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ON FREQUENTLY HYPERCYCLIC ABSTRACT HIGHER-ORDER

DIFFERENTIAL EQUATIONS ∗

Belkacem Chaouchi and Marko Kostić

Abstract. In this note, we analyze frequently hypercyclic solutions of abstract higher-
order differential equations in separable infinite-dimensional complex Banach spaces.
We essentially apply results from the theory of C-regularized semigroups, providing
several illustrative examples and possible applications.
Keywords: Higher-order differential equations; regularized semigroups; complex Ba-
nach space.

1. Introduction and Preliminaries

As it is well-known, the class of frequently hypercyclic linear continuous oper-
ators on separable Fréchet spaces was introduced by F. Bayart and S. Grivaux in
2006 ([1]). Frequent hypercyclicity and various generalizations of this concept are
very active fields of research of a great number of mathematicians working in the
field of linear topological dynamics (for more details, we may refer e.g. to [2]-[4],
[13] and references cited therein).

Frequently hypercyclic properties of abstract first order differential equations
have been studied by E. M. Mangino, A. Peris [21] and E. M. Mangino, M. Murillo-
Arcila [22], within the framework of theory of strongly continuous semigroups, and
the second named author [19], within the theory of integrated and C-regularized
semigroups. Frequently hypercyclic abstract second order differential equations
have been recently investigated in [20] by using the general notion of C-distribution
cosine functions and integrated C-cosine functions. Up to now, we do not have any
relevant reference treating the operator theoretical aspects of frequently hypercyclic
abstract higher-order differential equations. This fact has strongly influenced us to
write this paper.

Received July 14, 2018; accepted November 02, 2018
2010 Mathematics Subject Classification. Primary 47A16; Secondary 47D62, 47D99

∗The second named author is partially supported by grant 174024 of Ministry of Science and
Technological Development, Republic of Serbia.
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628 B. Chaouchi and M. Kostić

The organization, main ideas and novelties of paper are briefly described as
follows. Let (E, ‖ · ‖) be a separable infinite-dimensional complex Banach space.
We analyze frequently hypercyclic properties of solutions of the abstract Cauchy
problem

(ACPn) :

{

u(n)(t) +An−1u
(n−1)(t) + · · ·+A1u

′(t) +A0u(t) = 0, t ≥ 0,

u(k)(0) = uk, k = 0, · · ·, n− 1,

where A0, · · ·, An−1 are closed linear operators on E and u0, · · ·, un−1 ∈ E; by a
strong solution of (ACPn), we mean any n-times continuously differentiable func-
tion t 7→ u(t), t ≥ 0 such that the mappings t 7→ Aiu

(i)(t), t ≥ 0 are continuous for
0 ≤ i ≤ n−1 and the initial conditions are satisfied (for more details about the well-
posedness of (ACPn), the reader may consult the monographs [24] by T.-J. Xiao, J.
Liang and [16] by the author). In order to investigate frequently hypercyclic prop-
erties of solutions to (ACPn), we convert this problem into corresponding abstract
first order differential equation with appropriately chosen operator matrix acting
on product space En. The proofs of our structural results lean heavily on the use of
Lemma 1.1 from [19], where we have recently considered frequent hypercyclicity for
C-regularized semigroups following the approach of S. El Mourchid [10, Theorem
2.1] and E. M. Mangino, A. Peris [21, Corollary 2.3]. In contrast to the recent
research studies of J. A. Conejero, C. Lizama et al. [5]-[7], where the authors have
studied the hypercyclic and chaotic solutions of certain kinds of abstract second and
third order differential equations in the spaces of Herzog analytic functions by em-
ploying, primarily, the Desch-Schappacher-Webb criterion [9], the operator matrix
under our consideration is not bounded and as such does not generate a strongly
continuous semigrop on En a priori. This is the main reason why we use the theory
of C-regularized semigroups in this paper. We construct solutions of (ACPn) for
initial values (u0, · · ·, un−1) belonging to a certain proper subspace Ẽ ⊆ En and
after that analyze their frequently hypercyclic properties by applying essentially
Lemma 1.1, as mentioned above. Motivated by our recent researches [18] and [20],
in Definition 1.1 we introduce the notion of a (W, Ẽ, E)-frequent hypercyclicity. The
main goal of Theorem 2.1 is to analyze (W, Ẽ, E)-frequently hypercyclic solutions of
some special classes of problems (ACPn) in the case that the operator matrix p(A)
obtained after the usual convertion generates an entire C-regularized group. After
that, we revisit once more the fundamental result [23, Theorem 5] of F. Neubrander.
We introduce the notion of (W, Ẽ, E , (D(An−1))

n)-frequent hypercyclicity (Defini-
tion 2.1) and consider (W, Ẽ, E , (D(An−1))

n)–frequently hypercyclic solutions of
(ACPn) (Theorem 2.2), provided that the operator −An−1 is the generator of a
strongly continuous semigroup on E as well as D(An−1) ⊆ D(Aj) for 0 ≤ j ≤ n− 2
(cf. also [16, Theorem 2.10.45] for a generalization of the above-mentioned theorem
to abstract time-fractional differential equations). In our approach, we almost al-
ways face the situation Ẽ 6= En, which indicates a certain type of subspace frequent
hypercyclicity of constructed solutions to (ACPn) (in [5]-[7], the situation in which
Ẽ = En can really occur). At the end of paper, we provide several examples and
applications of our results.
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Before explaining the notation used, we would like to note that we will not
discuss here frequently hypercyclic properties of systems of evolution equations by
using the theory of operator matrices developed by K.-J. Engel and his collaborators
(for more details about this subject, we refer the reader to the monograph [12]).
By L(E) we denote the space consisting of all continuous linear mappings from E
into E. We always assume henceforth that C ∈ L(E) and C is injective. Let A be
a closed linear operator with domain D(A) and range R(A) contained in E, and let
CA ⊆ AC. Set D∞(A) :=

⋂

k∈N
D(Ak). The part of A in a linear subspace Ẽ of E,

A|Ẽ shortly, is defined through A|Ẽ := {(x, y) ∈ A : x, y ∈ Ẽ} (we will identify an

operator and its graph henceforth). Recall that the C-resolvent set of A, denoted
by ρC(A), is defined by

ρC(A) :=
{

λ ∈ C : λ−A is injective and (λ−A)−1C ∈ L(E)
}

.

In our framework, the C-resolvent set of A consists of those complex numbers λ for
which the operator λ−A is injective and R(C) ⊆ R(λ−A). The resolvent set of A,
denoted by ρ(A), is obtained by plugging C = I. For every λ ∈ ρ(A) and n ∈ N, we
have that (D(An), ‖·‖n) is a Banach space, where ‖x‖n :=

∑n
i=0 ‖A

ix‖ (x ∈ D(An)).
We denote this space simply by [D(An)]. All operator families considered in this
paper will be non-degenerate. Set Nn := {1, · · ·, n} and N

0
n := Nn ∪ {0} (n ∈ N).

Suppose that T ⊆ N. The lower density of T, denoted by d(T ), is defined through:

d(T ) := lim inf
n→∞

|T ∩ [1, n]|

n
.

If T ⊆ [0,∞), then the lower density of T, denoted by d(T ), is defined through:

dc(T ) := lim inf
t→∞

m(T ∩ [0, t])

t
,

where m(·) denotes the Lebesgue measure on [0,∞). A linear operator A on E is
said to be frequently hypercyclic iff there exists an element x ∈ D∞(A) (frequently
hypercyclic vector of A) such that for each open non-empty subset V of E the set
{n ∈ N : Anx ∈ V } has positive lower density.

Motivated by our recent research study of D-hypercyclic and D-topologically
mixing properties of abstract degenerate Cauchy problems with Caputo fractional
derivatives [18], we introduce the following definition (since we are primarily con-
cerned with applications of C-regularized semigroups, we will consider only non-
degenerate differential equations henceforth; the analysis of frequently hypercyclic
abstract time-fractional differential equations is far from being trivial and nothing
has been said about this theme so far):

Definition 1.1. (cf. also [18, Definition 2]) Suppose that Ø 6= W ⊆ N0
n−1, Ẽ is

a linear subspace of En and E := (Ei : i ∈ W ) is a tuple of linear subspaces of
E. Then we say that the abstract Cauchy problem (ACPn) is (W, Ẽ, E)-frequently
hypercyclic iff there exists a strong solution t 7→ u(t), t ≥ 0 of (ACPn) with the
initial values (u0, · · ·, un−1) ∈ Ẽ satisfying additionally that, for every tuple of open
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non-empty subsets V := (Vi : i ∈ W ) of E, the set
⋂

i∈W {t ≥ 0 : u(i)(t) ∈ Vi ∩ Ei}
has positive lower density.

Introduction of Definition 1.1 is also motivated by some recent results about fre-
quently hypercyclic properties of abstract second order differential equations ([20]).
Speaking-matter-of-factly, if the assumptions of [20, Theorem 1] are satisfied, then
there exists a closed linear subspace Ẽ of E2 such that the abstract Cauchy problem
(ACP2) with A1 ≡ 0 and A0 ≡ −A is ({0, 1}, Ẽ, E)-frequently hypercyclic, where
E = (π1(Ẽ), π2(Ẽ)) and π1(·), π2(·) denote the first and second projection, respec-
tively. It is also worth noting that the spectral conditions of [20, Theorem 1] are
particularly satisfied for a substantially large class of abstract incomplete second
order differential equations.

We will use the following definition:

Definition 1.2. Let A be a closed linear operator. If there exists a strongly
continuous operator family (T (t))t≥0 ⊆ L(E) such that:

(i) T (t)A ⊆ AT (t), t ≥ 0,

(ii) T (t)C = CT (t), t ≥ 0,

(iii) for all x ∈ E and t ≥ 0:
∫ t

0 T (s)x ds ∈ D(A) and

A

t
∫

0

T (s)x ds = T (t)x− Cx,

then it is said that A is a subgenerator of a (global) C-regularized semigroup
(T (t))t≥0.

It is well-known that T (t)T (s) = T (t+s)C for all t, s ≥ 0. The integral generator
of (T (t))t≥0 is defined by

Â :=

{

(x, y) ∈ E × E : T (t)x− Cx =

t
∫

0

T (s)y ds, t ≥ 0

}

.

We know that the integral generator of (T (t))t≥0 is a closed linear operator which

is an extension of any subgenerator of (T (t))t≥0 and satisfies Â = C−1AC for
any subgenerator A of (T (t))t≥0. If for each fixed element x ∈ E the mapping
t 7→ T (t)x, t ≥ 0 can be extended to an entire function, then we say that (T (t))t≥0

is an entire C-regularized group with subgenerator A and integral generator Â ([8]).
Furthermore, it is said that (T (t))t≥0 is frequently hypercyclic iff there exists an
element x ∈ E (frequently hypercyclic vector of (T (t))t≥0) such that the mapping
t 7→ C−1T (t)x, t ≥ 0 is well-defined, continuous and that for each open non-empty
subset V of E the set {t ≥ 0 : C−1T (t)x ∈ V } has positive lower density ([19]).
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Throughout the whole paper, we will essentially employ the following result,
proved recently in [19]:

Lemma 1.1. Let t0 > 0 and let A be a subgenerator of a global C-regularized semi-

group (S0(t))t≥0 on E. Suppose that R(C) is dense in E. Set T (t)x := C−1S0(t)x,
t ≥ 0, x ∈ Z1(A). Suppose, further, that there exists a family (fj)j∈Γ of twice

continuously differentiable mappings fj : Ij → E such that Ij is an interval in R

and Afj(t) = itfj(t) for every t ∈ Ij , j ∈ Γ. Set Ẽ := span{fj(t) : j ∈ Γ, t ∈ Ij}.
Then A|Ẽ is a subgenerator of a global C|Ẽ-regularized semigroup (S0(t)|Ẽ)t≥0 on

Ẽ, (S0(t)|Ẽ)t≥0 is frequently hypercyclic in Ẽ and the operator T (t0)|Ẽ is frequently

hypercyclic in Ẽ.

For more details about C-regularized semigroups and their applications, we refer
the reader to the monographs [8] by R. deLaubenfels and [15]-[16] by the author.

2. Formulation and Proof of Main Results

In the formulation of our first structural result, we assume that N, n ∈ N and
iAj , 1 ≤ j ≤ N are commuting generators of bounded C0-groups on E. Define
A := (A1, · · ·, AN ) and Aη := Aη1

1 · · · AηN

N for any η = (η1, · · ·, ηN ) ∈ NN
0 . If

P (ξ) = [pij(ξ)]n×n is an arbitrary matrix of complex polynomials in variable ξ ∈
RN , then we can write P (ξ) =

∑

|η|≤m Pηξ
η for a certain integer m ∈ N and for

certain complex matrices Pη of format n× n. We know that the operator P (A) :=
∑

|η|≤m PηA
η acting with its maximal domain is closable on En; moreover, the

following holds:

Lemma 2.1. ([8], [16]) There exists an injective operator C ∈ L(En) with dense

range in En such that the operator P (A) generates an entire C-regularized group

(T (t))t≥0 on En such that T (t)~x ∈ D∞(P (A)) for all ~x ∈ En.

Let πj : En → E be the j-th projection (1 ≤ j ≤ n), let p0(ξ), · · ·, pn−1(ξ) be
complex polynomials in variable ξ ∈ RN , and let

p(A) :=













0 I 0 · · · 0
0 0 I · · · 0
· · · · · · ·
0 0 0 · · · I

−A0 −A1 −A2 · · · −An−1













,

where Ai := pi(A) for 0 ≤ i ≤ n− 1. Then we have the following:

Theorem 2.1. Suppose that there exists a family (Fj)j∈Γ of twice continuously dif-

ferentiable mappings Fj : Ij → En such that Ij is an interval in R and p(A)Fj(t) =

itFj(t) for every t ∈ Ij , j ∈ Γ. Set Ẽ := span{Fj(t) : j ∈ Γ, t ∈ Ij}. Then

the abstract Cauchy problem (ACPn) is (N0
n−1, Ẽ, E)-frequently hypercyclic with

E := (π1(Ẽ), · · ·, πn(Ẽ)).



632 B. Chaouchi and M. Kostić

Proof. By Lemma 2.1, we know that there exists an injective operator C ∈
L(En) with dense range in En such that the operator P (A) generates an entire
C-regularized group (T (t))t≥0 on En such that T (t)~x ∈ D∞(P (A)) for all ~x ∈ En.
Furthermore, the injective operator C can be chosen such that C(span{Fj(t) : j ∈

Γ, t ∈ Ij}) = span{Fj(t) : j ∈ Γ, t ∈ Ij} and that C(Ẽ) is a dense linear subspace

of Ẽ; see [17, Remark 14(ii)]. Due to Lemma 1.1, we know that (S0(t)|Ẽ)t≥0 is

frequently hypercyclic in Ẽ, which implies that there exists a vector ~x ∈ Ẽ such
that for each open non-empty subset V in En the set {t ≥ 0 : C−1T (t)~x ∈ Ẽ∩V } has
positive lower density. Since C(Ẽ) is a dense linear subspace of Ẽ, it readily follows
that for each open non-empty subset V in En the set {t ≥ 0 : T (t)~x ∈ Ẽ ∩ V }
has positive lower density, as well. On the other hand, the function t 7→ T (t)~x,

t ≥ 0 is a unique solution of the abstract Cauchy problem ~U ′(t) = p(A)~U(t), t ≥ 0;
~U(0) = C~x. Furthermore, T (t)~x ∈ D∞(P (A)) so that the function t 7→ T (t)~x,

t ≥ 0 is a unique solution of the abstract Cauchy problem ~U ′(t) = p(A)~U(t), t ≥ 0;
~U(0) = C~x, actually. It is clear that the first, second,..., the n-th component of
T (·)~x is a unique solution of (ACPn), its first derivative,..., its (n − 1)-derivative,
respectively, with the initial conditions uj = πj+1(C~x), 0 ≤ j ≤ n− 1. This simply
implies the required conclusion.

