ON GENERALIZED STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES VIA IDEALS IN INTUITIONISTIC FUZZY NORMED SPACES

Ömer Kişi
Bartın University, Turkey

Abstract. In this paper, we have given I_2-lacunary statistical convergence and strongly I_{2s}-lacunary convergence with regards to the intuitionistic fuzzy norm (μ, v), investigate their relationships, and make some observations about these classes. Also, we have examined the relation between these two new methods and the relation between I_2-statistical convergence in the corresponding intuitionistic fuzzy normed space.

Key words: ideal; I_2-lacunary statistical convergence; intuitionistic fuzzy normed space; banach space; strongly convergence.

1. Introduction

Statistical convergence of a real number sequence was firstly originated by Fast [15]. It became a notable topic in summability theory after the work of Fridy [16] and Šalát [50]. This concept was constracted to the double sequences by Mursaleen and Edely [43]. Some beneficial results on this topic can be found in [6, 22, 24, 36, 37, 38, 39, 40, 54].

Theory of I-convergence of sequences in a metric space was given by Kostyrko et al. [32]. Other investigations and applications of ideals can be found in the study Das and Ghosal [8], Das et al. [9] and Savaş and Das [51]. Belen et al. [5] generalized the notions of statistical convergence, (λ, μ)-statistical convergence, (V, λ, μ) summability and $(C, 1, 1)$ summability for a double sequence via ideals. The other studies of this concept were examined by [21, 33, 41, 42, 44, 45, 47].
Using lacunary sequence, Fridy and Orhan [17] examined the concept of lacunary statistical convergence. Afterwards, it was developed by Fridy and Orhan [18], Li [35], Mursaleen and Mohiuddine [46], Bakerly [3]. Çakan and Altay [7] provided multidimensional analogues of the results presented by Fridy and Orhan [17]. Lacunary ideal convergence of real sequences was inquired by Tripathy et al. [55].

Fuzzy set theory has become an important working area after the study of Zadeh [56]. Atanassov [1] investigated intuitionistic fuzzy set; this concept was utilized by Atanassov et al. [2] in the study of decision-making problems. The idea of an intuitionistic fuzzy metric space was put forward by Park [48]. In [19], it was shown that the topology generated by every IF-metric coincides with the topology generated by its F-metric. Hence, the definition of an IF-metric space needed some refinement, in the light of having independent results. In [34], motivated by Park’s definition of an IF-metric, the authors defined an IF-normed spaces (IFNS for shortly) and then investigated, among other results, the fundamental theorems: open mapping, closed graph and uniform boundedness in IFNS. Several studies of the convergence of sequences in some normed linear spaces with a fuzzy setting might be revealed by the research of [10, 11, 12, 13, 14, 23, 25, 26, 27, 28, 29, 30, 31, 52, 53].

Let us start with fundamental definitions from the literature.

The natural density of a set \(K \) of positive integers is defined by

\[
\delta(K) := \lim_{n \to \infty} \frac{1}{n} |\{m \leq n : m \in K\}|
\]

where \(|m \leq n : m \in K\} \) denotes the number of elements of \(K \) not exceeding \(m \).

A number sequence \(x = (x_m) \) is said to be statistically convergent to the number \(L \) if for every \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \frac{1}{n} |\{m \leq n : |x_m - L| \geq \varepsilon\}| = 0,
\]

i.e.,

\[
|x_m - L| < \varepsilon \quad (a.a. m)
\]

In this case we write \(st - \lim x_m = L \). For example, define \(x_m = 1 \) if \(m \) is a square and \(x_m = 0 \) otherwise. Then, \(|\{m \leq n : x_m \neq 0\}| \leq \sqrt{n} \), so \(st - \lim x_m = 0 \). Note that we could have assigned any values whatsoever to \(x_m \) when \(m \) is a square, and we would still have \(st - \lim x_m = 0 \). But \(x \) is neither convergent nor bounded. It is clear that if the inequality in (1.1) holds for all but finitely many \(m \), then \(\lim x_m = L \). Statistical convergence is a natural generalization of ordinary convergence. It follows that \(\lim x_m = L \) implies \(st - \lim x_m = L \), so statistical convergence may be considered as a regular summability method. The sequence that converges statistically need not be convergent and also need not be bounded.

A double sequence \(x = (x_{mn}) \) has Pringsheim limit \(L \) (denoted by \(P - \lim = L \)) provided that given \(\varepsilon > 0 \) there exists \(n \in \mathbb{N} \) such that \(|x_{mn} - L| < \varepsilon \) whenever
On generalized statistical convergence of sequences via ideals in IFNS

437

We shall describe such an \((x_{mn})\) more briefly as “\(P\)-convergent.” In Pringsheim convergence the row-index \(m\) and the column-index \(n\) tend to infinity independently from each other [49].

