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Abstract. In this paper, we have given I2-lacunary statistical convergence and strongly
I2-lacunary convergence with regards to the intuitionistic fuzzy norm (µ, v), investigate
their relationships, and make some observations about these classes. Also, we have
examined the relation between these two new methods and the relation between I2-
statistical convergence in the corresponding intuitionistic fuzzy normed space.
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1. Introduction

Statistical convergence of a real number sequence was firstly originated by Fast
[15]. It became a notable topic in summability theory after the work of Fridy [16]
and Šalát [50]. This concept was constracted to the double sequences by Mursaleen
and Edely [43]. Some beneficial results on this topic can be found in [6, 22, 24, 36,
37, 38, 39, 40, 54].

Theory of I-convergence of sequences in a metric space was given by Kostyrko
et al. [32]. Other investigations and applications of ideals can be found in the
study Das and Ghosal [8], Das et al. [9] and Savaş and Das [51]. Belen et al.
[5] generalized the notions of statistical convergence, (λ, µ)-statistical convergence,
(V, λ, µ) summability and (C, 1, 1) summability for a double sequence via ideals.
The other studies of this concept were examined by [21, 33, 41, 42, 44, 45, 47].
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Using lacunary sequence, Fridy and Orhan [17] examined the concept of lacu-
nary statistical convergence. Afterwards, it was developed by Fridy and Orhan
[18], Li [35], Mursaleen and Mohiuddine [46], Bakery [3]. Çakan and Altay [7] pro-
vided multidimensional analogues of the results presented by Fridy and Orhan [17].
Lacunary ideal convergence of real sequences was inquiried by Tripathy et al. [55].

Fuzzy set theory has become an important working area after the study of Zadeh
[56]. Atanassov [1] investigated intuitionistic fuzzy set; this concept was utilized by
Atanassov et al. [2] in the study of decision-making problems. The idea of an
intuitionistic fuzzy metric space was put forward by Park [48]. In [19], it was
shown that the topology generated by every IF-metric coincides with the topology
generated by its F -metric. Hence, the definition of an IF-metric space needed
some refinement, in the light of having independent results. In [34], motivated by
Park’s definition of an IF-metric, the authors defined an IF-normed spaces (IFNS
for shortly) and then investigated, among other results, the fundamental theorems:
open mapping, closed graph and uniform boundedness in IFNS. Several studies of
the convergence of sequences in some normed linear spaces with a fuzzy setting
might be revealed by the research of [10, 11, 12, 13, 14, 23, 25, 26, 27, 28, 29, 30,
31, 52, 53].

Let us start with fundamental definitions from the literature.

The natural density of a set K of positive integers is defined by

δ(K) := lim
n→∞

1

n
|{m ≤ n : m ∈ K}|,

where |m ≤ n : m ∈ K| denotes the number of elements of K not exceeding m.

A number sequence x = (xm) is said to be statistically convergent to the number
L if for every ε > 0,

lim
n→∞

1

n
|{m ≤ n : |xm − L| ≥ ε}| = 0,

i.e.,

(1.1) |xm − L| < ε (a.a. m)

In this case we write st − limxm = L. For example, define xm = 1 if m is a
square and xm = 0 otherwise. Then, |{m ≤ n : xm 6= 0}| ≤

√
n, so st − limxm =

0. Note that we could have assigned any values whatsoever to xm when m is a
square, and we would still have st − limxm = 0. But x is neither convergent nor
bounded. It is clear that if the inequality in (1.1) holds for all but finitely many
m, then limxm = L. Statistical convergence is a natural generalization of ordinary
convergence. It follows that limxm = L implies st − limxm = L, so statistical
convergence may be considered as a regular summability method. The sequence
that converges statistically need not be convergent and also need not be bounded.