Remark 2.1. The most important case for applications is N = 1. In this case,
let us assume that fj : Ij → E is a twice continuously differentiable mapping,
gj : {it ; t ∈ Ij} → C \ {0} is a scalar-valued mapping and Afj(t) = gj(it)fj(t),
t ∈ Ij (j ∈ Γ). If

(it)n +

n−1
∑

l=0

(it)lPl

(

gj(it)
)

= 0, t ∈ Ij , j ∈ Γ,(2.1)

then the assumptions of Theorem 2.1 are satisfied with

Fj(t) :=
[

fj(t) itfj(t) · · · (it)n−1fj(t)
]T

, t ∈ Ij , j ∈ Γ;

see e.g. [18, Example 1(ii)].

We continue by observing that Definition 1.1 does not enable one to thoroughly
investigate frequently hypercyclic solutions of some important classes of abstract
higher-order differential equations already examined in the existing literature. For
example, F. Neubrander has analyzed in [23] the well-posedness results for (ACPn)
by reduction this problem into a first order matricial system, employing the matrix

∆ :=













−An−1 I 0 · · · 0
−An−2 0 I · · · 0

· · · · · · ·
−A1 0 0 · · · I
−A0 0 0 · · · 0













.
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The operator matrix

Ψ :=













I 0 0 · · · 0 0
−An−1 I 0 · · · 0 0
−An−2 −An−1 I · · · ·

· · · · · · I 0
−A1 −A2 −A3 · · · −An−1 I













plays an important role in his analysis, as well.

We will use the following notion:

Definition 2.1. Suppose that λ ∈ ρ(∆), Ø 6= W ⊆ N
0
n−1, Ẽ is a linear sub-

space of (D(An−1))
n and E := (Ei : i ∈ W ) is a tuple of linear subspaces of E.

Then we say that the abstract Cauchy problem (ACPn) is (W, Ẽ, E , (D(An−1))
n)-

frequently hypercyclic iff there exists a strong solution t 7→ u(t), t ≥ 0 of (ACPn)
with the initial values (u0, · · ·, un−1) ∈ Ẽ satisfying additionally that, for every open

non-empty subset V of En, the set
⋂

i∈W {t ≥ 0 : u(i)(t) +
∑i

j=1 An−iu
(i−j)(t) ∈

πi+1((λ−∆)−n(V)) ∩Ei} has positive lower density.

This definition is a good one and does not depend on the choice of number
λ ∈ ρ(∆). This follows from the fact that for each λ ∈ ρ(∆) the mapping Π : En →
[D(∆n)] given by Π~x := (λ−∆)−n~x, ~x ∈ En is a linear topological isomorphism so
that {(λ −∆)−n(V) : V is an open non-empty subset of En} is equal to the set of
all open non-empty subsets of [D(∆n)] and therefore independent of λ ∈ ρ(∆).

Our second structural result reads as follows:

Theorem 2.2. Suppose that the operator −An−1 is the generator of a strongly

continuous semigroup on E as well as D(An−1) ⊆ D(Aj) for 0 ≤ j ≤ n − 2. Sup-
pose, further, that there exists a family (Fj)j∈Γ of twice continuously differentiable

mappings Fj : Ij → En such that Ij is an interval in R and ∆Fj(t) = itFj(t) for

every t ∈ Ij , j ∈ Γ. Set

Ẽ := span
{

Fj(t) : j ∈ Γ, t ∈ Ij
}[D(∆n)]

.(2.2)

Then the abstract Cauchy problem (ACPn) is (N0
n−1,Ψ

−1(Ẽ), E)-frequently hyper-

cyclic with E := (π1(Ẽ), · · ·, πn(Ẽ)).

Proof. By the proof of [23, Theorem 5], we know the following:

(i) The operator ∆ generates a strongly continuous semigroup (T (t))t≥0 on En

and therefore there exists λ ∈ ρ(∆).

(ii) The mapping Ψ is a bijection between the spaces (D(An−1))
n and D(∆n).

(iii) For every ~x ∈ D(∆n), the mapping t 7→ π1(T (t)~x), t ≥ 0 is a strong solution
of problem (ACPn) with the initial value ~y = Ψ−1~x ∈ (D(An−1))

n.
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From (i), we may deduce that the operator ∆|D(∆n) generates a strongly continuous
semigroup on the space [D(∆n)]; see e.g. [11, Chapter II.5]. By Lemma 1.1, it
follows that there exists a vector ~x ∈ D(∆n)∩Ẽ such that for every open non-empty
subset V′ in [D(∆n)], the set {t ≥ 0 : T (t)~x ∈ V′ ∩ Ẽ} has positive lower density.
Since {t ≥ 0 : T (t)~x ∈ V′ ∩ Ẽ} ⊆

⋂n
i=1{t ≥ 0 : πi(T (t)~x) ∈ πi(V

′) ∩ πi(Ẽ)}, the
required assertion follows from a simple analysis involving (i)-(iii) and the fact that

the (i+1)-projection of T (·)~x equals u(i)(·)+
∑i

j=1 An−iu
(i−j)(·) for 0 ≤ i ≤ n− 1,

where u(·) := π1(T (·)~x) is a unique strong solution of problem (ACPn) with initial
value y = Ψ−1~x (see the equation [23, (1), p. 267]).

Remark 2.2. Let us assume that P0, · · ·, Pn−1 are complex polynomials in one
variable, fj : Ij → E is a twice continuously differentiable mapping, gj : {it ; t ∈
Ij} → C \ {0} is a scalar-valued mapping and Afj(t) = gj(it)fj(t), t ∈ Ij (j ∈ Γ).
If (2.1) holds, then the assumptions of Theorem 2.2 are satisfied with As := Ps(A)
(0 ≤ s ≤ n− 1) and

Fj(t) :=
[

Fj1(t) Fj2(t) · · · Fjn(t)
]T

, t ∈ Ij , j ∈ Γ,(2.3)

where, for 2 ≤ s ≤ n,

Fjs(t) :=
s−2
∑

l=0

(it)lAn−s+1+lfj(t) + (it)s−1fj(t), t ∈ I1, j ∈ Γ.(2.4)

It is worth noting that Theorem 2.1 and Theorem 2.2 provide also sufficient
spectral conditions for certain types of (subspace) topologically mixing properties
and (subspace) Devaney chaoticity of solutions to (ACPn); see [18] for more details.

We close the paper by providing some illustrative examples and applications.

Example 2.1. Suppose that E := L2(R), c1 > c > b
2 > 0, the operator Ac is

defined by D(Ac) := {u ∈ L2(R) ∩ W 2,2
loc (R) : Acu ∈ L2(R)}, Acu := u′′ + bxu′ +

cu, u ∈ D(Ac), Ω := {λ ∈ C : λ 6= 0, λ 6= c − c1, Reλ < c − b
2}, f1(λ) :=

F−1(e−
ξ2

2b ξ|ξ|−(2+λ−c
b

))(·), λ ∈ Ω and f2(λ) := F−1(e−
ξ2

2b |ξ|−(1+ λ−c
b

))(·), λ ∈ Ω
(here, F−1 denotes the inverse Fourier transform on the real line). Consider the
equation

u′′′(t) +
(

c2 −Ac

)

u′(t) + c1u(t) = 0, t ≥ 0,(2.5)

where c1 ∈ C\{0} and c2 ∈ C. As already observed in [18, Example 1(i)], there exist
t > 0 and ǫ > 0 such that the equation (2.1) holds with the interval (i(t−ǫ), i(t+ǫ))
and the obvious choice of polynomials P0(·), P1(·) and P2(·). Since the operator
A1 := A − c2 generates a strongly continuous semigroup and D(A1) ⊆ D(A0),
Theorem 2.2 is applicable so that the abstract Cauchy problem (2.5), equipped
with initial conditions u(j)(0) = uj for 0 ≤ j ≤ 2, is (N0

2,Ψ
−1(Ẽ), E)-frequently

hypercyclic, where Fj(·) is given by (2.3)-(2.4) for j = 1, 2, Ẽ is defined by (2.2)

and E := (π1(Ẽ), π2(Ẽ), π3(Ẽ)).

Example 2.2. Suppose that 0 < γ ≤ 1, a > 0, p > 2 and X is a symmetric
space of non-compact type and rank one. Then the Laplace-Beltrami operator
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−∆♮
X,p generates a strongly continuous semigroup onX and we know that int(Pp) ⊆

σp(∆
♮
X,p), where Pp denotes the parabolic domain defined in [14]. Suppose that (2.1)

holds with Γ = {1}, the function g1(it) = it, t ∈ I1 (I1 a suitable chosen subinterval
of R) and certain complex polynomials P0(·), · · ·, Pn−1(·). Then Theorem 2.2 is
applicable with operators Al := Pl(A) (l ∈ N0

n−1).

Example 2.3. Let us recall that a measurable function ρ : R → (0,∞) is called
an admissible weight function iff there exist constants M ≥ 1 and ω ∈ R such that
ρ(t) ≤ Meω|t′|ρ(t + t′) for all t, t′ ∈ R. For such a function ρ(·), we consider the
following Banach spaces:

Lp
ρ(R) :=

{

u : R → C ;u(·) is measurable and ||u||p < ∞
}

,

where p ∈ [1,∞) and ||u||p := (
∫

R
|u(t)|pρ(t) dt)1/p, as well as

C0,ρ(R) :=
{

u : R → C ;u(·) is continuous and lim
t→∞

u(t)ρ(t) = 0
}

,

with ||u|| := supt∈R |u(t)ρ(t)|. It is well-known that the operatorA := d/dt equipped
with domain D(A) := {u ∈ E : u′ ∈ E, u(·) is absolutely continuous} generates a
strongly continuous translation group on E (see [9, Lemma 4.6]). If we assume
that, for every λ ∈ iR, the function t 7→ eλt, t ∈ R belongs to the space E and
the equation (2.1) holds with Γ = {1}, the function g1(it) = it, t ∈ I1 = R and
certain complex polynomials P0(·), · · ·, Pn−1(·), then Theorem 2.1 is applicable with
operators Al := Pl(A) (l ∈ N

0
n−1).
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Ser. Math. Inform. Vol. 33, No 5 (2018), 637–657

https://doi.org/10.22190/FUMI1805637M

ON ALMOST PARACONTACT ALMOST PARACOMPLEX

RIEMANNIAN MANIFOLDS ∗

Mancho H. Manev and Veselina R. Tavkova

Abstract. Almost paracontact manifolds of odd dimension having an almost para-
complex structure on the paracontact distribution are studied. The components of the
fundamental (0,3)-tensor, derived by the covariant derivative of the structure endo-
morphism and the metric on the considered manifolds in each of the basic classes are
obtained. Then, the case of the lowest dimension 3 of these manifolds is considered.
An associated tensor of the Nijenhuis tensor is introduced and the studied manifolds
are characterized with respect to this pair of tensors. Moreover, a cases of paracontact
and para-Sasakian types are commented. A family of examples is given.
Keywords: Paracontact manifold; Riemannian manifold; tensor; metric.

1. Introduction

In 1976, on a differentiable manifold of arbitrary dimension, I. Sato introduced
in [10] the concept of (almost) paracontact structure compatible with a Riemannian
metric as an analogue of almost contact Riemannian manifold. Then, he studied
several properties of the considered manifolds. Later, a lot of geometers develop the
differential geometry of these manifolds and in particular of paracontact Riemannian
manifolds and para-Sasakian manifolds. In the beginning are the papers [11], [1],
[12], [13] and [9] by I. Sato, T. Adati, T. Miyazawa, K. Matsumoto and S. Sasaki.

On an almost paracontact manifold can be considered two kinds of metrics
compatible with the almost paracontact structure. If the structure endomorphism
induces an isometry on the paracontact distribution of each tangent fibre, then
the manifold has an almost paracontact Riemannian structure as in the papers
mentioned above. In the case when the induced transformation is antiisometry,
then the manifold has a structure of an almost paracontact metric manifold, where
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the metric is semi-Riemannian of type (n + 1, n). This case is studied by many
geometers, see for example the papers [7], [14] of S. Zamkovoy and G. Nakova.

In 2001, M. Manev and M. Staikova give a classification in [6] of almost paracon-
tact Riemannian manifold of type (n, n) according to the notion given by Sasaki in
[9]. These manifolds are of dimension 2n+1 and the induced almost product struc-
ture on the paracontact distribution is traceless, i.e. it is an almost paracomplex
structure.

In the present paper, we continue investigations on these manifolds. The paper
is organized as follows. In Sect. 2., we recall some facts about the almost paracon-
tact Riemannian manifolds of the considered type and we make some additional
comments. In Sect. 3., we reduce the basic classes of the considered manifolds in
the case of the lowest dimension 3. In Sect. 4. and Sect. 5., we find the class of
paracontact type and the class of normal type of the manifolds studied, respectively,
and we obtain some related properties. In Sect. 6., we introduce an associated Ni-
jenhuis tensor and we discuss relevant problems. In Sect. 7., we argue that the
classes of the considered manifolds can be determined only by the pair of Nijenhuis
tensors. Finally, in Sect. 8., we construct a family of Lie groups as examples of the
manifolds of the studied type and we characterize them in relation with the above
investigations.

2. Almost paracontact almost paracomplex Riemannian manifolds

Let (M, φ, ξ, η) be an almost paracontact manifold, i.e. M is an m-dimensional
real differentiable manifold with an almost paracontact structure (φ, ξ, η) if it admits
a tensor field φ of type (1, 1) of the tangent bundle, a vector field ξ and a 1-form η,
satisfying the following conditions:

φξ = 0, φ2 = I − η ⊗ ξ, η ◦ φ = 0, η(ξ) = 1,(2.1)

where I is the identity on the tangent bundle [10].

In [9], it is considered the so-called almost paracontact manifold of type (p, q),
where p and q are the numbers of the multiplicity of the φ’s eigenvalues +1 and −1,
respectively. Moreover, φ has a simple eigenvalue 0. Therefore, we have trφ = p−q.

Let us recall that an almost product structure P on an differentiable manifold
of arbitrary dimension m is an endomorphism on the manifold such that P 2 = I.
Then a manifold with such a structure is called an almost product manifold. In the
case when the eigenvalues +1 and −1 of P have one and the same multiplicity n, the
structure P is called an almost paracomplex structure and the manifold is known as
an almost paracomplex manifold of dimension 2n [2]. Then trP = 0 follows.

Further we consider the case when the dimension of M is m = 2n + 1. Then
H = ker(η) is the 2n-dimensional paracontact distribution of the tangent bundle
of (M, φ, ξ, η), the endomorphism φ acts as an almost paracomplex structure on
each fiber of H and the pair (H, φ) induces a 2n-dimensional almost paracomplex
manifold. Then we give the following
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Definition 2.1. A (2n + 1)-dimensional differentiable manifold with a structure
(φ, ξ, η) defined by (2.1) and trφ = 0 is called almost paracontact almost paracomplex
manifold. We denote it by (M, φ, ξ, η).

Now we can introduce a metric on the considered manifold. It is known from
[10] that M admits a Riemannian metric g which is compatible with the structure
of the manifold by the following way:

g(φx, φy) = g(x, y)− η(x)η(y), g(x, ξ) = η(x).(2.2)

Here and further x, y, z will stand for arbitrary elements of the Lie algebra X(M)
of tangent vector fields on M or vectors in the tangent space TpM at p ∈ M.

In [11], an almost paracontact manifold of arbitrary dimension with a Rieman-
nian metric g defined by (2.2) is called an almost paracontact Riemannian manifold.

It is easy to conclude that the requirement for a positive definiteness of the metric
is not necessary, i.e g can be a pseudo-Riemannian metric. Then, since g(ξ, ξ) = 1
follows from (2.1) and (2.2), the signature of g has the form (2k+1, 2n−2k), k < n.
Since the signature of the metric is not crucial for our considerations, we suppose
that g is Riemannian.

Definition 2.2. Let the manifold (M, φ, ξ, η) be equipped with a Riemannian
metric g satisfying (2.2). Then (M, φ, ξ, η, g) is called an almost paracontact almost
paracomplex Riemannian manifold.