The essential deficiency of this kind of convergence is that a convergent sequence does not require to be bounded. Hardy [20] defined the concept of regular sense, does not have this hortcoming, for double sequence. In regular convergence, both the row-index and the column-index of the double sequence need to be convergent besides the convergent in Pringsheim’s sense.

The notion of Cesàro summable double sequences was given by [40]. Note that if a bounded sequence \((x_{mn})\) is statistically convergent then it is also Cesàro summable but not conversely.

Let \((x_{mn}) = (-1)^n, \forall n; \) then \(\lim_{p,r} \sum_{m=1}^{p} \sum_{n=1}^{r} x_{mn} = 0,\) but obviously \(x\) is not statistically convergent.

The convergence of double sequences play an important role not only in pure mathematics but also in other branches of science involving computer science, biological science and dynamical systems. Also, the double sequence can be use in convergence of double trigonometric series and in the opening series of double functions and in the making differential solution.

In the wake of the study of ideal convergence defined by Kostyrko et al. [32], there has been comprehensive research to discover applications and summability studies of the classical theories.

Let \(\mathcal{I} \neq S\) be a set, and then a non empty class \(\mathcal{I} \subseteq P(S)\) is said to be an ideal on \(S\) iff (i) \(\emptyset \in \mathcal{I}\), (ii) \(\mathcal{I}\) is additive under union, (iii) for each \(A \in \mathcal{I}\) and each \(B \subseteq A\) we find \(B \in \mathcal{I}\). An ideal \(\mathcal{I}\) is called non-trivial if \(\mathcal{I} \neq \emptyset\) and \(S \notin \mathcal{I}\). A non-empty family of sets \(\mathcal{F}\) is called filter on \(S\) iff (i) \(\emptyset \notin \mathcal{F}\), (ii) for each \(A, B \in \mathcal{F}\) we get \(A \cap B \in \mathcal{F}\), (iii) for every \(A \in \mathcal{F}\) and each \(B \supseteq A\), we obtain \(B \in \mathcal{F}\).

Relationship between ideal and filter is given as follows:

\[\mathcal{F}(\mathcal{I}) = \{ K \subset S : K^c \in \mathcal{I} \},\]

where \(K^c = S - K\).

A non-trivial ideal \(\mathcal{I}\) is (i) an admissible ideal on \(S\) iff it contains all singletons.

A sequence \((x_m)\) is said to be ideal convergent to \(L\) if for every \(\varepsilon > 0\), i.e.

\[A(\varepsilon) = \{ m \in \mathbb{N} : |x_m - L| \geq \varepsilon \} \in \mathcal{I}.\]

Taking \(\mathcal{I} = \mathcal{I}_\delta = \{ A \subseteq \mathbb{N} : \delta(A) = 0 \}\), where \(\delta(A)\) indicates the asymptotic density of set \(A\). If \(\mathcal{I}_\delta\) is a non-trivial admissible ideal then ideal convergence coincides with statistical convergence.

A nontrivial ideal \(\mathcal{I}_2\) of \(\mathbb{N} \times \mathbb{N}\) is called strongly admissible if \(\{i\} \times \mathbb{N}\) and \(\mathbb{N} \times \{i\}\) belong to \(\mathcal{I}_2\) for each \(i \in \mathbb{N}\).

It is evident that a strongly admissible ideal is admissible also.
Throughout the paper we take \(I_2 \) as a strongly admissible ideal in \(\mathbb{N} \times \mathbb{N} \), and \(l^2_\infty \) as the space of all bounded double sequences.

A double sequence \(\bar{\theta} = \theta_{us} = \{(k_u, l_u)\} \) is called double lacunary sequence if there exist two increasing sequences of integers \((k_u)\) and \((l_u)\) such that

\[
k_0 = 0, \ h_u = k_u - k_{u-1} \to \infty \quad \text{and} \quad l_0 = 0, \ \bar{\theta}_u = l_u - l_{u-1} \to \infty, \quad u, s \to \infty.
\]

We will use the following notation \(k_{us} := k_u l_s, \ h_{us} := h_u \bar{\theta}_s \) and \(\theta_{us} \) is determined by

\[
J_{us} := \{(k, l) : k_{u-1} < k \leq k_u \text{ and } l_{s-1} < l \leq l_s\}, \quad q_u := \frac{k_u}{k_{u-1}}, \ \bar{\theta}_s := \frac{l_s}{l_{s-1}} \text{ and } q_{us} := q_u \bar{\theta}_s.
\]

Throughout the paper, by \(\theta_2 = \theta_{us} = \{(k_u, l_u)\} \) we will denote a double lacunary sequence of positive real numbers, respectively, unless otherwise stated.