A double sequence x = (xmn) has Pringsheim limit L (denoted by P − lim = L)
provided that given ε > 0 there exists n ∈ N such that |xmn − L| < ε whenever
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m,n > N . We shall describe such an (xmn) more briefly as “P -convergent.” In
Pringsheim convergence the row-index m and the column-index n tend to infinity
independently from each other [49].

The essential deficiency of this kind of convergence is that a convergent sequence
does not require to be bounded. Hardy [20] defined the concept of regular sense,
does not have this hortcoming, for double sequence. In regular convergence, both
the row-index and the column-index of the double sequence need to be convergent
besides the convergent in Pringsheim’s sense.

The notion of Cesàro summable double sequences was given by [40]. Note that if
a bounded sequence (xmn) is statistically convergent then it is also Cesàro summable
but not conversely.

Let (xmn) = (−1)
m

, ∀n; then limp,r

p∑
m=1

r∑
n=1

xmn = 0, but obviously x is not

statistically convergent.

The convergence of double sequences play an important role not only in pure
mathematics but also in other branches of science involving computer science, bi-
ological science and dynamical systems. Also, the double sequence can be use in
convergence of double trigonometric series and in the opening series of double func-
tions and in the making differential solution.

In the wake of the study of ideal convergence defined by Kostyrko et al. [32],
there has been comprehensive research to discover applications and summability
studies of the classical theories.

Let Ø 6= S be a set, and then a non empty class I ⊆ P (S) is said to be an
ideal on S iff (i) Ø ∈ I, (ii) I is additive under union, (iii) for each A ∈ I and
each B ⊆ A we find B ∈ I. An ideal I is called non-trivial if I 6=Ø and S /∈ I. A
non-empty family of sets F is called filter on S iff (i) Ø /∈ F , (ii) for each A,B ∈ F
we get A ∩ B ∈ F , (iii) for every A ∈ F and each B ⊇ A, we obtain B ∈ F .
Relationship between ideal and filter is given as follows:

F (I) = {K ⊂ S : Kc ∈ I} ,

where Kc = S −K.

A non-trivial ideal I is (i) an admissible ideal on S iff it contains all singletons.

A sequence (xm) is said to be ideal convergent to L if for every ε > 0, i.e.

A (ε) = {m ∈ N : |xm − L| ≥ ε} ∈ I.

Taking I = Iδ = {A ⊆ N : δ (A) = 0}, where δ (A) indicates the asymptotic density
of set A. If Iδ is a non-trivial admissible ideal then ideal convergence coincides with
statistical convergence.

A nontrivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i}
belong to I2 for each i ∈ N.

It is evident that a strongly admissible ideal is admissible also.
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Throughout the paper we take I2 as a strongly admissible ideal in N × N, and
l2∞ as the space of all bounded double sequences.

A double sequence θ = θus = {(ku, ls)} is called double lacunary sequence if
there exist two increasing sequences of integers (ku) and (ls) such that

k0 = 0, hu = ku − ku−1 →∞ and l0 = 0, hs = ls − ls−1 →∞, u, s→∞.

We will use the following notation kus := kuls, hus := huhs and θus is determined
by

Jus := {(k, l) : ku−1 < k ≤ ku and ls−1 < l ≤ ls} ,

qu :=
ku
ku−1

, qs :=
ls
ls−1

and qus := quqs.

Throughout the paper, by θ2 = θus = {(ku, ls)} we will denote a double lacunary
sequence of positive real numbers, respectively, unless otherwise stated.

A double sequence x = {xmn} of numbers is said to be I2-lacunary statistical
convergent or Sθ2 (I2)-convergent to L, if for each ε > 0 and δ > 0,{

(u, s) ∈ N× N :
1

huhs
|{(m,n) ∈ Jus : |xmn − L| ≥ ε}| ≥ δ

}
∈ I2.

In this case, we write xmn → L (Sθ2 (I2)) or Sθ2 (I2)- lim
m,n→∞

xmn = L.

The concept of IFNS was given by Lael and Nourouzi [34]. In order to have
a different topology from the topology generated by the F -norm µ, the condition
µ+ v ≤ 1 was omitted from Park’s definition.