The decomposition x = φ2x+η(x)ξ due to (2.1) generates the projectors h and v
on any tangent space of (M, φ, ξ, η). These projectors are determined by hx = φ2x
and vx = η(x)ξ and have the properties h ◦ h = h, v ◦ v = v, h ◦ v = v ◦ h = 0.
Therefore, we have the orthogonal decomposition TpM = h(TpM)⊕ v(TpM). Ob-
viously, it generates the corresponding orthogonal decomposition of the space S of
the tensors S of type (0,2) over (M, φ, ξ, η). This decomposition is invariant with
respect to transformations preserving the structures of the manifold. Hereof, we
use the following linear operators in S:

ℓ1(S)(x, y) = S(hx, hy), ℓ2(S)(x, y) = S(vx, vy),

ℓ3(S)(x, y) = S(vx, hy) + S(hx, vy).
(2.3)

Namely, we have the following decomposition:

S = ℓ1(S)⊕ ℓ2(S) ⊕ ℓ3(S), ℓi(S) = {S ∈ S | S = ℓi(S)} , i = 1, 2, 3.

The associated metric g̃ of g on (M, φ, ξ, η, g) is defined by g̃(x, y) = g(x, φy) +
η(x)η(y). It is shown that g̃ is a compatible metric with (M, φ, ξ, η) and it is a
pseudo-Riemannian metric of signature (n+ 1, n). Therefore, (M, φ, ξ, η, g̃) is also
an almost paracontact almost paracomplex manifold but with a pseudo-Riemannian
metric.
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Since the metrics g and g̃ belong to S, then they have corresponding components
in the three orthogonal subspaces introduced above and we get them in the following
form:

ℓ1(g) = g(φ·, φ·) = g − η ⊗ η, ℓ2(g) = η ⊗ η, ℓ3(g) = 0,
ℓ1(g̃) = g(·, φ·) = g̃ − η ⊗ η, ℓ2(g̃) = η ⊗ η, ℓ3(g̃) = 0.

In the final part of the present section we recall the needed notions and results
from [6].

In the cited paper, the manifolds under study are called almost paracontact
Riemannian manifolds of type (n, n). The structure group of (M, φ, ξ, η, g) isO(n)×
O(n)× 1, where O(n) is the group of the orthogonal matrices of size n.

The tensor F of type (0,3) plays a fundamental role in differential geometry of
the considered manifolds. It is defined by:

F (x, y, z) = g
(

(∇xφ) y, z
)

,(2.4)

where ∇ is the Levi-Civita connection of g. The basic properties of F with respect
to the structure are the following:

F (x, y, z) = F (x, z, y)
= −F (x, φy, φz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ).

(2.5)

The relations of ∇ξ and ∇η with F are:

(∇xη)y = g (∇xξ, y) = −F (x, φy, ξ).(2.6)

If {ξ; ei} (i = 1, 2, . . . , 2n) is a basis of the tangent space TpM at an arbitrary
point p ∈ M and

(

gij
)

is the inverse matrix of the matrix (gij) of g, then the
following 1-forms are associated with F :

θ(z) = gijF (ei, ej, z), θ∗(z) = gijF (ei, φej , z), ω(z) = F (ξ, ξ, z).(2.7)

These 1-forms are known also as the Lee forms of the considered manifolds. Obvi-
ously, the identities ω(ξ) = 0 and θ∗ ◦ φ = −θ ◦ φ2 are always valid.

There, it is made a classification of the almost paracontact almost paracomplex
Riemannian manifolds with respect to F . The vector space F of all tensors F with
the properties (2.5) is decomposed into 11 subspaces Fi (i = 1, 2, . . . , 11), which
are orthogonal and invariant with respect to the structure group of the considered
manifolds. This decomposition induces a classification of the manifolds under study.
An almost paracontact almost paracomplex Riemannian manifold is said to be in
the class Fi (i = 1, 2, . . . , 11), or briefly an Fi-manifold, if the tensor F belongs to
the subspace Fi. Such a way, it is obtained that this classification consists of 11 basic
classes F1, F2, . . ., F11. The intersection of the basic classes is the special class F0

determined by the condition F (x, y, z) = 0. Hence F0 is the class of the considered
manifolds with ∇-parallel structures, i.e. ∇φ = ∇ξ = ∇η = ∇g = ∇g̃ = 0.
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Moreover, it is given the conditions for F determining the basic classes Fi of
(M, φ, ξ, η, g) and the components of F corresponding to Fi. It is said that (M, φ,
ξ, η, g) belongs to the class Fi (i = 1, 2, . . . , 11) if and only if the equality F = Fi is
valid. In the last expression, Fi are the components of F in the subspaces Fi and
they are given by the following equalities:

F1(x, y, z) =
1
2n

{

g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)
− g(x, φy)θ(φz) − g(x, φz)θ(φy)

}

,
F2(x, y, z) =

1
4

{

2F (φ2x, φ2y, φ2z) + F (φ2y, φ2z, φ2x) + F (φ2z, φ2x, φ2y)
− F (φy, φz, φ2x)− F (φz, φy, φ2x)

}

− 1
2n

{

g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)
− g(x, φy)θ(φz) − g(x, φz)θ(φy)

}

,
F3(x, y, z) =

1
4

{

2F (φ2x, φ2y, φ2z)− F (φ2y, φ2z, φ2x)− F (φ2z, φ2x, φ2y)
+ F (φy, φz, φ2x) + F (φz, φy, φ2x)

}

,

F4(x, y, z) =
θ(ξ)
2n

{

g(φx, φy)η(z) + g(φx, φz)η(y)
}

,

F5(x, y, z) =
θ∗(ξ)
2n

{

g(x, φy)η(z) + g(x, φz)η(y)
}

,
F6(x, y, z) =

1
4

{

[F (φ2x, φ2y, ξ) + F (φ2y, φ2x, ξ) + F (φx, φy, ξ)
+ F (φy, φx, ξ)]η(z)

+ [F (φ2x, φ2z, ξ) + F (φ2z, φ2x, ξ) + F (φx, φz, ξ)
+ F (φz, φx, ξ)]η(y)

}

− θ(ξ)
2n

{

g(φx, φy)η(z) + g(φx, φz)η(y)
}

− θ∗(ξ)
2n

{

g(x, φy)η(z) + g(x, φz)η(y)
}

,
F7(x, y, z) =

1
4

{

[F (φ2x, φ2y, ξ)− F (φ2y, φ2x, ξ) + F (φx, φy, ξ)
− F (φy, φx, ξ)]η(z)

+ [F (φ2x, φ2z, ξ)− F (φ2z, φ2x, ξ) + F (φx, φz, ξ)
− F (φz, φx, ξ)]η(y)

}

,
F8(x, y, z) =

1
4

{

[F (φ2x, φ2y, ξ) + F (φ2y, φ2x, ξ) − F (φx, φy, ξ)
− F (φy, φx, ξ)]η(z)

+ [F (φ2x, φ2z, ξ) + F (φ2z, φ2x, ξ) − F (φx, φz, ξ)
− F (φz, φx, ξ)]η(y)

}

,
F9(x, y, z) =

1
4

{

[F (φ2x, φ2y, ξ)− F (φ2y, φ2x, ξ) − F (φx, φy, ξ)
+ F (φy, φx, ξ)]η(z)

+ [F (φ2x, φ2z, ξ)− F (φ2z, φ2x, ξ) − F (φx, φz, ξ)
+ F (φz, φx, ξ)]η(y)

}

,
F10(x, y, z) = η(x)F (ξ, φ2y, φ2z),
F11(x, y, z) = η(x)

{

η(y)ω(z) + η(z)ω(y)
}

.

(2.8)

It is easy to conclude that a manifold of the considered type belongs to a direct
sum of two or more basic classes, i.e. (M, φ, ξ, η, g) ∈ Fi⊕Fj⊕· · ·, if and only if the
fundamental tensor F on (M, φ, ξ, η, g) is the sum of the corresponding components
Fi, Fj , . . . of F , i.e. the following condition is satisfied F = Fi + Fj + · · ·.

Finally in this section, we obtain immediately
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Proposition 2.1. The dimensions of the subspaces Fi (i = 1, 2, . . . , 11) in the
decomposition of the space F of the tensors F on (M, φ, ξ, η, g) are the following:

dimF1 = 2n, dimF2 = n(n− 1)(n+ 2), dimF3 = n2(n− 1),
dimF4 = 1, dimF5 = 1, dimF6 = (n− 1)(n+ 2),
dimF7 = n(n− 1), dimF8 = n2, dimF9 = n2,
dimF10 = n2, dimF11 = 2n.

Proof. Using the characteristic symmetries of the fundamental tensor F and
the form of its components from (2.8) in each of Fi (i = 1, 2, . . . , 11), we get the
equalities in the statement.

3. The components of the fundamental tensor for dimension 3

Let (M, φ, ξ, η, g) be the manifold under study with the lowest dimension, i.e.
dimM = 3 (or n = 1) and let the system of three vectors {e0 = ξ, e1 = e, e2 = φe}
be a φ-basis which satisfies the following conditions:

g(e0, e0) = g(e1, e1) = g(e2, e2) = 1,
g(e0, e1) = g(e1, e2) = g(e0, e2) = 0.

(3.1)

We denote the components of the tensors F , θ, θ∗ and ω with respect to the φ-basis
{e0, e1, e2} as follows Fijk = F (ei, ej, ek), θk = θ(ek), θ

∗
k = θ∗(ek) and ωk = ω(ek).

The properties (2.5) and (3.1) imply the equalities Fi12 = Fi21 = 0 and Fi11 = −Fi22

for any i. Then, bearing in mind (2.7), we obtain for the Lee forms the following:

θ0 = F110 + F220, θ1 = F111 = −F122 = −θ∗2 , ω1 = F001,
θ∗0 = F120 + F210, θ2 = F222 = −F211 = −θ∗1 , ω2 = F002,

ω0 = 0.
(3.2)

The arbitrary vectors x, y, z in TpM, p ∈ M, have the expression x = xiei, y = yiei,
z = ziei with respect to {e0, e1, e2}.

Proposition 3.1. The components Fi (i = 1, 2, . . . , 11) of the fundamental tensor
F for a 3-dimensional almost paracontact almost paracomplex Riemannian manifold
are the following:

F1(x, y, z) =
(

x1θ1 − x2θ2
) (

y1z1 − y2z2
)

,
F2(x, y, z) = F3(x, y, z) = 0,

F4(x, y, z) =
θ0
2

{

x1
(

y0z1 + y1z0
)

+ x2
(

y0z2 + y2z0
)}

,

F5(x, y, z) =
θ∗

0

2

{

x1
(

y0z2 + y2z0
)

+ x2
(

y0z1 + y1z0
)}

,
F6(x, y, z) = F7(x, y, z) = 0,
F8(x, y, z) = λ

{

x1
(

y0z1 + y1z0
)

− x2
(

y0z2 + y2z0
)}

,
F9(x, y, z) = µ

{

x1
(

y0z2 + y2z0
)

− x2
(

y0z1 + y1z0
)}

,
F10(x, y, z) = ν x0

(

y1z1 − y2z2
)

,
F11(x, y, z) = x0

{

ω1

(

y0z1 + y1z0
)

+ ω2

(

y0z2 + y2z0
)}

,

(3.3)



On Almost Paracontact Almost Paracomplex Riemannian Manifolds 643

where

λ = F110 = −F220, µ = F120 = −F210, ν = F011 = −F022

and the components of the Lee forms are given in (3.2).

Proof. Using the expressions (2.8) of Fi for the corresponding classes Fi (i = 1,
. . . , 11), the equalities (2.5), (3.1) and (3.2), we obtain the corresponding form of
Fi for the lowest dimension of the considered manifold.

As a result of Proposition 3.1, we establish the truthfulness of the following

Theorem 3.1. The 3-dimensional almost paracontact almost paracomplex Rie-
mannian manifolds belong to the basic classes F1, F4, F5, F8, F9, F10, F11 and to
their direct sums.

Let us remark that for the considered manifolds of dimension 3, the basic classes
F2, F3, F6, F7 are restricted to the special class F0.

4. Paracontact almost paracomplex Riemannian manifolds

Let (M, φ, ξ, η, g), dimM = 2n+1, be an almost paracontact almost paracomplex
Riemannian manifold such that the following condition is satisfied:

2g(x, φy) = (Lξg)(x, y),(4.1)

where the Lie derivative L of g along ξ has the following form in terms of ∇η:

(Lξg)(x, y) = (∇xη)y + (∇yη)x.(4.2)

Bearing in mind (2.6) and (4.2), Lξg is expressed by F as follows:

(Lξg)(x, y) = −F (x, φy, ξ)− F (y, φx, ξ).(4.3)

In [11], it is said that an m-dimensional almost paracontact Riemannian man-
ifold endowed with the property 2g(x, φy) = (∇xη)y + (∇yη)x is a paracontact
Riemannian manifold.

Definition 4.1. An almost paracontact almost paracomplex Riemannian mani-
fold satisfied (4.1) is called paracontact almost paracomplex Riemannian manifold.

Now we determine the class of paracontact almost paracomplex Riemannian man-
ifolds with respect to the basic classes Fi. Firstly, we compute Lξg on each Fi-
manifold using (4.3) and (2.8). Then we obtain

Proposition 4.1. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then we have:
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a) (Lξg)(x, y) = 0 if and only if (M, φ, ξ, η, g) belongs to F1 ⊕ F2 ⊕ F3 ⊕ F7 ⊕
F8 ⊕F10;

b) (Lξg)(x, y) = − 1
nθ(ξ)g(x, φy) if and only if (M, φ, ξ, η, g) belongs to F4;

c) (Lξg)(x, y) = − 1
nθ

∗(ξ)g(φx, φy) if and only if (M, φ, ξ, η, g) belongs to F5;

d) (Lξg)(x, y) = 2
(

∇xη
)

y if and only if (M, φ, ξ, η, g) belongs to F6 ⊕F9;

e) (Lξg)(x, y) = −η(x)ω(φy)− η(y)ω(φx) if and only if (M, φ, ξ, η, g) belongs to
F11.

It is known that ξ is a Killing vector field when Lξg = 0. Therefore, the latter
proposition implies

Corollary 4.1. An almost paracontact almost paracomplex Riemannian manifold
(M, φ, ξ, η, g) has a Killing vector field ξ if and only if (M, φ, ξ, η, g) belongs to Fi

(i = 1, 2, 3, 7, 8, 10) or to their direct sums.

We denote by F4
′ the subclass of F4 determined by θ(ξ) = −2n, i.e.

F4
′ =

{

F4 | θ(ξ) = −2n
}

.(4.4)

Then, the component F4
′ of F corresponding to the subclass F4

′ is

F4
′(x, y, z) = −g(φx, φy)η(z) − g(φx, φz)η(y).(4.5)

Theorem 4.1. Paracontact almost paracomplex Riemannian manifolds belong to
F4

′ or to its direct sums with F1, F2, F3, F7, F8 and F10.

Proof. Let us consider an arbitrary almost paracontact almost paracomplex
Riemannian manifold, i.e. F = F1 + . . .+F11. Using the expressions (2.8) of Fi for
the corresponding classes Fi (i = 1, . . . , 11) and the condition (4.1), we obtain

F = F1 + F2 + F3 + F4
′ + F7 + F8 + F10,(4.6)

where F4
′ is determined by (4.5).

Vice versa, if (4.6) holds true, then it implies (4.1) by (4.3), i.e. (M, φ, ξ, η, g)
is a paracontact almost paracomplex Riemannian manifold. Supposing that (M,
φ, ξ, η, g) belongs to some of Fi (i = 1, 2, 3, 7, 8, 10) or their direct sum, it follows
that g is degenerate. Therefore, the component F4

′ is indispensable and we get the
statement.

Let us remark that F4
′ and F0 are subclasses of F4 without common elements.