A double sequence \(x = \{x_{mn}\} \) of numbers is said to be \(I_2 \)-lacunary statistical convergent or \(S_{\theta_2} (I_2) \)-convergent to \(L \), if for each \(\varepsilon > 0 \) and \(\delta > 0 \),

\[
\left\{(u, s) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_u h_s}|\{m, n \in J_{us} : |x_{mn} - L| \geq \varepsilon\}| \geq \delta \right\} \in I_2.
\]

In this case, we write \(x_{mn} \to L (S_{\theta_2} (I_2)) \) or \(S_{\theta_2} (I_2) \)-\(\lim_{m,n \to \infty} x_{mn} = L \).

The concept of IFNS was given by Lael and Nourouzi [34]. In order to have a different topology from the topology generated by the \(F \)-norm \(\mu \), the condition \(\mu + v \leq 1 \) was omitted from Park’s definition.

The triplicate \((X, \mu, v)\) is said to be an IF-normed space if \(X \) is a real vector space, and \(\mu, v \) are \(F \)-sets on \(X \times F \) satisfying the following conditions for every \(x, y \in X \) and \(t, s \in \mathbb{R}^+ \):

(a) \(\mu (x, t) = 0 \) for all non-positive real number \(t \),
(b) \(\mu (x, t) = 1 \) for all \(t \in \mathbb{R}^+ \) iff \(x = 0 \),
(c) \(\mu (cx, t) = \mu \left(x, \frac{t}{|c|}\right) \) for all \(t \in \mathbb{R}^+ \) and \(c \neq 0 \),
(d) \(\mu (x + y, s + t) \geq \min \{\mu (x, t), \mu (y, s)\} \),
(e) \(\lim_{t \to \infty} \mu (x, t) = 1 \) and \(\lim_{t \to 0} \mu (x, t) = 0 \),
(f) \(v (x, t) = 1 \) for all non-positive real number \(t \),
(g) \(v (x, t) = 0 \) for all \(t \in \mathbb{R}^+ \) iff \(x = 0 \),
(h) \(v (cx, t) = v \left(x, \frac{t}{|c|}\right) \) for all \(t \in \mathbb{R}^+ \) and \(c \neq 0 \),
(i) \(\max \{v (x, t), v (y, s)\} \geq v (x + y, t + s) \),
(j) \(\lim_{t \to \infty} v (x, t) = 0 \) and \(\lim_{t \to 0} v (x, t) = 1 \).

In this case, we will call \((\mu, v)\) an IF-norm on \(X \). In addition, \((X, \mu)\) is called an \(F \)-normed space.
In this study, we deal with the relation between these two new methods and with relations between I_2-lacunary statistical convergence and strongly I_2-lacunary convergence introduced by the author in an IFNS. Also, we examine the relation between the I_2-lacunary statistical convergence and I_2-statistical convergence in an IFNS.

2. Main Results

Definition 2.1. Let $(X, \mu, v, *, \Theta)$ be an IFNS, $\mathcal{I}_2 \subseteq 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$. A sequence $x = (x_{kj})$ is said to be \mathcal{I}_2-statistically convergent to $\xi \in X$ with regards to the IFN (μ, v), and is demonstrated by $S(\mathcal{I}_2)(\mu, v) \lim x = \xi$ or $x_{kj} \xrightarrow{(\mu, v)} \xi(S(\mathcal{I}_2))$, if for every $\varepsilon > 0$, every $\delta > 0$, and $t > 0$,

$$\left\{(m, n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \sum_{\{k \leq m, j \leq n \}} \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon \right\} \in \mathcal{I}_2.$$

Definition 2.2. A sequence $x = (x_{kj})$ is said to be \mathcal{I}_2-lacunary statistically convergent to $\xi \in X$ with regards to the IFN (μ, v), and is demonstrated by $S_\theta(\mathcal{I}_2)(\mu, v) \lim x = \xi$ or $x_{kj} \xrightarrow{(\mu, v)} \xi(S_\theta(\mathcal{I}_2))$, if for every $\varepsilon > 0$, every $\delta > 0$, and $t > 0$,

$$\left\{(r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{nu} \sum_{\{k \leq r, j \leq u \}} \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon \right\} \in \mathcal{I}_2.$$

Definition 2.3. A sequence $x = (x_{kj})$ is said to be strongly \mathcal{I}_2-lacunary convergent to $\xi \in X$ with regards to the IFN (μ, v) and is denoted by $x_{kj} \xrightarrow{(\mu, v)} \xi(N_\theta(\mathcal{I}_2))$, if for every $\delta > 0$ and $t > 0$,

$$\left\{(r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{nu} \sum_{\{k \leq r, j \leq u \}} \mu(x_{kj} - \xi, t) \leq 1 - \delta \text{ or } \frac{1}{nu} \sum_{\{k \leq r, j \leq u \}} \nu(x_{kj} - \xi, t) \geq \delta \right\} \in \mathcal{I}_2.$$

Theorem 2.1. Let $(X, \mu, v, *, \Theta)$ be an IFNS, θ be a double lacunary sequence, \mathcal{I}_2 be a strongly admissible ideal in \mathbb{N}, and $x = (x_{jk}) \in X$, then

(i) (a) If $x_{kj} \xrightarrow{(\mu, v)} \xi(N_\theta(\mathcal{I}_2))$ then $x_{kj} \xrightarrow{(\mu, v)} \xi(S_\theta(\mathcal{I}_2))$.