The triplicate (X,µ, v) is said to be an IF-normed space if X is a real vector
space, and µ, v are F -sets on X × F satisfying the following conditions for every
x, y ∈ X and t, s ∈ R :

(a) µ (x, t) = 0 for all non-positive real number t,

(b) µ (x, t) = 1 for all t ∈ R+ iff x = 0,

(c) µ (cx, t) = µ
(
x, t
|c|

)
for all t ∈ R+ and c 6= 0,

(d) µ (x+ y, s+ t) ≥ min {µ (x, t) , µ (y, s)} ,
(e) limt→∞ µ (x, t) = 1 and limt→0 µ (x, t) = 0,

(f) v (x, t) = 1 for all non-positive real number t,

(g) v (x, t) = 0 for all t ∈ R+ iff x = 0,

(h) v (cx, t) = v
(
x, t
|c|

)
for all t ∈ R+ and c 6= 0,

(ı) max {v (x, t) , v (y, s)} ≥ v (x+ y, t+ s) ,

(i) limt→∞ v (x, t) = 0 and limt→0 v (x, t) = 1.

In this case, we will call (µ, v) an IF-norm on X. In addition, (X,µ) is called
an F-normed space.
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In this study, we deal with the relation between these two new methods and
with relations between I2-lacunary statistical convergence and strongly I2-lacunary
convergence introduced by the author in an IFNS. Also, we examine the relation
between the I2-lacunary statistical convergence and I2-statistical convergence in an
IFNS.

2. Main Results

Definition 2.1. Let (X,µ, v, ∗,Θ) be an IFNS, I2 ⊆ 2N×N be a strongly admissible
ideal in N × N. A sequence x = (xkj) is said to be I2-statistically convergent to

ξ ∈ X with regards to the IFN (µ, v), and is demonstrated by S (I2)
(µ,v)− limx = ξ

or xk,j
(µ,v)→ ξ (S (I2)), if for every ε > 0, every δ > 0, and t > 0,{

(m,n) ∈ N× N :
1

mn
|{k ≤ m, j ≤ n : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}| ≥ δ

}
∈ I2.

Definition 2.2. A sequence x = (xkj) is said to be I2-lacunary statistically
convergent to ξ ∈ X with regards to the IFN (µ, v), and is demonstrated by

Sθ (I2)
(µ,v) − limx = ξ or xk,j

(µ,v)→ ξ (Sθ (I2)), if for every ε > 0, every δ > 0,
and t > 0,{

(r, u) ∈ N× N :
1

hrhu
|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}| ≥ δ

}
∈ I2.

Definition 2.3. A sequence x = (xkj) is said to be strongly I2-lacunary conver-
gent to ξ or Nθ (I2)-convergent to ξ ∈ X with regards to the IFN (µ, v) and is

denoted by xkj
(µ,v)→ ξ (Nθ (I2)), if for every δ > 0 and t > 0,(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Jru

µ (xkj − ξ, t) ≤ 1− δ or
1

hrhu

∑
(k,j)∈Jru

ν (xkj − ξ, t) ≥ δ

 ∈ I2.

Theorem 2.1. Let (X,µ, v, ∗,Θ) be an IFNS, θ be a double lacunary sequence, I2
be a strongly admissible ideal in N, and x = (xjk) ∈ X, then

(i) (a) If xkj
(µ,v)→ ξ (Nθ (I2)) then xkj

(µ,v)→ ξ (Sθ (I2)) .

(b) If x ∈ l2∞ (X), the space of all bounded sequences of X and xkj
(µ,v)→

ξ (Sθ (I2)) then xkj
(µ,v)→ ξ (Nθ (I2)) .

