.
(1.1)

There have been numerous studies about the analytical treatment of CBLP System.
In some of the studies, new traveling wave solutions of CBLP System have been
attained utilizing the generalized (G′/G)-expansion method [44], while the analytic
solutions of CBLP System have been obtained in [45].

In current work, we will construct the exact solutions of the CBLP System
employing (1/G′)-expansion method.

The remaining portion of this paper is as follows: In section 2, (1/G′)-expansion
method is elaborated, in section 3, (1/G′)-expansion method’s applications are dis-
cussed and utilized to obtain hyperbolic type solutions of the CBLP System, appli-
cability and reliability of the proposed techniques are shown through 3D, contour
and 2D graphics. The conclusion is discussed in the last section.

2. Description of the Method

Consider a general form of the following nonlinear PDE,

σ

(

u,
∂u

∂t
,
∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
, ...

)

= 0.(2.1)

Here, let u = u (ξ) = u (x, y, t) , ξ = x+ y− ct, c 6= 0, where c is a constant and
the speed of the wave. We can convert it into the following nODE for u (ξ)

τ (u,−cu′, u′, u′, u′′, ...) = 0.(2.2)

The solution of Eq. (2.2) is assumed to have the form

u (ξ) = a0 +

n
∑

i=1

ai

(

1

G′

)i

,(2.3)

whereas ai, i = 0, 1, ..., n are nonzero constants, G = G (ξ) provides the following
second order IODE

G′′ + λG′ + µ = 0,(2.4)

where µ and λ are constants to be determined after,

1

G′ (ξ)
=

1

−µ
λ
+B cosh [ξλ]−B sinh [ξλ]

,(2.5)
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where B is integral constant. If the desired derivatives of the Eq. (2.3) are calcu-
lated and substituting in the Eq. (2.2), a polynomial with the argument (1/G′) is
attained. An algebraic equation system is created by equalizing the coefficients of
this polynomial to zero. The equation are solved using a package program and put
into place in the default Eq. (2.2) solution function. Lastly, the solutions of Eq.
(1.1) are found.

3. Solutions of CBLP System

The traveling wave transmutation ξ = x + y − ct, allows us to convert Eq. (1.1)
into an ODE for u = u (ξ)

−cu′′ =
(

u2 − u′
)′′

+ 2v,(3.1)

−cv′ = v′′ + 2uv′,(3.2)

here by integrating twice the Eq. (3.1), we attain

v′ =
1

2
u′ −

1

2
cu−

1

2
u2.(3.3)

According to ξ in Eq. (3.3) and considering zero constants for integration, we attain

v =
1

2
u−

1

2

∫

(

cu+ u2
)

dξ.(3.4)

Replacing Eq. (3.3) into the Eq. (3.2),

u′′ − 2u3 − 3cu2 − c2u = 0.(3.5)

In Eq. (3.5), we get balancing term n = 1 and in Eq.(2.3), the following situation
is obtained:

u (ξ) = a0 + a1

(

1

G′

)

, a1 6= 0.(3.6)

Replacing Eq. (3.6) into Eq. (3.5) and the coefficients of the algebraic Eq. (1.1)
are equal to zero, can find the following algebraic equation systems

Const : −c2a0 − 3ca20 − 2a30 = 0,
(

1
G′[ξ]

)1

: −c2a1 + λ2a1 − 6ca0a1 − 6a20a1 = 0,
(

1
G′[ξ]

)2

: 3λµa1 − 3ca21 − 6a0a
2
1 = 0,

(

1
G′[ξ]

)3

: 2µ2a1 − 2a31 = 0.

(3.7)

Case1:

a0 = 0, a1 = −µ, c = −λ,(3.8)

replacing Eq.(3.8) into the Eq.(3.6) and the following hyperbolic type solutions is
obtained for Eq. (1.1):
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u1 (x, y, t) = −
µ

−µ
λ
+B cosh [λ (tλ+ x+ y)]−B sinh [λ (tλ+ x+ y)]

,(3.9)

v1 (x, y, t) =
1
4µ (λµ

(

λ (tλ+ x+ y) + 2 log

[

(−Bλ+ µ) cosh
[

1
2λ (tλ+ x+ y)

]

+(Bλ+ µ) sinh
[

1
2λ (tλ+ x+ y)

]

])

−λµ(λ (tλ+ x+ y) + 2 log

[

(−Bλ+ µ) cosh
[

1
2λ (tλ+ x+ y)

]

+(Bλ+ µ) sinh
[

1
2λ (tλ+ x+ y)

]

]

−
4Bλµ sinh[ 1

2
λ(tλ+x+y)]

(Aλ−µ)





(−Bλ+ µ) cosh
[

1
2λ (tλ+ x+ y)

]

+(Bλ+ µ) sinh
[

1
2λ (tλ+ x+ y)

]





))

− µ

2(−µ
λ
+B cosh[λ(tλ+x+y)]−B sinh[λ(tλ+x+y)])

.

(3.10)
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Fig. 3.1: 3D, contour and 2D graphs respectively for B = 0.6, µ = −0.1, y =
1, λ = 1.1 values of Eqs. (3.9) and (3.10).

Case 2:

a0 = −λ, a1 = −µ, c = λ,(3.11)

replacing values Eq. (3.11) into Eq. (3.6) and the following hyperbolic type solutions
are obtained for Eq. (1.1):

u2 (x, y, t) = −λ−
µ

−µ
λ
+B cosh [λ (x− tλ+ y)]−B sinh [λ (x− tλ+ y)]

,(3.12)
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v2 (x, y, t) =
1
2 (λ

2 (−x− y + tλ)

+1
µ
λ

(

λ (x−tλ+y)µ+µ

(

λ (x−tλ+y)+2 log

[

(−Bλ+µ) cosh
[

1
2λ (x+y−tλ)

]

+
(Bλ+µ) sinh

[

1
2λ (x+y−tλ)

]

]))

+ 1
2µ (−λµ

(

λ (x− tλ+ y) + 2 log

[

(−Bλ+ µ) cosh
[

1
2λ (x− tλ+ y)

]

+(Bλ+ µ) sinh
[

1
2λ (x− tλ+ y)

]

])

−λµ(λ (x− tλ+ y) + 2 log

[

(−Bλ+ µ) cosh
[

1
2λ (x− tλ+ y)

]

+(Bλ+ µ) sinh
[

1
2λ (x− tλ+ y)

]

]

−
4Bλµ sinh[ 1

2
λ(x−tλ+y)]

(Bλ−µ)





(−Bλ+ µ) cosh
[

1
2λ (x− tλ+ y)

]

+(Bλ+ µ) sinh
[

1
2λ (x− tλ+ y)

]





)))

+ 1
2

(

−λ− µ
−

µ
λ
+B cosh[λ(x−tλ+y)]−B sinh[λ(x−tλ+y)]

)

.

(3.13)
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Fig. 3.2: 3D, contour and 2D graphs respectively for B = 0.6, µ = −0.1, y =
1, λ = 1.1 values of Eqs. (3.12) and (3.13).

4. Conclusion

In this work, we have achieved hyperbolic type exact solutions of the CBLP Sys-
tem with the help of (1/G′)-expansion method. Computer technology utilized in
the construction of 3D, 2D and contour graphics of the obtained solutions. The
CBLP System, which plays an important role in mathematical physics,has been in-
vestigated analytically for the effectiveness and reliability of the proposed method.
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Furthermore, the applied method is an effective, powerful method and can be used
to establish new exact solutions of many other nonlinear partial differential equa-
tions arising in applied sciences and engineering.
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