(b) If $x \in l^2_\infty(X)$, the space of all bounded sequences of X and $x_{kj} \xrightarrow{(\mu, v)} \xi(S_\theta(\mathcal{I}_2))$ then $x_{kj} \xrightarrow{(\mu, v)} \xi(N_\theta(\mathcal{I}_2))$.

(ii) $S_\theta(\mathcal{I}_2)(\mu, v) \cap l^2_\infty(X) = N_\theta(\mathcal{I}_2)(\mu, v) \cap l^2_\infty(X)$.
Proof. (i) – (a). By hypothesis, for every $\varepsilon > 0$, $\delta > 0$ and $t > 0$, let $x_{kj} \xrightarrow{(\mu,v)} \xi (N_\theta (I_2))$. Then we can write

$$\sum_{(k,j) \in J_{ru}} (\mu (x_{kj} - \xi, t) \text{ or } \nu (x_{kj} - \xi, t))$$

$$\geq \sum_{(k,j) \in J_{ru}} (\mu (x_{kj} - \xi, t) \text{ or } \nu (x_{kj} - \xi, t))_{\mu (x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu (x_{kj} - \xi, t) \geq \varepsilon}$$

$$\geq \varepsilon \cdot |\{(k,j) \in J_{ru}: \mu (x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu (x_{kj} - \xi, t) \geq \varepsilon\}|.$$

Then observe that

$$\frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} \mu (x_{kj} - \xi, t) \leq (1 - \varepsilon) \delta \text{ or } \frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} \nu (x_{kj} - \xi, t) \geq \varepsilon \delta,$$

which implies

$$\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} (\mu (x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu (x_{kj} - \xi, t) \geq \varepsilon) \geq \delta \right\}$$

$$\subset \left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} \mu (x_{kj} - \xi, t) \leq 1 - \varepsilon\right\} \text{ or } \sum_{(k,j) \in J_{ru}} \nu (x_{kj} - \xi, t) \geq \varepsilon \delta \}.$$

Since $x_{kj} \xrightarrow{(\mu,v)} \xi (N_\theta (I_2))$, we immediately see that $x_{kj} \xrightarrow{(\mu,v)} \xi (S_\theta (I_2))$.

(i) – (b). We assume that $x_{kj} \xrightarrow{(\mu,v)} \xi (S_\theta (I_2))$ and $x \in L^p_\infty (X)$. The inequalities $\mu (x_{kj} - \xi, t) \geq 1 - M$ or $\nu (x_{kj} - \xi, t) \leq M$ hold for all k, j. Let $\varepsilon > 0$ be given. Then we have

$$\frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} (\mu (x_{kj} - \xi, t) \text{ or } \nu (x_{kj} - \xi, t))$$

$$= \frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} (\mu (x_{kj} - \xi, t) \text{ or } \nu (x_{kj} - \xi, t))_{\mu (x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu (x_{kj} - \xi, t) \geq \varepsilon}$$

$$+ \frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} (\mu (x_{kj} - \xi, t) \text{ or } \nu (x_{kj} - \xi, t))_{\mu (x_{kj} - \xi, t) > 1 - \varepsilon \text{ or } \nu (x_{kj} - \xi, t) < \varepsilon}$$

$$\leq \frac{M}{h_r h_u} \sum_{(k,j) \in J_{ru}} (\mu (x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu (x_{kj} - \xi, t) \geq \varepsilon) + \varepsilon.$$
Note that
\[A_{\mu,v}(\varepsilon,t) = \{ (r,u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r h_u} |\{(k,j) \in J_{ru} : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon\}| \geq \frac{\varepsilon}{M}\} \]
belongs to \(\mathcal{I}_2 \). If \(r \in (A_{\mu,v}(\varepsilon,t))^c \) then we have
\[\frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} \mu(x_{kj} - \xi, t) > 1 - 2\varepsilon \text{ or } \frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} \nu(x_{kj} - \xi, t) < 2\varepsilon. \]

Now
\[T_{\mu,v}(\varepsilon,t) = \{ (r,u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} \mu(x_{kj} - \xi, t) \leq 1 - 2\varepsilon \text{ or } \frac{1}{h_r h_u} \sum_{(k,j) \in J_{ru}} \nu(x_{kj} - \xi, t) \geq 2\varepsilon\}. \]

Hence, \(T_{\mu,v}(\varepsilon,t) \subseteq A_{\mu,v}(\varepsilon,t) \) and so, by the definition of an ideal, \(T_{\mu,v}(\varepsilon,t) \in \mathcal{I}_2 \).