(ii) Sθ (I2)
(µ,v) ∩ l2∞ (X) = Nθ (I2)

(µ,v) ∩ l2∞ (X) .
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Proof. (i) − (a). By hypothesis, for every ε > 0, δ > 0 and t > 0, let xkj
(µ,v)→

ξ (Nθ (I2)). Then we can write∑
(k,j)∈Jru

(µ (xkj − ξ, t) or ν (xkj − ξ, t))

≥
∑

(k,j)∈Jru
µ(xkj−ξ,t)≤1−ε or ν(xkj−ξ,t)≥ε

(µ (xkj − ξ, t) or ν (xkj − ξ, t))

≥ ε. |{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}| .

Then observe that

1

hrhu
|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}| ≥ δ

and

1

hrhu

∑
(k,j)∈Jru

µ (xkj − ξ, t) ≤ (1− ε) δ or
1

hrhu

∑
(k,j)∈Jru

ν (xkj − ξ, t) ≥ εδ,

which implies{
(r, u) ∈ N× N : 1

hrhu
|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}| ≥ δ

}
⊂ {(r, u) ∈ N× N : 1

hrhu
{

∑
(k,j)∈Jru

µ (xkj − ξ, t) ≤ 1− ε

or
∑

(k,j)∈Jru
ν (xkj − ξ, t) ≥ ε} ≥ εδ}.

Since xkj
(µ,v)→ ξ (Nθ (I2)), we immediately see that xkj

(µ,v)→ ξ (Sθ (I2)).

(i)− (b). We assume that xkj
(µ,v)→ ξ (Sθ (I2)) and x ∈ l2∞ (X). The inequalities

µ (xkj − ξ, t) ≥ 1 −M or ν (xkj − ξ, t) ≤ M hold for all k, j. Let ε > 0 be given.
Then we have

1
hrhu

∑
(k,j)∈Jru

(µ (xkj − ξ, t) or ν (xkj − ξ, t))

= 1
hrhu

∑
(k,j)∈Jru

µ(xkj−ξ,t)≤1−ε or ν(xkj−ξ,t)≥ε

(µ (xkj − ξ, t) or ν (xkj − ξ, t))

+ 1
hrhu

∑
(k,j)∈Jru

µ(xkj−ξ,t)>1−ε or ν(xkj−ξ,t)<ε

(µ (xkj − ξ, t) or ν (xkj − ξ, t))

≤ M
hrhu

|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}|+ ε.
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Note that

Aµ,v (ε, t) = {(r, u) ∈ N× N :
1

hrhu
|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε

or ν (xkj − ξ, t) ≥ ε}| ≥
ε

M
}

belongs to I2. If r ∈ (Aµ,v (ε, t))
c

then we have

1

hrhu

∑
(k,j)∈Jru

µ (xkj − ξ, t) > 1− 2ε or
1

hrhu

∑
(k,j)∈Jru

ν (xkj − ξ, t) < 2ε.

Now

Tµ,v (ε, t) = {(r, u) ∈ N× N :
1

hrhu

∑
(k,j)∈Jru

µ (xkj − ξ, t) ≤ 1− 2ε

or
1

hrhu

∑
(k,j)∈Jru

ν (xkj − ξ, t) ≥ 2ε}.

Hence, Tµ,v (ε, t) ⊆ Aµ,v (ε, t) and so, by the definition of an ideal, Tµ,v (ε, t) ∈ I2.

Therefore, we conclude that xkj
(µ,v)→ ξ (Nθ (I2)) .

(ii) This readily follows from (i)− (a) and (i)− (b).

Theorem 2.2. Let (X,µ, v, ∗,Θ) be an IFNS. If θ be a double lacunary sequence
with lim infr qr > 1, lim infu qu > 1 then

xkj
(µ,v)→ ξ (S (I2))⇒ xkj

(µ,v)→ ξ (Sθ (I2)) .

Proof. Suppose first that lim infr qr > 1, lim infu qu > 1 then there exists a α, β > 0
such that qr ≥ 1 + α, qu > 1 + β for sufficiently large r, u, which implies that

hrhu
kru

≥ αβ

(1 + α) (1 + β)
.