Moreover, bearing in mind Corollary 4.1 and Theorem 4.1, we conclude that
paracontact almost paracomplex Riemannian manifolds with a Killing vector field
ξ do not exist, i.e. for the manifolds studied, there is no analogue of a K-contact
manifold.
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In [13], it is introduced the notion of a para-Sasakian Riemannian manifold of
an arbitrary dimension by the condition φx = ∇xξ. The same condition determines
a special kind of paracontact almost paracomplex Riemannian manifolds. These
manifolds we call para-Sasakian paracomplex Riemannian manifolds. Then, using
(4.4), we obtain the truthfulness of the following

Theorem 4.2. The class of the para-Sasakian paracomplex Riemannian manifolds
is F4

′.

5. The Nijenhuis tensor

5.1. Introduction of the Nijenhuis tensor

Let us consider the product manifold M̌ of an almost paracontact almost para-
complex manifold (M, φ, ξ, η) and the real line R, i.e. M̌ = M× R. We denote a
vector field on M̌ by

(

x, a d
dr

)

, where x is tangent to M̌, r is the coordinate on R

and a is a function on M×R. Further, we use the denotation ∂r = d
dr for brevity.

Following [10], we define an almost paracomplex structure P̌ on M̌ by:

P̌ (x, a∂r) =
(

φx +
a

r
ξ, rη(x)∂r

)

(5.1)

that implies

P̌ x = φx, P̌ ξ = r∂r , P̌ ∂r =
1

r
ξ.

Further, we use the setting ζ = r∂r . It easy to check that P̌ 2 = I and trP̌ = 0.
In the case when P̌ is integrable, it is said that the almost paracontact structure
(φ, ξ, η) is normal.

It is known, the vanishing of the Nijenhuis torsion
[

P̌ , P̌
]

of P̌ is a necessary

and sufficient condition for integrability of P̌ . According to [10], the condition of
normality is equivalent to vanishing of the following four tensors:

N (1)(x, y) = [φ, φ](x, y) − dη(x, y)ξ,

N (2)(x, y) = (Lφxη)(y)− (Lφyη)(x),

N (3)(x) = (Lξφ)(x),
N (4)(x) = (Lξη)(x),

(5.2)

where the Nijenhuis torsion of φ is determined by:

[φ, φ](x, y) = [φx, φy] + φ2[x, y]− φ[φx, y] − φ[x, φy](5.3)

and dη is the exterior derivative of η given by:

dη(x, y) = (∇xη)y − (∇yη)x.(5.4)

According to (2.6) and (5.4), dη is expressed by F as follows:

dη(x, y) = −F (x, φy, ξ) + F (y, φx, ξ).(5.5)
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Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional almost paracontact almost para-
complex Riemannian manifold.

In [10], it is proved that the vanishing of N (1) implies the vanishing of N (2),
N (3), N (4). Then N (1) is denoted simply by N , i.e.

N(x, y) = [φ, φ](x, y) − dη(x, y)ξ,(5.6)

and it is called the Nijenhuis tensor of the structure (φ, ξ, η). Therefore, an almost
paracontact structure (φ, ξ, η) is normal if and only if its Nijenhuis tensor is zero.

Obviously, N is an antisymmetric tensor, i.e. N(x, y) = −N(y, x). According to
(5.3), (5.4) and (5.6), the tensor N has the following form in terms of the covariant
derivatives of φ and η with respect to ∇:

N(x, y) = (∇φxφ)y − (∇φyφ)x− φ(∇xφ)y + φ(∇yφ)x− (∇xη)y ξ + (∇yη)x ξ.

The corresponding tensor of type (0,3) of the Nijenhuis tensor on (M, φ, ξ, η, g)
is defined by equality N(x, y, z) = g (N(x, y), z). Then, using (2.4) and (2.6), we
express N in terms of the fundamental tensor F as follows:

N(x, y, z) = F (φx, y, z)− F (φy, x, z)− F (x, y, φz) + F (y, x, φz)
+ η(z) {F (x, φy, ξ) − F (y, φx, ξ)} .

(5.7)

Proposition 5.1. The Nijenhuis tensor on an almost paracontact almost para-
complex Riemannian manifold has the following properties:

N(φ2x, φy, φz) = −N(φ2x, φ2y, φ2z), N(φ2x, φ2y, φ2z) = N(φx, φy, φ2z),
N(x, φ2y, φ2z) = −N(x, φy, φz), N(φ2x, φ2y, z) = N(φx, φy, z),
N(ξ, φy, φz) = −N(ξ, φ2y, φ2z), N(φx, φy, ξ) = N(φ2x, φ2y, ξ).

Proof. The equalities from the above follow by direct computations from the
properties (2.5) and the expression (5.7).

In [10], there are given the following relations between the tensors N (1), N (2),
N (3) and N (4):

N (2)(x, y) = −η
(

N (1)(x, φy)
)

− η
(

N (1)(φx, ξ)
)

η(y),

N (3)(x) = −N (1)(φx, ξ),
N (4)(x) = −N (2)(φx, ξ), N (4)(x) = −η

(

N (3)(φx)
)

.

(5.8)

Applying the expression (5.7) to equalities (5.8), we obtain the form of N (2),
N (3) and N (4) in terms of the fundamental tensor F :

N (2)(x, y) = −F (x, y, ξ) + F (y, x, ξ)− F (φx, φy, ξ) + F (φy, φx, ξ),
N (3)(x, y) = F (ξ, x, y)− F (x, y, ξ) + F (φx, φy, ξ),

N (4)(x) = −F (ξ, ξ, φx),

(5.9)

where it is used the denotation N (3)(x, y) = g
(

N (3)(x), y
)

.
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Table 5.1: Nijenhuis tensors

N(1)(x, y, z) N(2)(x, y) N(3)(x, y) N(4)(x)

F1 0 0 0 0
F2 0 0 0 0

F3 −2
{
F (φx, φy, φz) + F (φ2x, φ2y, φz)

}
0 0 0

F4 0 0 0 0
F5 0 0 0 0
F6 0 0 0 0
F7 4F (x, φy, ξ)η(z) −4F (x, y, ξ) 0 0

F8 2
{
η(x)F (y, φz, ξ)− η(y)F (x, φz, ξ)

}
0 −2F (x, y, ξ) 0

F9 2
{
η(x)F (y, φz, ξ)− η(y)F (x, φz, ξ)

}
0 −2F (x, y, ξ) 0

F10 −η(x)F (ξ, y, φz) + η(y)F (ξ, x, φz) 0 F (ξ, x, y) 0

F11 η(z)
{
η(x)ω(φy) − η(y)ω(φx)

}
η(y)ω(x) − η(x)ω(y) η(y)ω(x) −ω(φx)

Proposition 5.2. Let (M, φ, ξ, η, g) be an Fi-manifold (i = 1, 2, . . . , 11). Then
the four tensors N (k) (k = 1, 2, 3, 4) on this manifold have the form in the respective
cases, given in Table 5.1.

Proof. We apply direct computations, using (2.8), (5.7) and (5.9).

By virtue Proposition 5.2, we have the following

Theorem 5.1. An almost paracontact almost paracomplex Riemannian manifold
(M, φ, ξ, η, g) has:

a) vanishing N (1) if and only if it belongs to some of the basic classes F1, F2,
F4, F5, F6 or to their direct sums;

b) vanishing N (2) if and only if it belongs to some of the basic classes F1, . . . ,F6,
F8, F9, F10 or to their direct sums;

c) vanishing N (3) if and only if it belongs to the basic classes F1, . . . ,F7 or to
some of their direct sums;

d) vanishing N (4) if and only if it belongs to some of the basic classes F1, . . . ,F10

or to their direct sums.

Bearing in mind Theorem 5.1, we conclude the following

Corollary 5.1. The class of normal almost paracontact almost paracomplex Rie-
mannian manifolds is F1 ⊕F2 ⊕F4 ⊕F5 ⊕F6.

5.2. The exterior derivative of the structure 1-form

According to (2.3), the 2-form dη on (M, φ, ξ, η, g) can be decomposed as follows:

dη = ℓ1(dη) + ℓ3(dη),
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ℓ1(dη)(x, y) = dη(hx, hy), ℓ2(dη)(x, y) = 0,
ℓ3(dη)(x, y) = dη(vx, hy) + dη(hx, vy).

(5.10)

The next proposition gives geometric conditions for vanishing the components
of dη.

Proposition 5.3. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then we have:

a) the paracontact distribution H of (M, φ, ξ, η, g) is involutive if and only if
ℓ1(dη) = 0;

b) the integral curves of ξ are geodesics on (M, φ, ξ, η, g) if and only if ℓ3(dη) = 0.

Proof. It is said that H is an involutive distribution when [x, y] belongs to H
for x, y ∈ H, i.e. η ([hx, hy]) = 0 holds for arbitrary x and y. By virtue of the
identity η ([hx, hy]) = −dη(hx, hy) and (5.10), we have the equality η ([hx, hy]) =
−ℓ1(dη)(x, y). This accomplishes the proof of a).

As it is known, the integral curves of ξ are geodesics on (M, φ, ξ, η, g) if and
only if ∇ξξ vanishes. The equality (5.10) implies that ℓ3(dη) = 0 is valid if and only
if dη(x, ξ) = 0 holds. Applying (5.4) and (2.6), we obtain the equality dη(x, ξ) =
−g (∇ξξ, x). Then, it is clear that b) holds true.

Next, we compute dη on the considered manifold belonging to each of the basic
classes and obtain the following

Proposition 5.4. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then we have:

a) dη(x, y) = 0 if and only if (M, φ, ξ, η, g) belongs to Fi (i = 1, . . . , 6, 9, 10) or
to their direct sums;

b) dη(x, y) = ℓ1(dη)(x, y) = 2
(

∇xη
)

y if and only if (M, φ, ξ, η, g) belongs to F7,
F8 or F7 ⊕F8;

c) dη(x, y) = ℓ3(dη)(x, y) = −η(x)ω(φy) + η(y)ω(φx) if and only if (M, φ, ξ,
η, g) belongs to F11.

By Proposition 5.3 and Proposition 5.4, we get the following theorem, which gives
a geometric characteristic of the manifolds of some classes with respect to the form
of dη.

Theorem 5.2. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then we have:

a) the structure 1-form η is closed if and only if (M, φ, ξ, η, g) belongs to Fi

(i = 1, . . . , 6, 9, 10) or to their direct sums;

b) the paracontact distribution H of (M, φ, ξ, η, g) is involutive if and only if (M,
φ, ξ, η, g) belongs to Fi (i = 1, . . . , 6, 9, 10, 11) or to their direct sums;



On Almost Paracontact Almost Paracomplex Riemannian Manifolds 649

c) the integral curves of the structure vector field ξ are geodesics on (M, φ, ξ,
η, g) if and only if (M, φ, ξ, η, g) belongs to Fi (i = 1, . . . , 10) or to their
direct sums.

5.3. The Nijenhuis torsion of the structure endomorphism of the

paracontact distribution

Proposition 5.5. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then for the Nijenhuis torsion of φ we have:

a) [φ, φ](x, y) = 0 if and only if (M, φ, ξ, η, g) belongs to Fi (i = 1, 2, 4, 5, 6, 11)
or to their direct sums;

b) [φ, φ](x, y) = −2
{

φ (∇φxφ)φy + φ
(

∇φ2xφ
)

φ2y
}

if and only if (M, φ, ξ, η, g)
belongs to F3;

c) [φ, φ](x, y) = −2 (∇xη) (y) ξ if and only if (M, φ, ξ, η, g) belongs to F7;

d) [φ, φ](x, y) = −2 {η(x)∇yξ − η(y)∇xξ − (∇xη) (y) ξ} if and only if (M, φ, ξ,
η, g) belongs to F8;

e) [φ, φ](x, y) = −2 {η(x)∇yξ − η(y)∇xξ} if and only if (M, φ, ξ, η, g) belongs to
F9;

f) [φ, φ](x, y) = −η(x)φ (∇ξφ) y + η(y)φ (∇ξφ)x if and only if (M, φ, ξ, η, g)
belongs to F10.

Proof. Using (5.6) and the forms of the Nijenhuis tensor N and the 2-form dη,
given in Proposition 5.2 and Proposition 5.4, respectively, we get the statements
from the above by direct computations.

Now, we specialize the form of [φ, φ] for the class of paracontact almost para-
complex Riemannian manifolds and we find its subclasses of manifolds whose almost
paracomplex structure φ on H is integrable.

Theorem 5.3. Let (M, φ, ξ, η, g) be a paracontact almost paracomplex Rieman-
nian manifold. Then it has:

a) an integrable almost paracomplex structure φ, i.e. [φ, φ] = 0, if and only if the
manifold belongs to F4

′ or to its direct sums with F1 and F2;

b) an nonintegrable almost paracomplex structure φ, i.e. [φ, φ] 6= 0 if and only if
the manifold belongs to the rest of the classes, given in Theorem 4.1.

Proof. We establish the truthfulness of the statements using Theorem 4.1 and
Proposition 5.5.

Bearing in mind Theorem 5.3 a), the manifolds from the classes F4
′, F1 ⊕ F4

′,
F2⊕F4

′ and F1⊕F2⊕F4
′ we call paracontact paracomplex Riemannian manifolds.

In the other case, the manifolds from the rest of the classes, given in Theorem 4.1,
we call paracontact almost paracomplex Riemannian manifolds.
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6. The associated Nijenhuis tensor

By analogy with the skew-symmetric Lie bracket (the commutator), determined
by [x, y] = ∇xy −∇yx, let us consider the symmetric braces (the anticommutator),
defined by {x, y} = ∇xy+∇yx as in [5]. Bearing in mind the definition of the
Nijenhuis torsion

[

P̌ , P̌
]

of an almost paracomplex structure P̌ on M̌, we give a

definition of a tensor
{

P̌ , P̌
}

of type (1, 2) as follows:
{

P̌ , P̌
}

(x̌, y̌) = {x̌, y̌}+
{

P̌ x̌, P̌ y̌
}

− P̌
{

P̌ x̌, y̌
}

− P̌
{

x̌, P̌ y̌
}

,

where the action of P̌ is given in (5.1) and the anticommutator on the tangent
bundle of M̌ is determined by:

{

(x, a∂r) , (y, b∂r)
}

=
(

{x, y}, (x(b) + y(a)) ∂r
)

.

We call
{

P̌ , P̌
}

an associated Nijenhuis tensor of the almost paracomplex manifold
(

M̌, P̌
)

. Obviously, this tensor is symmetric with respect to its arguments, i.e.
{

P̌ , P̌
}

(x̌, y̌) =
{

P̌ , P̌
}

(y̌, x̌).

Since the almost paracomplex manifold
(

M̌, P̌
)

is generated from the almost
paracontact almost paracomplex manifold (M, φ, ξ, η), we seek to express the asso-
ciated Nijenhuis tensor

{

P̌ , P̌
}

by tensors for the structure (φ, ξ, η). Since
{

P̌ , P̌
}

is a tensor field of type (1,2) on M̌, it suffices to compute the following two expres-
sions:
{

P̌ , P̌
} (

(x, 0), (y, 0)
)

=
{

(x, 0), (y, 0)
}

+
{

P̌ (x, 0), P̌ (y, 0)
}

− P̌
{

P̌ (x, 0), (y, 0)
}

− P̌
{

(x, 0), P̌ (y, 0)
}

=
(

{x, y}, 0
)

+
{

(φx, η(x)ζ), (φy, η(y)ζ)
}

− P̌
{

(φx, η(x)ζ), (y, 0)
}

− P̌
{

(x, 0), (φy, η(y)ζ)
}

=
(

{φ, φ}(x, y)− (Lξg)(x, y)ξ,
((Lξg)(φx, y) + (Lξg)(x, φy)) ζ

)

and
{

P̌ , P̌
} (

(x, 0), (0, ζ)
)

=
{

(x, 0), (0, ζ)
}

+
{

P̌ (x, 0), P̌ (0, ζ)
}

− P̌
{

P̌ (x, 0), (0, ζ)
}

− P̌
{

(x, 0), P̌ (0, ζ)
}

=
{

(φx, η(x)ζ), (ξ, 0)
}

− P̌
{

(φx, η(x)ζ), (0, ζ)
}

− P̌
{

(x, 0), (ξ, 0)
}

= ({φx, ξ} − φ{x, ξ}, (Lξg)(x, ξ)ζ) .