Therefore, we conclude that \(x_{kj} \xrightarrow{(\mu,v)} \xi(S(I_2)) \).

(ii) This readily follows from (i) – (a) and (i) – (b). \(\square \)

Theorem 2.2. Let \((X,\mu,\nu,*,\Theta)\) be an IFNS. If \(\theta \) be a double lacunary sequence with \(\liminf q_r, q_u > 1 \), \(\liminf q_u q_u > 1 \) then
\[x_{kj} \xrightarrow{(\mu,v)} \xi(S(I_2)) \Rightarrow x_{kj} \xrightarrow{(\mu,v)} \xi(S\theta(I_2)). \]

Proof. Suppose first that \(\liminf q_r, q_u > 1 \), \(\liminf q_u q_u > 1 \) then there exists a \(\alpha, \beta > 0 \) such that \(q_r \geq 1 + \alpha, q_u > 1 + \beta \) for sufficiently large \(r, u \), which implies that
\[\frac{1}{k_r k_u} \geq \frac{\alpha \beta}{(1 + \alpha)(1 + \beta)}. \]

If \(x_{kj} \xrightarrow{(\mu,v)} \xi(S(I_2)) \), then for every \(\varepsilon > 0 \) and for sufficiently large \(r, u \), we have
\[\frac{1}{k_r k_u} |\{(k,j) \in J_{ru} : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon\}| \]
\[\geq \frac{1}{k_r k_u} |\{(k,j) \in J_{ru} : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon\}| \]
\[\geq \frac{\alpha \beta}{(1 + \alpha)(1 + \beta)} \left(\frac{1}{h_r h_u} |\{(k,j) \in J_{ru} : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon\}|\right) \]
Then for any \(\delta > 0 \), we get
\[
\left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r h_u} \left| \left\{ (k, j) \in J_{ru} : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon \right\} \right| \geq \delta \right\}
\]
\[
\subseteq \left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r h_u} \left| \left\{ k \leq k_r, j \leq j_u : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon
ight. \right. \right. \left. \left. \left. \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon \right\} \right| \geq \delta \right\}.
\]

If \(x_{kj} \xrightarrow{[\mu, \nu]} \xi(S(I_2)) \) then the set on the right-hand side belongs to \(I_2 \) and so the set on the left-hand side belongs to \(I_2 \). This shows that \(x_{kj} \xrightarrow{[\mu, \nu]} \xi(S\theta(I_2)) \). \(\Box \)

For the next result we assume that the lacunary sequence \(\theta \) satisfies the condition that for any set \(C \in F(I_2) \), \(\bigcup \{ n : k_{r-1} < n \leq k_r, r \in C \} \in F(I_2) \).

Theorem 2.3. Let \((X, \mu, v, *, \Theta)\) be an IFNS. If \(\Theta \) be a double lacunary sequence with \(\limsup_r q_r < \infty \), \(\limsup_u q_u < \infty \) then
\[
x_{kj} \xrightarrow{[\mu, v]} \xi(S\theta(I_2)) \implies x_{jk} \xrightarrow{[\mu, v]} \xi(S(I_2)).
\]

Proof. If \(\limsup_r q_r < \infty \), \(\limsup_u q_u < \infty \) then without any loss of generality we can assume that there exists a \(M, N > 0 \) such that \(q_r < M \) and \(q_u < N \) for all \(r, u \). Suppose that \(x_{kj} \xrightarrow{[\mu, v]} \xi(S\theta(I_2)) \), and let
\[
C_{ru} := \left| \left\{ (k, j) \in J_{ru} : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon \right\} \right|.
\]

Since \(x_{kj} \xrightarrow{[\mu, v]} \xi(S\theta(I_2)) \), it follows that for every \(\varepsilon > 0 \), every \(\delta > 0 \), and \(t > 0 \),
\[
\left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r h_u} \left| \left\{ (k, j) \in J_{ru} : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \right. \right. \left. \left. \text{ or } \nu(x_{kj} - \xi, t) \geq \varepsilon \right\} \right| \geq \delta \right\} \subseteq I_2.
\]

Hence, we can choose a positive integers \(u_0, s_0 \in \mathbb{N} \) such that
\[
\frac{C_{ru}}{h_r h_u} < \delta, \text{ for all } r > r_0, u > u_0.
\]