If xkj
(µ,v)→ ξ (S (I2)), then for every ε > 0 and for sufficiently large r, u, we have

1

kru
|{k ≤ kr, j ≤ ju : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}|

≥ 1

kru
|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}|

≥ αβ
(1+α)(1+β)

(
1

hrhu
|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}|

)
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Then for any δ > 0, we get{
(r, u) ∈ N× N : 1

hrhu
|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}| ≥ δ

}
⊆ {(r, u) ∈ N× N : 1

kru
|{k ≤ kr, j ≤ ju : µ (xkj − ξ, t) ≤ 1− ε

or ν (xkj − ξ, t) ≥ ε}| ≥ δαβ
(1+α)(1+β)}.

If xkj
(µ,v)→ ξ (S (I2)) then the set on the right-hand side belongs to I2 and so the

set on the left-hand side belongs to I2. This shows that xkj
(µ,v)→ ξ (Sθ (I2)).

For the next result we assume that the lacunary sequence θ satisfies the condition
that for any set C ∈ F (I2),

⋃
{n : kr−1 < n ≤ kr, r ∈ C} ∈ F (I2).

Theorem 2.3. Let (X,µ, v, ∗,Θ) be an IFNS. If θ be a double lacunary sequence
with lim supr qr <∞, lim supu qu <∞ then

xkj
(µ,v)→ ξ (Sθ (I2)) =⇒ xjk

(µ,v)→ ξ (S (I2)) .

Proof. If lim supr qr < ∞, lim supu qu < ∞ then without any loss of generality we
can assume that there exists a M , N > 0 such that qr < M and qu < N for all r, u.

Suppose that xkj
(µ,v)→ ξ (Sθ (I2)), and let

Cru := |{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}| .

Since xkj
(µ,v)→ ξ (Sθ (I2)), it follows that for every ε > 0, every δ > 0, and t > 0,

{(r, u) ∈ N× N :
1

hrhu
|{(k, j) ∈ Jru : µ (xkj − ξ, t) ≤ 1− ε

or ν (xkj − ξ, t) ≥ ε}| ≥ δ} ∈ I2.

Hence, we can choose a positive integers u0, s0 ∈ N such that

Cru

hrhu
< δ, for all r > r0, u > u0.

Now let

K := max {Cru : 1 ≤ r ≤ r0, 1 ≤ u ≤ u0}

and let t and v be any integers satisfying kr−1 < t ≤ kr and ju−1 < v ≤ ju. Then,
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we have

1

tv
|{k ≤ t, j ≤ v : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε }|

≤ 1

kr−1ju−1
|{k ≤ kr, j ≤ ju : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}|

≤ 1

kr−1ju−1
(C11 + C12 + C21 + C22 + ...+ Cr0u0

+ ...Cru)

≤ K
kr−1ju−1

.r0u0 + 1
kr−1ju−1

(
hr0hur0+1

Cr0,u0+1

hr0hu0+1
+ hr0+1

hu0

Cr0+1,u0

hr0+1
hu0

+ . . .

+hrhu
Cru

hrhu

)
≤ r0u0.K

kr−1ju−1
+ 1

kr−1ju−1

(
supr>r0,u>u0

Cru

hrhu

) (
hr0hu0+1 + hr0+1hu0 + ...+ hrhu

)
≤ r0u0.K

kr−1ju−1
+ ε.

(kr−kr0)(ju−ju−1)

ku−1js−1

≤ u0s0.K
kr−1ju−1

+ ε.qu.qs ≤ r0u0.K
kr−1ju−1

+ ε.M.N

Since kr−1ju →∞ as t, v →∞, it follows that

1

tv
|{k ≤ t, j ≤ v : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε }| → 0

and consequently for any δ1 > 0, the set{
(t, v) ∈ N× N :

1

tv
|{k ≤ t, j ≤ v : µ (xkj − ξ, t) ≤ 1− ε or ν (xkj − ξ, t) ≥ ε}|

}
∈ I2.