In the latter expressions, we use the Lie derivative (Lξg)(x, y), determined by (4.2),
of the Riemannian metric g of (M, φ, ξ, η, g).

Then, we define the following four tensors ̂N (k) (k = 1, 2, 3, 4) of type (1,2),
(0,2), (1,1), (0,1), respectively:

̂N (1)(x, y) = {φ, φ}(x, y)− (Lξg)(x, y)ξ,
̂N (2)(x, y) = (Lξg)(φx, y) + (Lξg)(x, φy),
̂N (3)(x) = {φx, ξ} − φ{x, ξ},
̂N (4)(x) = (Lξg)(x, ξ),

(6.1)
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where {φ, φ} is the symmetric tensor of type (1,2) determined by:

{φ, φ}(x, y) = {φx, φy} + φ2{x, y} − φ{φx, y} − φ{x, φy}.(6.2)

By direct converting their definitions, we find relations between the four tensors
̂N (k) as follows:

̂N (2)(x, y) = −η
(

̂N (1)(x, φy)
)

− η
(

̂N (1)(φx, ξ)
)

η(y),

̂N (3)(x) = ̂N (1)(φx, ξ) − η(x)φ ̂N (1)(ξ, ξ)

̂N (4)(x) = −η
(

̂N (1)(x, ξ)
)

= 1
2g

(

̂N (1)(ξ, ξ), x
)

,

̂N (4)(x) = ̂N (2)(φx, ξ), ̂N (4)(x) = −η
(

̂N (3)(φx)
)

.

(6.3)

Theorem 6.1. For an almost paracontact almost paracomplex Riemannian man-
ifold we have:

a) if ̂N (1) vanishes, then all the other tensors ̂N (2), ̂N (3) and ̂N (4) vanish;

b) if any one of ̂N (2) and ̂N (3) vanishes, then ̂N (4) vanishes.

Proof. The statements above are consequences of the relations (6.3) between
̂N (k) (k = 1, 2, 3, 4).

Therefore, ̂N (1) plays a main role between them and we denote it simply by ̂N ,
i.e.

̂N(x, y) = {φ, φ}(x, y)−(Lξg)(x, y)ξ(6.4)

and we call it an associated Nijenhuis tensor of the structure (φ, ξ, η, g). Obviously,
̂N is symmetric, i.e. ̂N(x, y) = ̂N(y, x). Applying the expressions (6.2), (4.2) and
(6.4), the associated Nijenhuis tensor has the following form in terms of ∇φ and
∇η:

̂N(x, y) = (∇φxφ)y + (∇φyφ)x− φ(∇xφ)y − φ(∇yφ)x− (∇xη)y ξ − (∇yη)x ξ.

The corresponding tensor of type (0,3) is defined by ̂N(x, y, z) = g
(

̂N(x, y), z
)

.

According to (2.4) and (2.6), we express ̂N in terms of the fundamental tensor F
as follows:

̂N(x, y, z) = F (φx, y, z) + F (φy, x, z)− F (x, y, φz)− F (y, x, φz)

+ η(z) {F (x, φy, ξ) + F (y, φx, ξ)} .
(6.5)

Proposition 6.1. The associated Nijenhuis tensor on an almost paracontact al-
most paracomplex Riemannian manifold has the following properties:

̂N(φ2x, φy, φz) = − ̂N(φ2x, φ2y, φ2z), ̂N(φ2x, φ2y, φ2z) = ̂N(φx, φy, φ2z),
̂N(x, φ2y, φ2z) = − ̂N(x, φy, φz), ̂N(φ2x, φ2y, z) = ̂N(φx, φy, z),
̂N(ξ, φy, φz) = − ̂N(ξ, φ2y, φ2z), ̂N(φx, φy, ξ) = ̂N(φ2x, φ2y, ξ).
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Table 6.1: Associated Nijenhuis tensors

N̂(1)(x, y, z) N̂(2)(x, y) N̂(3)(x, y) N̂(4)(x)

F1
2
n

{
g(x, φy)θ(φ2z)− g(φx, φy)θ(φz)

}
0 0 0

F2 −2
{
F (φx, φy, φz) + F (φ2x, φ2y, φz)

}
0 0 0

F3 0 0 0 0
F4

2
n
θ(ξ)g(x, φy)η(z) −

2
n
θ(ξ)g(φx, φy) 0 0

F5
2
n
θ∗(ξ)g(φx, φy)η(z) −

2
n
θ∗(ξ)g(x, φy) 0 0

F6 4F (x, φy, ξ)η(z) −4F (x, y, ξ) 0 0
F7 0 0 0 0

F8 −2
{
η(x)F (y, φz, ξ) + η(y)F (x, φz, ξ)

}
0 2F (x, y, ξ) 0

F9 −2
{
η(x)F (y, φz, ξ) + η(y)F (x, φz, ξ)

}
0 2F (x, y, ξ) 0

F10 −η(x)F (ξ, y, φz)− η(y)F (ξ, x, φz) 0 F (ξ, x, y) 0

F11 η(z)
{
η(x)ω(φy) + η(y)ω(φx)

}
−η(x)ω(y) − η(y)ω(x) ω(x)η(y) + 2η(x)ω(y) −ω(φx)

−2η(x)η(y)ω(φz)

Proof. The results follow form the properties (2.5) of F and the expression
(6.5).

Applying (6.5) to (6.3), we give the form of ̂N (2), ̂N (3) and ̂N (4) in terms of F :

̂N (2)(x, y) = −F (x, y, ξ)− F (y, x, ξ)− F (φx, φy, ξ) − F (φy, φx, ξ),
̂N (3)(x, y) = F (ξ, x, y) + F (x, y, ξ)− F (φx, φy, ξ),
̂N (4)(x) = −F (ξ, φx, ξ),

(6.6)

where we use the denotation ̂N (3)(x, y) = g
(

̂N (3)(x), y
)

.

Proposition 6.2. Let (M, φ, ξ, η, g) be an Fi-manifold (i = 1, 2, . . . , 11). Then

the four tensors ̂N (k) (k = 1, 2, 3, 4) on this manifold have the form in the respective
cases, given in Table 6.1.

Proof. The calculations are made, using (6.5), (6.6) and the expression (2.8)
of each of Fi for the corresponding class Fi.

As a result of Proposition 6.2, we establish the truthfulness of the following

Theorem 6.2. An almost paracontact almost paracomplex Riemannian manifold
(M, φ, ξ, η, g) has:

a) vanishing ̂N (1) if and only if it belongs to some of the basic classes F3, F7 or
to their direct sum;

b) vanishing ̂N (2) if and only if it belongs to some of the basic classes F1, F2,
F3, F7, . . ., F10 or to their direct sums;

c) vanishing ̂N (3) if and only if it belongs to some of the basic classes F1, . . . ,F7

or to their direct sums;
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d) vanishing ̂N (4) if and only if it belongs to some of the basic classes F1, . . . ,F10

or to their direct sums.

By virtue of Theorem 6.2, we obtain the following

Corollary 6.1. The class of almost paracontact almost paracomplex Riemannian
manifolds with a vanishing associated Nijenhuis tensor ̂N is F3 ⊕F7.

7. The pair of Nijenhuis tensors and the classification of the

considered manifolds

In the previous two sections, by (5.7) and (6.5), we give the expressions of the

Nijenhuis tensor N and its associated ̂N by the tensor F , respectively. Here, we
find how the fundamental tensor F is determined by the pair of Nijenhuis tensors.
Since F is used for classifying the manifolds studied, we can expressed the classes
Fi i = (1, 2, . . . , 11) only by the pair (N, ̂N).

Theorem 7.1. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex

Riemannian manifold. Then its fundamental tensor is expressed by N and ̂N by
the formula:

F (x, y, z) = 1
4

[

N(φx, y, z) +N(φx, z, y) + ̂N(φx, y, z) + ̂N(φx, z, y)
]

− 1
2η(x)

[

N(ξ, y, φz) + ̂N(ξ, y, φz) + η(z) ̂N(ξ, ξ, φy)
]

.
(7.1)

Proof. Taking the sum of (5.7) and (6.5), we obtain:

F (φx, y, z)− F (x, y, φz) =
1

2

[

N(x, y, z) + ̂N(x, y, z)
]

− η(z)F (x, φy, ξ).(7.2)

The identities (2.5) together with (2.1) imply:

F (x, y, φz) + F (x, z, φy) = η(z)F (x, φy, ξ) + η(y)F (x, φz, ξ).(7.3)

A suitable combination of (7.2) and (7.3) yields:

F (φx, y, z) =
1

4

[

N(x, y, z) +N(x, z, y) + ̂N(x, y, z) + ̂N(x, z, y)
]

.(7.4)

Applying (2.1), we obtain from (7.4) the following:

F (x, y, z) = 1
4

[

N(φx, y, z) +N(φx, z, y) + ̂N(φx, y, z) + ̂N(φx, z, y)
]

+ η(x)F (ξ, y, z).
(7.5)

Set x = ξ and z → φz into (7.2) and use (2.1) to get:

F (ξ, y, z) = −
1

2

[

N(ξ, y, φz) + ̂N(ξ, y, φz)
]

+ η(z)ω(y).(7.6)

Finally, using (6.5) and the general identities ω(ξ) = 0, we obtain:

ω(z) = −
1

2
̂N(ξ, ξ, φz).(7.7)

Substitute (7.7 )into (7.6) and the obtained identity insert into (7.5) to get (7.1).
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Corollary 7.1. The class of almost paracontact almost paracomplex Riemannian
manifolds with vanishing tensors N and ̂N is the special class F0.

8. A family of Lie groups as manifolds of the studied type

Let L be a (2n+1)-dimensional real connected Lie group and let its associated Lie
algebra with a global basis {E0, E1, . . . , E2n} of left invariant vector fields on L be
defined by:

[E0, Ei] = −aiEi − an+iEn+i, [E0, En+i] = −an+iEi + aiEn+i,(8.1)

where a1, . . . , a2n are real constants and [Ej , Ek] = 0 in other cases.

Let (φ, ξ, η) be an almost paracontact almost paracomplex structure determined
for any i ∈ {1, . . . , n} by:

φE0 = 0, φEi = En+i, φEn+i = Ei,
ξ = E0, η(E0) = 1, η(Ei) = η(En+i) = 0.

(8.2)

Let g be a Riemannian metric defined by:

g(E0, E0) = g(Ei, Ei) = g(En+i, En+i) = 1,
g(E0, Ej) = g(Ej , Ek) = 0,

(8.3)

where i ∈ {1, . . . , n} and j, k ∈ {1, . . . , 2n}, j 6= k. Thus, since (2.1) is satisfied,
the induced (2n + 1)-dimensional manifold (L, φ, ξ, η, g) is an almost paracontact
almost paracomplex Riemannian manifold.

Let us remark that in [8] the same Lie group is considered with an appropriate
almost contact structure and a compatible Riemannian metric. Then, the generated
almost cosymplectic manifold is studied. On the other hand, in [3], the same Lie
group is equipped with an almost contact structure and B-metric. Then, the ob-
tained manifold is characterized. Moreover, in [4], the case of the lowest dimension
is considered and properties of the constructed manifold are determined.

Let us consider the constructed almost paracontact almost paracomplex Rie-
mannian manifold (L, φ, ξ, η, g) of dimension 3, i.e. for n = 1.

According to (8.1) and (8.3) for n = 1, by the Koszul equality

2g (∇Ei
Ej , Ek) = g ([Ei, Ej ], Ek) + g ([Ek, Ei], Ej) + g ([Ek, Ej ], Ei)

for the Levi-Civita connection ∇ of g, we obtain:

∇E1
E0 = a1E1 + a2E2, ∇E2

E0 = a2E1 − a1E2,
∇E1

E1 = −∇E2
E2 = −a1E0, ∇E1

E2 = ∇E2
E1 = −a2E0,

(8.4)

and the others ∇Ei
Ej are zero.

Then, using (8.4), (8.2), (2.4) and (3.3), we get the following components Fijk =
F (Ei, Ej , Ek) of the fundamental tensor:

F101 = F110 = F202 = F220 = −a2, F102 = F120 = −F201 = −F210 = −a1,
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and the other components of F are zero. Thus, we have the expression of F for
arbitrary vectors x = xiEi, y = yiEi, z = ziEi as follows:

F (x, y, z) = −a2
{

x1
(

y0z1 + y1z0
)

+ x2
(

y0z2 + y2z0
)}

−a1
{

x1
(

y0z2 + y2z0
)

− x2
(

y0z1 + y1z0
)}

.
(8.5)

Bearing in mind the latter equality, we obtain that F has the following form:

F (x, y, z) = F4(x, y, z) + F9(x, y, z),

by virtue of (3.3) for µ = −a1, θ0 = −2a2. Therefore, we have proved the following

Proposition 8.1. The constructed 3-dimensional almost paracontact almost para-
complex Riemannian manifold (L, φ, ξ, η, g) belongs to:

a) F4 ⊕F9 if and only if a1 6= 0, a2 6= 0;

b) F4 if and only if a1 = 0, a2 6= 0;

c) F9 if and only if a1 6= 0, a2 = 0;

d) F0 if and only if a1 = 0, a2 = 0.

Finally, we get the following

Proposition 8.2. The constructed 3-dimensional almost paracontact almost para-
complex Riemannian manifold (L, φ, ξ, η, g) has the following properties:

a) It has vanishing N (4) and ̂N (4);

b) It is a normal almost paracontact almost paracomplex Riemannian manifold

with vanishing ̂N (3) if and only if a1 = 0 and arbitrary a2;

c) It is a para-Sasakian paracomplex Riemannian manifold if and only if a1 = 0,
a2 = 1;

d) It has vanishing ̂N (2) if and only if a2 = 0 and arbitrary a1.

Proof. According to (8.5), (3.3) and Proposition 5.2, we find the following form
of the Nijenhuis tensor of (L, φ, ξ, η, g):

N(x, y, z) = −2a1
{(

x1y2 − x2y1
)

z0 +
(

x0y1 − x1y0
)

z1 −
(

x0y2 − x2y0
)

z2
}

.

From the latter equality and (5.8) (or alternatively from (8.5) and (5.9)), we have:

N (2)(x, y) = 2a1(x
1y1 − x2y2), N (3)(x, y) = 2a1(x

1y2 − x2y1), N (4)(x) = 0.

Similarly, for the associated Nijenhuis tensor of (L, φ, ξ, η, g) we obtain:

̂N(x, y, z) = −4a2
(

x1y2 + x2y1
)

z0 + 2a1
{(

x0y1 + x1y0
)

z1 −
(

x0y2 + x2y0
)

z2
}

.
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By virtue of (6.3) and the equality from above (or in other way by (8.5) and (6.6)),
we get:

̂N (2)(x, y) = 4a2
(

x1y1 + x2y2
)

, ̂N (3)(x, y) = −2a1
(

x1y2 − x2y1
)

, ̂N (4)(x) = 0.

As a conclusion, the obtained results imply the propositions in a), b) and d).
Moreover, the case of the F4

′-manifold, i.e. the proposition in c), follows from
Proposition 8.1 b).
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ON GENERALIZED φ-RECURRENT AND GENERALIZED

CONCIRCULARLY φ-RECURRENT N(κ)-PARACONTACT

METRIC MANIFOLDS

Irem Küpeli Erken

Abstract. The purpose of the present paper is to study generalized φ-recurrent, gen-
eralized concirculary φ-recurrent N(κ)-paracontact metric manifolds and generalized
φ-recurrent paracontact metric manifolds of constant curvature.
Keywords:generalized φ-recurrent, generalized concirculary φ -recurrent, N(κ)-paracontact
metric manifold.