Now let
\[
K := \max \{ C_{ru} : 1 \leq r \leq r_0, 1 \leq u \leq u_0 \}
\]
and let \(t \) and \(v \) be any integers satisfying \(k_{r-1} < t \leq k_r \) and \(j_{u-1} < v \leq j_u \). Then,
we have

\[
\frac{1}{tv} \left| \{ k \leq t, j \leq v : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \ or \ \nu(x_{kj} - \xi, t) \geq \varepsilon \} \right| \\
\leq \frac{1}{k_{r-1}j_{u-1}} \left| \{ k \leq k_r, j \leq j_u : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \ or \ \nu(x_{kj} - \xi, t) \geq \varepsilon \} \right| \\
\leq \frac{1}{k_{r-1}j_{u-1}} \left(C_{11} + C_{12} + C_{21} + C_{22} + \ldots + C_{r_0u_0} + \ldots + C_{r_u} \right) \\
\leq \frac{K}{k_{r-1}j_{u-1}} r_0 u_0 + \frac{1}{k_{r-1}j_{u-1}} \left(h_{r_0} h_{u_0+1} + h_{r_{u_0+1}} h_{u_0+1} + \ldots + h_{r_u} h_{u_0+1} \right) \\
\leq \frac{r_{0u_0} K}{k_{r-1}j_{u-1}} + \frac{1}{k_{r-1}j_{u-1}} \left(\sup_{r>r_0, u>u_0} \frac{C_{rvu}}{h_r h_u} \right) \left(h_{r_0} h_{u_0+1} + h_{r_{u_0+1}} h_{u_0+1} + \ldots + h_{r_u} h_{u_0+1} \right) \\
\leq \frac{ru_{0u_0} K}{k_{r-1}j_{u-1}} + \varepsilon. \frac{r_{0u_0} K}{k_{r-1}j_{u-1}} + \varepsilon.M.N \\
\]

Since \(k_{r-1}j_u \rightarrow \infty \) as \(t, v \rightarrow \infty \), it follows that

\[
\frac{1}{tv} \left| \{ k \leq t, j \leq v : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \ or \ \nu(x_{kj} - \xi, t) \geq \varepsilon \} \right| \rightarrow 0
\]

and consequently for any \(\delta_1 > 0 \), the set

\[
\left\{ (t, v) \in \mathbb{N} \times \mathbb{N} : \frac{1}{tv} \left| \{ k \leq t, j \leq v : \mu(x_{kj} - \xi, t) \leq 1 - \varepsilon \ or \ \nu(x_{kj} - \xi, t) \geq \varepsilon \} \right| \right\} \in \mathcal{I}_2.
\]

This shows that \(x_{jk} \xrightarrow{(\mu,v)} \xi(S(I_2)) \).

Combining Theorem 2.2 and Theorem 2.3 we have

Theorem 2.4. Let \(\theta \) be a strongly lacunary sequence. IFNS. If \(1 < \lim \sup r_i q_r \leq \lim \inf q_r < \infty \), and \(1 < \lim \inf q_a \leq \lim \sup q_a < \infty \) then

\[
x_{jk} \xrightarrow{(\mu,v)} \xi(S(I_2)) \Leftrightarrow x_{jk} \xrightarrow{(\mu,v)} \xi(S(I_2)).
\]

Proof. This readily follows from Theorem 2.2 and Theorem 2.3.

Theorem 2.5. Let \((X, \mu, v, *, \Theta) \) be an IFNS such that \(\frac{1}{2} x_{mn} \Theta \frac{1}{2} x_{mn} < \frac{1}{2} x_{mn} \) and \((1 - \frac{1}{2} x_{mn}) * (1 - \frac{1}{2} x_{mn}) > 1 - \frac{1}{2} x_{mn} \). If \(X \) is a Banach space then \(\Theta(I_2)(\mu,v) \cap I_2^\infty(X) \) is a closed subset of \(I_2^\infty(X) \).
Proof. We first assume that \((x^{mn}) = (x^{mn}_{k,j})\) be a convergent sequence in \(S_0(I_2)^{(\mu,v)} \cap l^2_\infty(X)\). Suppose \(x^{(mn)}\) convergent to \(x\). It is clear \(x \in L^2_\infty(X)\). We need to show that \(x \in S_0(I_2)^{(\mu,v)} \cap l^2_\infty(X)\). Since \(x^{mn} \in S_0(I_2)^{(\mu,v)} \cap l^2_\infty(X)\) there exists real numbers \(L_{mn}\) such that

\[
x^{mn}_{k,j} \rightarrow L_{mn}\ (S_0(I_2))\text{ for } m,n = 1,2,3,\ldots
\]

Take a double sequence \(\{\varepsilon_{mn}\}\) of strictly decreasing positive numbers converging to zero. Then for every \(m,n = 1,2,3,\ldots\) there is positive \(N_{mn}\) such that if \(m,n \geq N_{mn}\) then \(\sup_{m,n} \nu(x-x^{mn},t) \leq \frac{\varepsilon_{mn}}{4}\). Without loss of generality assume that \(N_{mn} = mn\) and choose a \(\delta > 0\) such that \(\delta < \frac{1}{4}\). Now set

\[
A_{\mu,v}(\varepsilon_{mn},t) = \begin{cases}
(r,u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_{r,u}}|(k,j) \in J_{ru} :
\mu \left(x^{mn}_{k,j} - L_{mn}, t \right) \leq 1 - \frac{\varepsilon_{mn}}{4} \text{ or }
\nu \left(x^{mn}_{k,j} - L_{mn}, t \right) \geq \frac{\varepsilon_{mn}}{4} \text{ or }
\left| \frac{\varepsilon_{mn}}{4} \right| < \delta
\end{cases}
\]