This shows that xjk
(µ,v)→ ξ (S (I2)).

Combining Theorem 2.2 and Theorem 2.3 we have

Theorem 2.4. Let θ be a strongly lacunary sequence. IFNS. If 1 < lim infr qr ≤
lim supr qr <∞, and 1 < lim infu qu ≤ lim supu qu <∞ then

xkj
(µ,v)→ ξ (Sθ (I2))⇔ xkj

(µ,v)→ ξ (S (I2)) .

Proof. This readily follows from Theorem 2.2 and Theorem 2.3.

Theorem 2.5. Let (X,µ, v, ∗,Θ) be an IFNS such that 1
4εmnΘ 1

4εmn <
1
2εmn and(

1− 1
4εmn

)
∗
(
1− 1

4εmn
)
> 1 − 1

2εmn. If X is a Banach space then Sθ (I2)
(µ,v) ∩

l2∞ (X) is a closed subset of l2∞ (X).
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Proof. We first assume that (xmn) =
(
xmnkj

)
be a convergent sequence in Sθ (I2)

(µ,v)∩
l2∞ (X). Suppose x(mn) convergent to x. It is clear x ∈ l2∞ (X). We need to show

that x ∈ Sθ (I2)
(µ,v) ∩ l2∞ (X) . Since xmn ∈ Sθ (I2)

(µ,v) ∩ l2∞ (X) there exists real
numbers Lmn such that

xmnkj
(µ,v)→ Lmn (Sθ (I2)) for m,n = 1, 2, 3, ...

Take a double sequence {εmn} of strictly decreasing positive numbers converging to
zero. Then for every m,n = 1, 2, 3, ... there is positive Nmn such that if m,n ≥ Nmn
then supm,n ν (x− xmn, t) ≤ εmn

4 . Without loss of generality assume that Nmn =

mn and choose a δ > 0 such that δ < 1
5 . Now set

Aµ,v (εmn, t) =


(r, u) ∈ N× N : 1

hrhu
|{(k, j) ∈ Jru :

µ
(
xmnkj − Lmn, t

)
≤ 1− εmn

4 or

ν
(
xmnkj − Lmn, t

)
≥ εmn

4

}∣∣∣ < δ


belongs to F (I2) and

Bµ,v (εm+1,n+1, t) =


(r, u) ∈ N× N : 1

hrhu
|{(k, j) ∈ Jru :

µ
(
xm+1,n+1
kj − Lm+1,n+1, t

)
≤ 1− εm+1,n+1

4 or

ν
(
xm+1,n+1
kj − Lm+1,n+1, t

)
≥ εm+1,n+1

4

}∣∣∣ < δ


belongs to F (I2). Since Aµ,v (εmn, t)∩Bµ,v (εm+1,n+1, t) ∈ F (I2) and Ø /∈ F (I2),
we can choose (r, u) ∈ Aµ,v (εmn, t) ∩Bµ,v (εm+1,n+1, t). Then

1
hrhu
|{(k, j) ∈ Jru : µ

(
xmnkj − Lmn, t

)
≤ 1− εmn

4 or ν
(
xmnkj − Lmn, t

)
≥ εmn

4

∨ µ
(
xm+1,n+1
kj − Lm+1,n+1, t

)
≤ 1− εm+1,n+1

4 or ν
(
xm+1,n+1
kj − Lm+1,n+1, t

)
≥ εm+1,n+1

4 }| ≤ 2δ < 1.