1. Introduction

Almost paracontact metric structures are the natural odd-dimensional analogue
to almost paraHermitian structures, just like almost contact metric structures corre-
spond to the almost Hermitian ones. The study of almost paracontact geometry was
introduced by Kaneyuki and Williams in [6] and then it was continued by many other
authors. A systematic study of almost paracontact metric manifolds was carried out
in paper of Zamkovoy, [10]. An important class among paracontact metric manifolds is
that of the κ-spaces, which satisfy the nullity condition [2]. This class includes the para-
Sasakian manifolds [6, 10], the paracontact metric manifolds satisfying R(X,Y )ξ = 0
for all X,Y vector fields on the manifold [11], etc.

Let M be an 2n + 1-dimensional connected semi-Riemannian manifold with semi-
Riemannian metric g and Levi-Civita connection ∇. M is called locally symmetric
if its curvature tensor is parallel with respect to ∇. The notion of locally symmetric
manifold has been weakend such as recurrent manifold by Walker [9], in 1977 Takahashi
[8] introduced the notion of local φ -symmetry on a Sasakian manifold. Generalizing
the notion of local φ-symmetry, De et al. [3] introduced and studied the notion of
φ-recurrent Sasakian manifold. Then in [4] and [7], De and Gazi and Peyghan et al.
studied φ-recurrent N(κ)-contact metric manifolds. Dubey [5] introduced the notion of
generalized recurrent manifold.

Motivated by these considerations, the author make the first contribution to study
generalized φ-recurrent N(κ)-paracontact metric manifolds (which includes both the
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notion of local φ-symmetry and also φ-recurrence) and generalized concirculary φ-
recurrent N(κ)-paracontact metric manifolds.

The paper is organized as follows:

Section 2 is preliminary section, where we recall basic facts which we will need
throughout the paper. In Section 3, we prove that a generalized φ-recurrent N(κ)-
paracontact metric manifold (M2n+1, g) is an η-Einstein manifold for κ 6= −1, 0. We
show that in a generalized φ-recurrent N(κ)-paracontact metric manifold, the charac-
teristic vector field ξ and the vector field ρ1κ + ρ2 associated to the 1-form Aκ + B

are co-directional. We find the relation between associated 1-forms A and B for a
three dimensional generalized φ-recurrent N(κ)-paracontact metric manifold. In Sec-
tion 4, we mainly give the relation between associated 1-forms A and B in a gen-
eralized φ-recurrent N(κ 6= 0)-paracontact metric manifold (M2n+1, g) of constant
curvature c 6= 0. In Section 5, we prove that a generalized concirculary φ-recurrent
N(κ)-paracontact metric manifold (M2n+1, g) is an η-Einstein manifold for κ 6= −1, 0.
We give the relation between associated 1-forms A and B for a generalized concircu-
lary φ-recurrent N(κ)-paracontact metric manifold and we show that in a generalized
concirculary φ-recurrent N(κ)-paracontact metric manifold, the characteristic vector
field ξ and the vector field ρ1c+ ρ2 associated to the 1-form Ac+B are co-directional.
Finally, we show that for a three dimensional generalized concirculary φ-recurrentN(κ)-
paracontact metric manifold, r is not necessarily be a constant.

2. Preliminaries

Let M be a (2n + 1)-dimensional differentiable manifold and φ is a (1, 1) tensor
field, ξ is a vector field and η is a one-form on M. Then (φ, ξ, η) is called an almost
paracontact structure on M if

(i) φ2 = Id− η ⊗ ξ, η(ξ) = 1,

(ii) the tensor field φ induces an almost paracomplex structure on the distribution D =
ker η, that is the eigendistributions D±, corresponding to the eigenvalues ±1, have
equal dimensions, dimD+ = dimD− = n.

The manifold M is said to be an almost paracontact manifold if it is endowed with
an almost paracontact structure [10].

Let M be an almost paracontact manifold. M will be called an almost paracontact
metric manifold if it is additionally endowed with a pseudo-Riemannian metric g of a
signature (n+ 1, n), i.e.

g(φX,φY ) = −g(X,Y ) + η(X)η(Y ).(2.1)

For such manifold, we have

η(X) = g(X, ξ), φ(ξ) = 0, η ◦ φ = 0.(2.2)

Moreover, we can define a skew-symmetric tensor field (a 2-form) Φ by

Φ(X, Y ) = g(X,φY ),(2.3)

usually called fundamental form.
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For an almost paracontact manifold, there exists an orthogonal basis {X1, . . . , Xn, Y1, . . . ,

Yn, ξ} such that g(Xi, Xj) = δij , g(Yi, Yj) = −δij and Yi = φXi, for any i, j ∈
{1, . . . , n}. Such basis is called a φ-basis.

On an almost paracontact manifold, one defines the (1, 2)-tensor field N (1) by

N
(1)(X,Y ) = [φ, φ] (X,Y )− 2dη(X,Y )ξ,(2.4)

where [φ, φ] is the Nijenhuis torsion of φ

[φ, φ] (X,Y ) = φ
2 [X,Y ] + [φX, φY ]− φ [φX, Y ]− φ [X,φY ] .

If N (1) vanishes identically, then the almost paracontact manifold (structure) is said
to be normal [10]. The normality condition says that the almost paracomplex structure
J defined on M × R

J(X,λ
d

dt
) = (φX + λξ, η(X)

d

dt
),

is integrable.

If dη(X,Y ) = g(X,φY ), then (M,φ, ξ, η, g) is said to be paracontact metric man-
ifold. In a paracontact metric manifold one defines a symmetric, trace-free operator
h = 1

2
Lξφ, where Lξ, denotes the Lie derivative. It is known [10] that h anti-commutes

with φ and satisfies

i)hξ = 0, ii)trh = trhφ = 0, iii)∇ξ = −φ+ φh,(2.5)

where ∇ is the Levi-Civita connection of the pseudo-Riemannian manifold (M, g).

Moreover h = 0 if and only if ξ is a Killing vector field. In this case (M,φ, ξ, η, g) is
said to be a K-paracontact manifold. Similarly as in the class of almost contact metric
manifolds [1], a normal almost paracontact metric manifold will be called para-Sasakian
if Φ = dη.

On an almost paracontact metric manifold M , if the Ricci operator satisfies

Q = αid+ βη ⊗ ξ,

where both α and β are smooth functions, then the manifold is said to be an
η-Einstein manifold. An η-Einstein manifold with β vanishing and α a constant is
obviously an Einstein manifold.

The κ-nullity distribution N(κ) of a semi-Riemannian manifold M is defined by

N(κ) : p → Np(κ) = {Z ∈ TpM | R(X,Y )Z = κ(g(Y,Z)X − g(X,Z)Y )} ,(2.6)

for some real constant κ. If the characteristic vector field ξ belongs to N(κ), then
we call a paracontact metric manifold an N(κ)-paracontact metric manifold. For a
N(κ)-paracontact metric manifold [2] we have,

R(X,Y )ξ = κ(η(Y )X − η(X)Y ),(2.7)

S(X, ξ) = 2nκη(X),(2.8)

h
2 = (1 + κ)φ2

.(2.9)

for all X,Y vector fields on M , where κ is constant and S is the Ricci tensor.
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Lemma 2.1. [2]In any (2n + 1)-dimensional paracontact (κ, µ)-manifold (M,φ, ξ, η, g)
such that κ 6= −1, the Ricci operator Q is given by

Q = (2(1− n) + nµ)I + (2(n− 1) + µ)h+ (2(n− 1) + n(2κ− µ))η ⊗ ξ.(2.10)

Using (2.10), we have

S(φX, φY ) = S(X,Y )− 4(1− n)g(X,Y ) + (4(1− n)− 2nκ)η(X)η(Y ).(2.11)

Definition 2.1. A N(κ)-paracontact metric manifold is said to be a generalized φ-
recurrent if its curvature tensor R satisfies the condition

φ
2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z +B(W )(g(Y,Z)X − g(X,Z)Y ),(2.12)

where A and B are two 1-forms, B is non zero and they are defined by

A(X) = g(X,ρ1), B(X) = g(X,ρ2),(2.13)

where ρ1 and ρ2 are vector fields associated with 1-forms A,B respectively.

Definition 2.2. A (2n+1)-dimensionalN(κ)-paracontact metric manifold is called a gen-
eralized concircular φ-recurrent if its concircular curvature tensor C

C(X,Y )Z = R(X,Y )Z −
r

2n(2n+ 1)
[g(Y,Z)X − g(X,Z)Y ],(2.14)

satisfies the condition

φ
2((∇WC)(X,Y )Z) = A(W )C(X,Y )Z +B(W )(g(Y,Z)X − g(X,Z)Y ),(2.15)

where A and B are defined as (2.13) and r = tr(S) is the scalar curvature.

In the above definitions, X, Y, Z,W are arbitrary vector fields and not necessarily
orthogonal to ξ.

Remark 2.1. A flat manifold satisfies R = 0 and ∇R = 0, so flat manifolds are trivial
examples of generalized φ-recurrent paracontact metric manifolds.

3. Generalized φ-recurrent N(κ) -paracontact metric manifolds

Theorem 3.1. For κ 6= −1, 0, a generalized φ-recurrent N(κ)-paracontact metric mani-
fold (M2n+1, g) is an η-Einstein manifold.

Proof. In view of (2.12), we get

(∇WR)(X,Y )Z − η((∇WR)(X,Y )Z)ξ(3.1)

= A(W )R(X,Y )Z +B(W )(g(Y,Z)X − g(X,Z)Y ).
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Taking the inner product on both sides of (3.1) with U , we obtain

g((∇WR)(X,Y )Z,U) − η((∇WR)(X,Y )Z)η(U) = A(W )g(R(X,Y )Z,U)

+B(W )(g(Y,Z)g(X,U)

−g(X,Z)g(Y,U)).(3.2)

Let ei, 1 ≤ i ≤ 2n + 1 be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ei in (3.2) and getting the summation over i, one can
get

(∇WS)(Y,Z) −

2n+1
∑

i=1

εiη((∇WR)(ei, Y )Z)η(ei)

= A(W )S(Y,Z) + 2nB(W )g(Y,Z).(3.3)

Now, let calculate the second term of the left hand side of the above equation by replacing
Z by ξ. Using (2.6) and the fact that (∇W g) = 0, we get

εig((∇WR)(ei, Y )ξ, ξ) = 0.(3.4)

Putting Z = ξ in (3.3) and using (2.8) and (3.4), we obtain

(∇WS)(Y, ξ) = 2nη(Y )(κA(W ) +B(W )).(3.5)

Using the property (iii) of (2.5) and (2.8) in (∇WS)(Y, ξ) = ∇WS(Y, ξ) − S(∇WY, ξ) −
S(Y,∇W ξ), we have

(∇WS)(Y, ξ) = 2nκ(∇W η)(Y ) + S(Y, φW − φhW )

= 2nκg(−φW + φhW,Y ) + S(Y, φW − φhW ).(3.6)

Comparing equations (3.5) and (3.6), we get

2nη(Y )(κA(W ) +B(W )) = 2nκg(−φW + φhW, Y ) + S(Y, φW − φhW ).(3.7)

Replacing Y by φY in the last equation and using (2.1) and (2.11), we obtain

0 = (2nκ− 4(1− n))g(W,Y ) + (−2nκ+ 4(1− n))g(W,hY )

+(−2nκ+ 4(1− n)− 2nκ)η(Y )η(W ) + S(Y,W )− S(Y, hW ).(3.8)

Employing (2.9) and (2.10) in (3.8),we get

S(Y,W ) = 2(−n− κ+ 1)g(W,Y ) + 2(nκ+ n− 1)g(hW,Y )

+2(n(κ+ 1) + κ− 1)η(Y )η(W ).(3.9)

Putting W = hW in (3.9) and using again (2.9) and (2.10), we have

2κg(hW, Y ) = 2nκ(κ+ 1)g(W,Y )− 2nκ(κ+ 1)η(Y )η(W ).

By the assumption of κ 6= 0, the last equations returns to

g(hW,Y ) = n(κ+ 1)(g(W,Y )− η(Y )η(W )).(3.10)

Using (3.10) in (3.9), we get

S(Y,W ) = αg(W,Y ) + βη(Y )η(W ),

where α = 2[(−n−κ+1)+n(κ+1)(nκ+n−1)], β = 2[n(κ+1)+(κ−1)−n(κ+1)(nκ+n−1)].
Hence, we can conclude that the manifold is η-Einstein manifold.
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Theorem 3.2. For a generalized φ-recurrent N(κ)-paracontact metric manifold (M2n+1, g),
the characteristic vector field ξ and the vector field ρ1κ+ρ2 associated to the 1-form Aκ+B

are co-directional.

Proof. Two vector fields P and Q are said to be co-directional if P = fQ, where f is a
non-zero scalar, that is g(P,X) = fg(Q,X) for all X.

Taking inner product of (3.1) with ξ, we have

A(W )g(R(X,Y )Z, ξ) +B(W )(g(Y,Z)η(X) − g(X,Z)η(Y )) = 0.(3.11)

Then by the use of second Bianchi identity, we can write

A(W )g(R(X,Y )Z, ξ) +B(W )(g(Y,Z)η(X)− g(X,Z)η(Y ))

+A(Y )g(R(W,X)Z, ξ) +B(Y )(g(X,Z)η(W )− g(W,Z)η(X))

+A(X)g(R(Y,W )Z, ξ) +B(X)(g(W,Z)η(Y )− g(Y,Z)η(W ))

= 0.(3.12)

From (2.6), it follows that

g(R(X,Y )Z, ξ) = κ(−η(Y )g(X,Z) + η(X)g(Y,Z)).(3.13)

Using (3.13) in (3.12), we get

κ







A(W )[(−η(Y )g(X,Z) + η(X)g(Y,Z))]
+A(Y )[(−η(X)g(W,Z) + η(W )g(X,Z))]
A(X)[(−η(W )g(Y,Z) + η(Y )g(W,Z))]







+B(W )(g(Y,Z)η(X)− g(X,Z)η(Y ))

+B(Y )(g(X,Z)η(W )− g(W,Z)η(X))

+B(X)(g(W,Z)η(Y )− g(Y,Z)η(W ))

= 0.(3.14)

Replacing Y = Z by ei in (3.14) and taking summation over i, 1 ≤ i ≤ 2n+ 1, we obtain

(2n− 1) [κ(A(W )η(X)− A(X)η(W )) +B(W )η(X)−B(X)η(W )] = 0.(3.15)

Putting X = ξ in the last equation, we have

κ(A(W )− η(W )η(ρ1)) = −(B(W )− η(W )η(ρ2))

η(W )(κη(ρ1) + η(ρ2)) = κA(W ) +B(W ).(3.16)

where η(ρ1) = g(ξ, ρ1) = A(ξ) and η(ρ2) = g(ξ, ρ2) = B(ξ). From (3.16), we complete
the proof of the theorem.

Theorem 3.3. Let (M3, g) be a generalized φ-recurrent N(κ)-paracontact metric mani-
fold. Then B(W ) = −κA(W ).

Proof. We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold
satisfies

R(X,Y )Z = g(Y,Z)QX−g(X,Z)QY+g(QY,Z)X−g(QX,Z)Y−
r

2
(g(Y,Z)X−g(X,Z)Y ).