belongs to \(F(I_2)\) and

\[
B_{\mu,v}(\varepsilon_{m+1,n+1},t) = \begin{cases}
(r,u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_{r,u}}|(k,j) \in J_{ru} :
\mu \left(x^{m+1,n+1}_{k,j} - L_{m+1,n+1}, t \right) \leq 1 - \frac{\varepsilon_{m+1,n+1}}{4} \text{ or }
\nu \left(x^{m+1,n+1}_{k,j} - L_{m+1,n+1}, t \right) \geq \frac{\varepsilon_{m+1,n+1}}{4} \text{ or }
\left| \frac{\varepsilon_{m+1,n+1}}{4} \right| < \delta
\end{cases}
\]

belongs to \(F(I_2)\). Since \(A_{\mu,v}(\varepsilon_{mn},t) \cap B_{\mu,v}(\varepsilon_{m+1,n+1},t) \in (F(I_2))\) and \(\emptyset \notin (F(I_2))\), we can choose \((r,u) \in A_{\mu,v}(\varepsilon_{mn},t) \cap B_{\mu,v}(\varepsilon_{m+1,n+1},t)\). Then

\[
\frac{1}{h_{r,u}}|(k,j) \in J_{ru} : \mu \left(x^{mn}_{k,j} - L_{mn}, t \right) \leq 1 - \frac{\varepsilon_{mn}}{4} \text{ or } \nu \left(x^{mn}_{k,j} - L_{mn}, t \right) \geq \frac{\varepsilon_{mn}}{4}
\]

\[
\vee \mu \left(x^{m+1,n+1}_{k,j} - L_{m+1,n+1}, t \right) \leq 1 - \frac{\varepsilon_{m+1,n+1}}{4} \text{ or } \nu \left(x^{m+1,n+1}_{k,j} - L_{m+1,n+1}, t \right) \geq \frac{\varepsilon_{m+1,n+1}}{4}
\]

\[
\geq \frac{\varepsilon_{mn} \Delta}{4} \leq 2\delta < 1.
\]

Since \(h_{r,u} \rightarrow \infty\) and \(A_{\mu,v}(\varepsilon_{mn},t) \cap B_{\mu,v}(\varepsilon_{m+1,n+1},t) \in (F(I_2))\) is finite, we can choose the above \(r,u\) so that \(h_{r,u} > 5\). Hence there must exist a \((k,j) \in J_{ru}\) for which we have simultaneously,

\[
\mu \left(x^{mn}_{k,j} - L_{mn}, t \right) > 1 - \frac{\varepsilon_{mn}}{4} \text{ or } \nu \left(x^{mn}_{k,j} - L_{mn}, t \right) < \frac{\varepsilon_{mn}}{4}
\]

\[
\mu \left(x^{m+1,n+1}_{k,j} - L_{m+1,n+1}, t \right) > 1 - \frac{\varepsilon_{m+1,n+1}}{4} \text{ or } \nu \left(x^{m+1,n+1}_{k,j} - L_{m+1,n+1}, t \right) < \frac{\varepsilon_{m+1,n+1}}{4}.
\]

For a given \(\varepsilon_{mn} > 0\) choose \(\varepsilon_{mn}^*\) such that \((1 - \frac{1}{2}\varepsilon_{mn}) \times (1 - \frac{1}{2}\varepsilon_{mn}) > 1 - \varepsilon_{mn}\).

Hence it follows that

\[
\nu \left(L_{mn} - x^{mn}_{k,j} , \frac{t}{2} \right) \nu \left(L_{m+1,n+1} - x^{m+1,n+1}_{k,j} , \frac{t}{2} \right) \leq \frac{\varepsilon_{mn}}{4} \cdot \frac{\varepsilon_{mn}}{4} < \frac{\varepsilon_{mn}}{2}
\]

and

\[
\nu \left(x^{mn}_{k,j} - x^{m+1,n+1}_{k,j} , t \right) \leq \sup_{m,n} \nu \left(x - x^{mn} , \frac{t}{2} \right) \nu \left(x - x^{m+1,n+1} , \frac{t}{2} \right)
\]

\[
< \frac{\varepsilon_{mn}}{4} \cdot \frac{\varepsilon_{mn}}{4} < \frac{\varepsilon_{mn}}{4}.
\]
Hence, we have
\[
\nu \left(L_{mn} - L_{m+1,n+1}, t \right) \leq \nu \left(L_{mn} - x_{mn}^{x_{k_j} + \frac{1}{3}} \right) \otimes \nu \left(x_{k_j}^{m+1,n+1} - L_{m+1,n+1}, \frac{1}{3} \right) \\
\leq \frac{\varepsilon_m}{2} \otimes \frac{\varepsilon_m}{2} < \varepsilon_m
\]
and similarly \(\mu \left(L_{mn} - L_{m+1,n+1}, t \right) > 1 - \varepsilon_m \). This implies that \(\{ L_{mn} \}_{m,n \in \mathbb{N}} \) is a Cauchy sequence in \(I \) and strongly for any given \(\varepsilon > 0 \).