Since hrhu → ∞ and Aµ,v (εmn, t) ∩ Bµ,v (εm+1,n+1, t) ∈ F (I2) is finite, we can
choose the above r, u so that hrhu > 5. Hence there must exist a (k, j) ∈ Jru for

which we have simultaneously, µ
(
xmnkj − Lmn, t

)
> 1− εmn

4 or ν
(
xmnkj − Lmn, t

)
<

εmn

4 and µ
(
xm+1,n+1
kj − Lm+1,n+1, t

)
> 1 − εmn

4 or ν
(
xm+1,n+1
kj − Lm+1,n+1, t

)
<

εmn

4 . For a given εmn > 0 choose εmn

2 such that
(
1− 1

2εmn
)
∗
(
1− 1

2εmn
)
> 1−εmn

and 1
2εmnΘ 1

2εmn < εmn. Then it follows that

ν

(
Lmn − xmnkj ,

t

2

)
Θν

(
Lm+1,n+1 − xm+1,n+1

kj ,
t

2

)
≤ εmn

4
Θ
εmn

4
<
εmn

2

and

ν
(
xmnkj − x

m+1,n+1
kj , t

)
≤ supm,n ν

(
x− xmn, t2

)
Θ supm,n ν

(
x− xm+1,n+1, t2

)
≤ εmn

4 Θ εmn

4 < εmn

2 .
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Hence, we have

ν (Lmn − Lm+1,n+1, t) ≤
[
ν
(
Lmn − xmnkj , t3

)
Θν
(
xm+1,n+1
kj − Lm+1,n+1,

t
3

)
Θν
(
xmnkj − x

m+1,n+1
kj , t3

)]
≤ εmn

2 Θ εmn

2 < εmn

and similarly µ (Lmn − Lm+1,n+1, t) > 1− εmn. This implies that {Lmn}m,n∈N is a
Cauchy sequence in X and let Lmn → L ∈ X as m,n → ∞. We shall prove that

x
(µ,v)→ Lmn (Sθ (I2)). For anay ε > 0 and t > 0, choose (m,n) ∈ N × N such that

εmn <
1
4ε, supm,n ν (x− xmn, t) < 1

4ε, ν (Lmn − L, t) > 1− 1
4ε or ν (Lmn − L, t) <

1
4ε. Now since

1
hrhu

|{(k, j) ∈ Jru : ν (xkj − L, t) ≥ ε}|

≤ 1
hrhu

∣∣∣{(k, j) ∈ Jru : ν
(
xkj − xmnkj , t3

)
Θ[

ν
(
xmnkj − Lmn, t3

)
Θν
(
Lmn − L, t3

)]
≥ ε
}∣∣∣

≤ 1
hrhu

∣∣∣{(k, j) ∈ Jru : ν
(
xmnkj − Lmn, t3

)
≥ ε

2

}∣∣∣
and similarly

1
hrhu

|{(k, j) ∈ Jru : µ (xkj − L, t) ≤ 1− ε}|

> 1
hrhu

∣∣∣{(k, j) ∈ Jru : µ
(
xmnkj − Lmn, t3

)
≤ 1− ε

2

}∣∣∣ .
It follows that{

(r, u) ∈ N× N : 1
hrhu

|{(k, j) ∈ Jru : µ (xkj − L, t) ≤ 1− ε
or ν (xkj − L, t) ≥ ε}| ≥ δ}

⊂
{

(r, u) ∈ N× N : 1
hrhu

∣∣∣{(k, j) ∈ Jru : µ
(
xmnkj − Lmn, t3

)
≤

1− ε
2 or ν

(
xmnkj − Lmn, t3

)
≥ ε

2

}∣∣∣ ≥ δ}
for any given δ > 0. Hence we have x

(µ,v)→ Lmn (Sθ (I2)).

3. Conclusion

In this paper we introduce the notions of I2-lacunary statistical convergence
and strongly I2-lacunary convergence with respect to the IFN (µ, v), investigate
their relationship, and make some observations about these classes. Our study of
I2-statistical convergence and I2-lacunary statistical convergence of sequences in
IFN spaces also provides a tool to deal with convergence problems of sequences of
fuzzy real numbers. These results can be used to study the convergence problems
of sequences of fuzzy numbers having a chaotic pattern in IFN spaces.
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