(3.17)
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where Q is the Ricci-operator, g(QX,Y ) = S(X,Y ) and r is the scalar curvature of the
manifold. Let (M3, g) be a generalized φ-recurrent N(κ)-paracontact metric manifold.
Replacing Z by ξ in (3.17) and using (2.8), we have

R(X,Y )ξ = (2κ−
r

2
)(η(Y )X − η(X)Y ) + η(Y )QX − η(X)QY.(3.18)

Comparing (2.7) with (3.18), we get

(κ−
r

2
)(η(Y )X − η(X)Y ) = η(X)QY − η(Y )QX.(3.19)

Putting Y = ξ in (3.19) and using (2.8), we obtain

QX = (
r

2
− κ)X + (3κ−

r

2
)η(X)ξ,(3.20)

which gives

S(X,Y ) = (
r

2
− κ)g(X,Y ) + (3κ−

r

2
)η(X)η(Y ).(3.21)

By taking account of (3.20) and (3.21) in (3.17), one can get

R(X,Y )Z = (3κ−
r

2
)(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y )

+(
r

2
− 2κ)(g(Y,Z)X − g(X,Z)Y ).(3.22)

Taking the covariant derivative of the last equation according to W , we deduce that

(∇WR)(X,Y )Z = −
dr(W )

2
(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y )

+
dr(W )

2
(g(Y,Z)X − g(X,Z)Y )

+(3κ−
r

2
)









(g(Y,Z)η(X)− g(X,Z)η(Y ))∇W ξ

+(g(Y,Z)ξ − η(Z)Y )(∇W η)(X)
−(g(X,Z)ξ − η(Z)X)(∇W η)(Y )
+(η(Y )X − η(X)Y )(∇W η)(Z).









.(3.23)

Now, let Y be a non-zero vector field orthogonal to ξ and X = Z = ξ. Using (2.5), (3.23)
follows that

(∇WR)(ξ, Y )ξ = −2(3κ−
r

2
)(∇W η)(ξ)Y = 0.(3.24)

By virtue of (2.12) and (3.24), we obtain

A(W )R(ξ,Y )ξ −B(W )Y = 0.(3.25)

From (2.7), we have

R(ξ, Y )ξ = −κY.(3.26)

If we use (3.26) in (3.25), it follows that the requested relation holds. This completes the
proof of the theorem.
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4. Generalized φ-recurrent paracontact metric manifolds of constant

curvature

Theorem 4.1. [10]If a paracontact manifold M2n+1 is of constant sectional curvature c

and dimension 2n+ 1 > 5, then c = −1 and |h|2 = 0.

Theorem 4.2. If a generalized φ-recurrent paracontact metric manifold (M2n+1, g) is of
constant curvature and (2n+ 1) > 5, then A(W ) = B(W ).

Proof. Let (M2n+1, g) be a generalized φ-recurrent paracontact metric manifold of con-
stant curvature c and (2n + 1) > 5. From Theorem 4.1, we have c = −1. So, we can
write

R(X,Y )Z = −(g(Y,Z)X − g(X,Z)Y ).(4.1)

Taking the covariant derivative of the last equation according to W , we deduce that

(∇WR)(X,Y )Z = 0.(4.2)

Now, let Y be a non-zero vector field orthogonal to ξ and X = Z = ξ. From (4.1), we
have

R(ξ, Y )ξ = Y.(4.3)

By using (2.12), (4.2) and (4.3), we have

0 = A(W )−B(W )

which completes the proof.

Theorem 4.3. If a generalized φ-recurrent N(κ 6= 0)-paracontact metric manifold (M2n+1, g)
is of constant curvature c 6= 0, then B(W ) = −κA(W ).

Proof. Let us consider a (2n+1)-dimensional generalized φ-recurrentN(κ 6= 0)-paracontact
metric manifold which has constant curvature c. So, we have

R(X,Y )Z = c(g(Y,Z)X − g(X,Z)Y ).(4.4)

Replacing Z by ξ in (4.4), we get

R(X,Y )ξ = c(η(Y )X − η(X)Y ).(4.5)

From (2.7) and (4.5), we obtain

c(η(Y )X − η(X)Y ) = κ(η(Y )X − η(X)Y ).(4.6)

Now, let Y be a non-zero vector field orthogonal to ξ and X = ξ. So, (4.6) returns to
c = κ 6= 0. Because of the manifold is N(κ)-paracontact metric manifold, we have

R(X,Y )Z = κ(g(Y,Z)X − g(X,Z)Y ).(4.7)

Taking the covariant derivative of the last equation according to W , we deduce that

(∇WR)(X,Y )Z = −κ((∇W g)(X,Z)Y − ((∇W g)(Y,Z)X)) = 0.(4.8)
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Putting Y = Z = ξ in (2.12), and taking account of (4.7) and (4.8), we obtain

0 = (X − η(X)ξ)(A(W )κ+B(W )).(4.9)

If X is a non-zero vector field orthogonal to ξ, from (4.9), we get

0 = A(W )κ+B(W ).

Remark 4.1. If a generalized φ-recurrentN(κ 6= 0)-paracontact metric manifold (M2n+1, g)
is of constant curvature c 6= 0, and (2n+ 1) > 5, then κ = −1.

5. Generalized concirculary φ-recurrent N(κ)-paracontact metric

manifolds

Theorem 5.1. For κ 6= −1, 0, a generalized concirculary φ-recurrent N(κ)-paracontact
metric manifold (M2n+1, g) is an η-Einstein manifold.

Proof. Let us consider a generalized concirculary φ-recurrent N(κ)-paracontact metric
manifold. From (2.15), we have

(∇WC)(X,Y )Z−η((∇WC)(X,Y )Z)ξ = A(W )C(X,Y )Z+B(W )(g(Y,Z)X− g(X,Z)Y ).
(5.1)
Taking the inner product on both sides of (5.1) with U , we obtain

g((∇WC)(X,Y )Z,U) − η((∇WC)(X,Y )Z)η(U) = A(W )g(C(X,Y )Z,U)

+B(W )(g(Y,Z)g(X,U)(5.2)

−g(X,Z)g(Y,U)).

Let ei, 1 ≤ i ≤ 2n + 1 be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ei in (5.2) and taking summation over i, we thus get

(∇WS)(Y,Z) =
dr(W )

2n+ 1
g(Y,Z)−

dr(W )

(2n+ 1)2n
(g(Y,Z)− η(Y )η(Z))

= A(W )(S(Y,Z)−
r

2n+ 1
g(Y,Z)) +B(W )2ng(Y,Z).(5.3)

If we make use of the property (iii) of (2.5) and (2.8) in (5.3), we obtain

(∇WS)(Y, ξ) =
dr(W )

2n+ 1
η(Y )

+ A(W )η(Y )

(

2nκ−
r

2n+ 1

)

+B(W )2nη(Y ).(5.4)

On the other hand, using again the property (iii) of (2.5) and (2.8), we can evaulate
(∇WS)(Y, ξ) as

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ)

= −2nκg(Y, φW − φhW ) + S(Y, φW − φhW ).(5.5)
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Comparing (5.4) to (5.5), we have

S(Y, φW − φhW ) = 2nκg(Y, φW − φhW ) +
dr(W )

2n+ 1
η(Y )

+A(W )η(Y )

(

2nκ−
r

2n+ 1

)

+B(W )2nη(Y ).(5.6)

If we use (2.9), (2.10) and (2.11) after putting φY instead of Y in (5.6), we get

S(Y,W ) = 2(−n− κ+ 1)g(Y,W ) + 2(n− 1 + nκ)g(Y, hW )

+2((n− 1) + κ(n+ 1))η(Y )η(W ).(5.7)

If we replace W by hW in the last equation, we can immediately observe that

g(Y, hW ) = n(1 + κ)(g(Y,W )− η(Y )η(W )).(5.8)

Using (5.8) in (5.7), we have

S(Y,W ) = αg(W,Y ) + βη(Y )η(W ),

where α = 2((−n−κ+1)+(n−1+nκ)n(1+κ)), β = 2((n−1)+κ(n+1)−(n−1+nκ)n(1+κ)).
Namely, manifold is η-Einstein manifold.

Theorem 5.2. Let (M2n+1, g) be a generalized concirculary φ-recurrent N(κ)-paracontact
metric manifold. Then ( r

(2n+1)2n
− κ)A(W ) = B(W ).

Proof. Putting Y = Z = ei in (5.2) and taking summation over i, one can get

(∇WS)(X,U)−
dr(W )

2n+ 1
g(X,U)− (∇WS)(X, ξ)η(U) +

dr(W )

2n+ 1
η(X)η(U)

= A(W )(S(X,U)−
r

2n+ 1
g(X,U)) +B(W )2ng(X,U).(5.9)

Putting U = ξ in (5.9) and using (2.8), we have

A(W )(2nκ−
r

2n+ 1
)η(X) + 2nB(W )η(X) = 0.(5.10)

Setting X = ξ in the last equation, we get the requested relation which completes the
proof of the theorem.

Theorem 5.3. For a generalized concirculary φ-recurrent N(κ)-paracontact metric man-
ifold (M2n+1, g), the characteristic vector field ξ and the vector field ρ1γ + ρ2 associated
to the 1-form Aγ +B are co-directional.

Proof. Two vector fields P and Q are said to be co-directional if P = fQ, where f is a
non-zero scalar, that is g(P,X) = fg(Q,X) for all X.

Taking inner product of (5.1) with ξ, we have

A(W )g(C(X,Y )Z, ξ) +B(W )(g(Y,Z)η(X)− g(X,Z)η(Y )) = 0.(5.11)



On Generalized φ-Recurrent Metric Manifolds 669

In virtue of (2.14) and (5.11), we get

A(W )g(R(X,Y )Z, ξ) =

(A(W )
r

(2n+ 1)2n
−B(W ))(g(Y,Z)η(X)− g(X,Z)η(Y )).(5.12)

Then by the use of second Bianchi identity, we obtain

A(W )g(R(X,Y )Z, ξ) + A(Y )g(R(W,X)Z, ξ) + A(X)g(R(Y,W )Z, ξ)

= (A(W )
r

(2n+ 1)2n
−B(W ))(g(Y,Z)η(X) − g(X,Z)η(Y )) +

(A(Y )
r

(2n+ 1)2n
−B(Y ))(g(X,Z)η(W )− g(W,Z)η(X)) +

(A(X)
r

(2n+ 1)2n
−B(X))(g(W,Z)η(Y )− g(Y,Z)η(W )).(5.13)

From (2.6), it follows that

g(R(X,Y )Z, ξ) = κ(−η(Y )g(X,Z) + η(X)g(Y,Z)).

Using the last equation in (5.13), we get

A(W )[κ(−η(Y )g(X,Z) + η(X)g(Y,Z))] +

A(Y )[κ(−η(X)g(W,Z) + η(W )g(X,Z))] +

A(X)[κ(−η(W )g(Y,Z) + η(Y )g(W,Z))]

= (A(W )
r

(2n+ 1)2n
−B(W ))(g(Y,Z)η(X) − g(X,Z)η(Y )) +

(A(Y )
r

(2n+ 1)2n
−B(Y ))(g(X,Z)η(W )− g(W,Z)η(X)) +

(A(X)
r

(2n+ 1)2n
−B(X))(g(W,Z)η(Y )− g(Y,Z)η(W )).(5.14)

Replacing Y = Z by ei in (5.14) and taking summation over i, 1 ≤ i ≤ 2n+ 1, we obtain

(1− 2n)

(

(κ− r
(2n+1)2n

)(A(X)η(W )− A(W )η(X))

+B(X)η(W )−B(W )η(X)

)

= 0.(5.15)

Putting X = ξ in the last equation, we have

η(W )(η(ρ2) + γη(ρ1)) = A(W )γ +B(W ),(5.16)

where γ = (κ − r
(2n+1)2n

), η(ρ1) = g(ξ, ρ1) = A(ξ) and η(ρ2) = g(ξ, ρ2) = B(ξ). From

(5.16), we complete the proof of the theorem.

Theorem 5.4. Let (M3, g) be a generalized concirculary φ-recurrent N(κ)-paracontact

metric manifold. Then B(W ) = − dr(W )
6

+ ( r
6
− κ)A(W ).

Proof. Using (3.22) in (2.14), we get

C(X,Y )Z = (3κ−
r

2
)(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y )

+(
r

3
− 2κ)(g(Y,Z)X − g(X,Z)Y ).(5.17)
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It is readily taken that the covariant derivative of the above expression

(∇WC)(X,Y )Z = −
dr(W )

2
(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y )

+
dr(W )

3
(g(Y,Z)X − g(X,Z)Y )

+(3κ−
r

2
)









(g(Y,Z)η(X) − g(X,Z)η(Y ))∇W ξ

+(g(Y,Z)ξ − η(Z)Y )(∇W η)(X)
−(g(X,Z)ξ − η(Z)X)(∇W η)(Y )
+(η(Y )X − η(X)Y )(∇W η)(Z).









.(5.18)

Let us assume that Y is a non-zero vector field orthogonal to ξ and X = Z = ξ. Using the
property (iii) of (2.5) and (5.18), we have

(∇WC)(ξ, Y )ξ =
dr(W )

6
Y.(5.19)

It follows (2.12) and (5.19) from that

A(W )C(ξ,Y )ξ −B(W )Y =
dr(W )

6
Y.(5.20)

From (2.7) and (2.14), we have

C(ξ, Y )ξ = (−κ+
r

6
)Y.(5.21)

If we employ (5.21) in (5.20), we immediately see that one is able to get the requested
equation.

Remark 5.1. In a three dimensional generalized concirculary φ-recurrentN(κ)-paracontact
metric manifold, r is not necessarily be a constant.
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EFFICIENT ENCODINGS TO HYPERELLIPTIC CURVES OVER

FINITE FIELDS ∗

Amirmehdi Yazdani Kashani and Hassan Daghigh

Abstract. Many cryptosystems are based on the difficulty of the discrete logarithm
problem in finite groups. In this case elliptic and hyperelliptic cryptosystems are more
noticed because they provide good security with smaller size keys. Since these systems
were used for cryptography, it has been an important issue to transform a random value
in finite field into a random point on an elliptic or hyperelliptic curve in a deterministic
and efficient method. In this paper we propose a deterministic encoding to hyperelliptic
curves over finite field. For cryptographic desires it is important to have an injective
encoding. In finite fields with characteristic three we obtain an injective encoding for
genus two hyperelliptic curves.
Keywords: Cryptosystem; hyperelliptic curves; injective encoding; finite field.

1. Introduction

We first recall that a hyperelliptic curve H of gunes g is a curve by the equation
y2 = f(x), where f a squarefree, monic polynomial of degree 2g + 1. Every hyper-
elliptic curve of genus 1 is called an elliptic curve. In fact an elliptic curve over the
finite field Fq is the set E(Fq) which includes all of the points (x, y) such that

y2 = x3 + ax+ b

where a, b ∈ Fq with an additional point that is called infinity. The points on E(Fq)
with ∞ form an additive abelian group but for g ≥ 2 there is not a group law on
the points of a hyperelliptic curve. However the divisor group of H is denoted by
Div(H) is a free abelian group. A divisorD ∈ Div(H) is a formal sum D =

∑

mPP
where mP ∈ Z and mP = 0 for all but finitely many P ∈ H . Then the degree of D
is defined by degD =

∑

mP . The divisors of degree 0 form a subgroup of Div(H)
which is denoted by Div0(H). For every f ∈ ¯Fq(H) the divisor of f is defined
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by div(f) =
∑

ordP (f)P where ordP (f) is the order of vanishing of f at P . A
divisor D ∈ Div(H) is called a principal divisor if it has the form D = div(f) for
some f ∈ ¯Fq(H). Two divisors D1, D2 are called linearly equivalent if D1 −D2 is
principal. The group of principal divisors of H is denoted by Princ(H). Since every
principal divisor has degree 0, Princ(H) is a subgroup of Div0(H). The jacobian of
H over Fq is defined by J(H) = Div0(H)/Princ(H). Since in many cryptosystems
we need to a group we use the group J(H) rather than the set of points on H . We
have:

(
√
q − 1)2g ≤ #J(H) ≤ (

√
q + 1)2g

Therefore #J(H) ≈ qg.

2. Background

Encoding from finite fields element into the points of a given elliptic or hyperelliptic
curve is a more challenging problem and requires to be studied more carefully.
Before 2006 the usual method was Try and Increment. It was to take x ∈ Fq and
check whether this value corresponds to a valid abscissa of a point on the elliptic
curve. If not, try another abscissa until one of them works. One defect of this
algorithm is that the number of operation is not constant. namely the number of
steps depends on the input x.