It follows that \(\nu \left(x - x^{mn}, t \right) < \frac{1}{4} \varepsilon, \nu \left(L_{mn} - L, t \right) > 1 - \frac{1}{4} \varepsilon \) or \(\nu \left(L_{mn} - L, t \right) < \frac{1}{4} \varepsilon. \) Now since
\[
\frac{1}{h_{n,t}} \left\{ (k,j) \in J_{ru} : \nu \left(x_{k_j}^{L,m} - L, t \right) \geq \varepsilon \right\} \\
\leq \frac{1}{h_{n,t}} \left\{ (k,j) \in J_{ru} : \nu \left(x_{k_j} - x_{mn}^{mn}, \frac{1}{3} \right) \otimes \nu \left(L_{mn} - L, \frac{1}{3} \right) \geq \varepsilon \right\} \\
\leq \frac{1}{h_{n,t}} \left\{ (k,j) \in J_{ru} : \nu \left(x_{k_j} - L_{mn}, \frac{1}{3} \right) \geq \varepsilon \right\}
\]
and similarly
\[
\frac{1}{h_{n,t}} \left\{ (k,j) \in J_{ru} : \mu \left(x_{k_j} - L, t \right) \leq 1 - \varepsilon \right\} \\
\geq \frac{1}{h_{n,t}} \left\{ (k,j) \in J_{ru} : \mu \left(x_{k_j}^{mn} - L_{mn}, \frac{1}{3} \right) \leq 1 - \frac{\varepsilon}{2} \right\}
\]
It follows that
\[
\left\{ (r,u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_{n,t}} \left\{ (k,j) \in J_{ru} : \mu \left(x_{k_j} - L, t \right) \leq 1 - \varepsilon \right\} \right\} \\
or \nu \left(x_{k_j} - L, t \right) \geq \varepsilon \right\} \geq \delta \} \\
\subset \left\{ (r,u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_{n,t}} \left\{ (k,j) \in J_{ru} : \mu \left(x_{k_j}^{mn} - L_{mn}, \frac{1}{3} \right) \leq 1 - \varepsilon \right\} \right\} \geq \delta \}
\]
for any given \(\delta > 0 \). Hence we have \(x \overset{(\mu,\nu)}{\to} L_{mn} \left(S_0 \left(I_2 \right) \right) \).

3. Conclusion

In this paper we introduce the notions of \(I_2 \)-lacunary statistical convergence and strongly \(I_2 \)-lacunary convergence with respect to the IFN \((\mu, \nu) \), investigate their relationship, and make some observations about these classes. Our study of \(I_2 \)-statistical convergence and \(I_2 \)-lacunary statistical convergence of sequences in IFN spaces also provides a tool to deal with convergence problems of sequences of fuzzy real numbers. These results can be used to study the convergence problems of sequences of fuzzy numbers having a chaotic pattern in IFN spaces.
REFERENCES

2. K. ATANASSOV, G. PASI and R. YAGER: Intuitionistic fuzzy interpretations of multi-
 person multicriteria decision making. Proceedings of 2002 First International IEEE
3. A. A. BAKERY: Operator ideal of Cesaro type sequence spaces involving lacunary se-
4. C. BELEN and S. A. MOHIUDDINE: Generalized weighted statistical convergence and
5. C. BELEN and M. YILDIRIM: On generalized statistical convergence of double sequences
6. CÇAKAN and B. ALTAY: Statistically boundedness and statistical core of double se-
7. CÇAKAN, B. ALTAY and H. ÇÖŞKUN: Double lacunary density and lacunary statisti-
8. P. DAS and SKR GHOSAL: Some further results on I-Cauchy sequences and condition
9. P. DAS, E. SAVAŞ and SKR GHOSAL: On generalizations of certain summability meth-
10. P. DEBNATH: A generalised statistical convergence in intuitionistic fuzzy n-normed
13. P. DEBNATH: Results on lacunary difference ideal convergence in intuitionistic fuzzy
14. P. DEBNATH and M. SEN: Some completeness results in terms of infinite series and
 quotient spaces in intuitionistic fuzzy n-normed linear spaces. J. Intell. Fuzzy Syst. 26
 (2014), 975-782.
17. J. A. FRIDY and C. ORHAN: Lacunary statistical convergence. Pacific Journal of Mathemat-
 173 (1993), 497-504.
19. V. GEORGE, S. ROMAGUERA and P. VEERAMANI: A note on intuitionistic fuzzy
 Philos. Soc. 19 (1917), 86-95.