Algorithm 1 Try and Increment Method

Require: : u an integer.
Ensure: : Q, a point of E(Fq).
for i = 0 to k − 1 do

(a) set x = u+ i

(b) If x3+ax+b is a quadratic residue in Fq, then return Q = (x, (x3+ax+b)
1

2 )
end for

return ⊥

The twisted curves method was to apply curve and its twist as suggested in [6]. If
E is defined by y2=x3+ax+b over Fq, the twist of E is a curve Ed defined by

dy2=x3+ax+b,

where d is a quadratic non-residue in Fq. Then for every x there exists y such that
the point (x, y) belongs to E or Ed. This method was little noticed since it requires
calculation on two curves and this doubles the running time.

When q≡2 (mod 3) the map x→x3 is a bijection from F∗
q to itself. If E is defined

by the equation y2 = x3 + b, the map

f : u −→ ((u2 − b)
1

3 , u)

gives a bijection from Fq to affine points on the curve E. Therefore these curves are
supersingular for every b. The MOV attack gives an efficient computable method
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which enables to reduce the DLP on a supersingular elliptic curve to DLP on a
finite field [15]. Therefore in order to avoid this attack, much larger parameters
must be used.
In 2006 the first algorithm for encoding to elliptic curves in deterministic polynomial
time was proposed by Shallue and Woestijne [16]. The algorithm is based on the
Skalba equality which says that there exist four mapsX1(t), X2(t), X3(t), X4(t) such
that

f(X1(t))f(X2(t))f(X3(t)) = (X4(t))
2,

where f (x) = X3 + aX + b. Then in a finite field for a fixed parameter t, there
exists 1 6 j 6 3 such that f(Xj (t)) is a quadratic residue. This implies that

(Xj(t),
√

f(Xj(t))) is a point on E : y2 = f (x) . For q ≡ 3(mod 4) computing

the square root
√

f(Xj(t)) is simply an exponentiation but for q ≡ 1(mod 4), no
deterministic algorithm has been found for computing the square root. If we have
a non quadratic residue in Fq we can apply Tonelli Shanks algorithm to compute
the square root. Using Skalba equality the authors of [16] show that a modifica-
tion of Tonelli-Shanks algorithm can compute square roots deterministicaly in time
O(log4q). Shallue-Woestijne method runs in time O(log4q) for any field size q = pn

and in time O(log3q) when q ≡ 3 (mod 4). The maps were simplified and general-
ized to hyperelliptic curves of the forms y2 = xn+ax+ b and y2 = xn+ax2+ bx by
Ulas in 2007 [18]. We recall these maps for elliptic curves in the following result.

Lemma 2.1. Let f(x) = x3 + ax+ b and

X1(t, u) = u

X2(t, u) =
−b

a
(1 +

1

t4f(u)2 + t2f(u)
)

X3(t, u) = t2f(u)X2(t, u)

U(t, u) = t3f(u)2f(X2(t, u)).

Then
U(t, u)2 = f(X1(t, u)).f(X2(t, u)).f(X3(t, u))

In 2009 Icart proposed another method for encoding to elliptic curves [13]. If
q ≡ 2 (mod 3) the map x → x3 is a bijection in Fq and cube roots are uniquely

defined with x
1

3 = x
2q−1

3 .Icart defined an encoding as follows:

fa,b: Fpn−→Ea,b

u−→ (x, y) ,

where

x=(v2−b−
u6

27
)

1

3

+
u2

3
y=ux+v v=

3a−u4

6u

He fixed fa,b (0) = O, the neutral element of the elliptic curve. Icart proved that for
all p ∈ Ea,b the set f−1

a,b (p) is computable in polynomial time and
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∣

∣

∣
f−1
a,b (p)

∣

∣

∣
6 4, namely a point has at most 4 preimages. He also proved that his

algorithm works with complexity O
(

log3q
)

and conjectured that the image of fa,b

contains 5
8 .#Ea,b(Fq) +O(q

1

2 ). Icart’s conjecture was proved by Farashahi, Shpar-
linski and Voloch[9].

Brier et al [5] proposed a further simplification of the Shallue-Woestijne-Ulas
algorithm for elliptic curves over finite field Fq with q ≡ 3(mod 4). They showed
every point p = (x, y) has at most 8 preimages.

For cryptographic purposes it is important to have an injective encoding into
an elliptic curve. In 2011 Farashahi [8] described an injective encoding to Hessian
curves with a point of order 3 over Fq where q ≡ 2(mod 3).
Fouque, Jeux and Tibouchi [10] proposed an injective encoding to elliptic curves of
the form

Eδ
c : y2 = x3 − 4δx2 + δ(c+ δ/c)

2
x,

where c ∈ Fq\{−1, 0, 1}, δ = ±1.
Bernstein, Hamburg, Krosnova and Lange [3] proposed an injective encoding for
elliptic curves of the form

Ea,b : y
2 = x(x2 + ax+ b)

with a, b ∈ Fq.

Foque and Tibouchi [11] proposed a deterministic encoding in to hyperelliptic
curves of the form

y2 = x2g+1 + a1x
2g−1 + · · ·+ agx,

where g is the genus of the curve.
We need to take some security considerations for choosing a hyperelliptic curves.
In this context, we have two important sequences:
1. If g is large there exists a subexponential algorithm for solving the discrete
logarithm problems in J(Fq).[1]
2. If g is small such that g > 5 the attack by gaudry can solve discrete logarithm
problem in J(Fq).[12]
Therefore for cryptographic desires we must consider the hyperelliptic curves of
genus 2,3,4.

3. Main result

In this section we first propose an algorithm for encoding to hyperelliptic curves of
the form y2 = xn + axn−1 + bx over finite field Fq. Then we show our proposed
method defines an injective encding where n = 5 (genus is 2) and q is a power of 3.

Lemma 3.1. Let g(x) = xn + axn−1 + bx. If λ is a quadratic non-residue such
that for some x ∈ Fq we have

(3.1) g(λ.x) = λg(x)
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then either x or λ.x is the abscissa of a point on the y2 = g(x). Moreover for each
λ the value

(3.2) x =
a(1− λn−2)

(λn−1 − 1)

satisfies (3.1).

Proof. Since λ is not a quadratic residue, if x satisfies (3.1) then either g(λ.x) or
g(x) must be a square in Fq. Therefor either x or λ.x must be abscissa of a point
on the curve y2 = g(x). Moreover we have:

g(λx) = λg(x)

(λx)n + a(λx)n−1 + b(λx) = λ(xn + axn−1 + bx)

λn−1xn + aλn−2xn−1 + bx = xn + axn−1 + bx

λn−1x+ aλn−2 = x+ a

x =
a(1− λn−2)

(λn−1 − 1)
.

Theorem 3.1. Let q ≡ 3(mod 4) and for any t ∈ Fq

X1(t) =
a(1− (−t)2n−4)

((−t)2n−2 − 1)

X2(t) = −t
2X1(t)

U(t) = tg(X1(t))

Then
(U(t))2 = −g(X1(t))g(X2(t))

Proof. since q ≡ 3(mod 4), −1 is a quadratic non-residue and we can take λ = −t2

in previous lemma. Therefore X1(t) = x and X2(t) = λx and we have:

g(X1(t))g(X2(t)) = g(x)g(λ.x) = λg(x)2 = −t2g(x)2

= −(tg(x))2 = −(U(t))2

Remark 3.1. Let P = (XP , YP ) be a point generated by this method. We solve the
equations X1(t) = XP and X2(t) = XP to compute the pre-images of P . Since degX1(t) =
2n − 2 and degX2(t) = 2n − 2 each equation has at most 2n − 2 solutions. The minus

sign in the final step of the algorithm makes that set of points obtained of form (X1, g
q+1

4

1 )

and set of points obtained of form (X2,−g
q+1

4

2 ) are separated. Hence a point has at most
2n− 2 pre-images.
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Algorithm 2 Encoding Algorithm

Require: : Fq such that q ≡ 3(mod 4), parameters a, t ∈ Fq.
Ensure: : (x, y) ∈ Hn,a,b(Fq) where Hn,a,b : y

2 = xn + axn−1 + bx.
If t = 0 then return (0, 0)
If t = ±1 then return O
λ←− −t2

X1 ←−
a(1−λn−2)
(λn−1−1)

X2 ←− λ.X1

g1 = Xn
1 + aXn−1

1 + bX1; g2 = Xn
2 + aXn−1

2 + bX2

If g1 is a square, return (X1, g
q+1

4

1 ), otherwise return (X2,−g
q+1

4

2 )

3.1. Injective encoding

In this section we express an injective encoding for hyperelliptic curves of the
form H2,a,b : y2 = x5 + ax4 + bx. If we want to use our proposed algorithm for
n = 5 we have:

X1(λ) =
a(1 − λ3)

(λ4 − 1)
X2(λ) =

a(λ− λ4)

(λ4 − 1)

for every quadratic non-residue λ.
If X1(λ1) = X1(λ2) we have:

λ4
1 − λ4

1λ
3
2 + λ3

2 − λ4
2 + λ3

1λ
4
2 − λ3

1 = 0.

We divide the sides of this equation by 1 − λ1 and 1 − λ2 and λ1 − λ2. Then we
have:

(3.3) (λ2
2 + λ2 + 1)λ2

1 + (λ2
2 + λ2)λ1 + λ2

2 = 0.

The discremnant of equation 3.3 is ∆1 = λ2
2(−3λ

2
2 − 2λ2 − 3). Therefore if ∆1 is a

quadratic non-residue, this equation has no solution.
It also follows from X2(λ1) = X2(λ2) that:

λ4
1 − λ4

2 + λ1λ
4
2 − λ4

1λ2 − λ1 + λ2 = 0.

Similarly if we divide the sides of this equation by 1− λ1 and 1− λ2 and λ1 − λ2,
we have:

(3.4) λ2
1 + λ1(λ2 + 1) + λ2

2 + λ2 + 1 = 0

The discremnant of equation 3.4 is ∆2 = −3λ2
2 − 2λ2 − 3. Therefore if ∆2 is

a quadratic non-residue, this equation has no solution. By looking at equations
∆1 = λ2

2(−3λ
2
2 − 2λ2 − 3) and ∆2 = −3λ2

2 − 2λ2 − 3, it can be concluded that
they are quadratic non-residues if for any λ as quadratic non-residue the value
∆ = −3λ2 − 2λ− 3 is a quadratic non-residue.
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Definition 3.1. Let p be a prime number and q = pn for n ∈ N. If {β1, . . . , βn−1}
be a basis for Fq over Fp , for every element a ∈ Fq we have:

a = a0 + a1β + · · ·+ an−1β
n−1 ai ∈ Fp

We define set S which consists of half the field elements as follows:

S = S0 ∪ S1 ∪ · · · ∪ Sn−1

Such that

S0 = {(a0, a1, . . . , an) : 0 < a0 ≤
p− 1

2
, ∀1 ≤ i ≤ n ai = 0}

S1 = {(a0, a1, . . . , an) : 0 < a1 ≤
p− 1

2
, ∀2 ≤ i ≤ n ai = 0}

...

Sn−1 = {(a0, a1, . . . , an) : 0 < an ≤
p− 1

2
}.

It is easy to see that S has cardinality pn−1
2 and for each x ∈ Fq exactly one of x

or −x is in Fq .

Corollary 3.1. If we consider H2,a,b over finite fields of characteristic 3, the al-
gorithm 2 defines an injective encoding from S into points H2,a,b.

Proof. Since Char(Fq) = 3 we have ∆ = λ. Therefore the ∆ value is always a
quadratic non residue. Since each of λ comes by two values ±t, every point (x, y)
in the outpot of this algorithm has exactly 2 preimages in Fq. Therefore for the
elements of S we have an injective encoding.

Remark 3.2. We know that the set of points on Hn,a,b is not a group. Therefore if for
cryptographic purposes we need to be in a group, we can map Hn,a,b to the jacobian J of
Hn,a,b which is an abelian group. If we use the jacobian of a hyperelliptic curve instead
of an elliptic curve over a finite field Fq we can reduce key size by having the same level
of security. In our case by using a hyperelliptic curve of genus 2 over a finite field q ≃ 380

we have the same level of security when we use an elliptic curve group where q ≃ 3160.
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COMPARISON OF THE INFLUENCE OF DIFFERENT

NORMALIZATION METHODS ON TWEET SENTIMENT

ANALYSIS IN THE SERBIAN LANGUAGE

Adela Ljajić, Ulfeta Marovac and Milena Stanković

Abstract. Given the growing need to quickly process texts and extract information
from the data for various purposes, correct normalization that will contribute to better
and faster processing is of great importance. The paper presents the comparison of
different methods of short text (tweet) normalization. The comparison is illustrated by
the example of text sentiment analysis. The results of an application of different nor-
malizations are presented, taking into account time complexity and sentiment algorithm
classification accuracy. It has been shown that using cutting to n-gram normalization,
better or similar results are obtained compared to language-dependent normalizations.
Including the time complexity, it is concluded that the application of this language-
independent normalization gives optimal results in the classification of short informal
texts.

1. Introduction

Normalization is an important step in text preparation for any type of machine
processing. Normalization can be language-independent and language-dependent.
Language-dependent normalization better preserves text properties and reduces the
word to morphologically correct form. The problems of language-dependent nor-
malization are unavailability and robustness of lexical resources and complexity of
the normalization algorithms. Language-independent normalization reduces words
to forms that do not necessarily have to be morphologically correct. On the other
hand, specific lexical resources are not required for the use of language-independent
normalizations. Cutting the word to the character n-grams of a certain length, as a
way of language independent normalization, can have its advantages in particular
text processing. This normalization is much faster than linguistic normalization
and is preferred if it achieves satisfactory processing precision. This paper presents
the effect of text normalization on the classification of short texts (tweets) based
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on the sentiment. Three types of normalization have been processed, two linguis-
tic (stemming and lemmatization) and one language-independent (cutting words
to character n-grams). The rest of the paper is organized as follows. The paper
begins with a description of related work on different normalization methods for
sentiment analysis in Section 2. Section 3. contains information about the dataset.
Section 4. describes different normalization methods. Section 5. shows the results of
the sentiment lexicon normalization. The experimental results and time complexity
are included in Section 6. Finally, we conclude and present suggestions for future
work in Section 7.

2. Related work

The sentiment analysis has been an ongoing topic of research recently. It seeks to
determine the attitude expressed in the text. The sentiment can be analyzed at the
level of the whole text, sentences or one aspect of the text [16]. The sentiment can
be expressed discreetly (positive, negative and neutral) or on a scale from positive
to negative. There are corpus-based and lexicon-based approaches to determine
the polarity of the corresponding text [19]. The corpus-based approach (supervised
approach) uses the methods of machine learning over a marked set of data. The
lexicon-based approach (unsupervised approach) determines the polarity based on
the sentiment lexicon. The sentiment lexicon contains words that can have discrete
values (-1, 0, 1 or positive, neutral, negative) or values on a scale (eg. from -10 to
+10). Sentiment lexicons with discrete values are Bing Liu’s Opinion Lexicon [4]
and MPQA Subjectivity Lexicon [21]. Sentiment lexicon containing the value of the
polarity that has a specific scale is SentiWordNet [18]. When it comes to methods
that determine the sentiment, most researchers use supervised learning methods
[3], although a considerable number of approaches provide analysis by methods of
unsupervised lexicon-based [19] and [15] or combined semi-supervised learning [2].
Although a machine-based approach gives better classification, a lexicon-based ap-
proach takes precedence in situations where a set of marked data is not available,
and when a classifier training time is crucial. In the sentiment analysis, there are
challenges such as the treatment of phenomena of negation, sarcasm, irony, and
others. The sentiment analysis is closely related to the language. A sentiment
analysis in the Serbian language was made for a set of newspaper articles [14], film
reviews [1] and a set of tweets [8]. Normalization of text is a part of every kind
of text processing and sentiment analysis. The effect of normalization on various
problems of text processing is different. The normalization results vary depending
on the type of text to which they are applied and the language in which the text
is written. There are a small number of papers concerning the normalization of
short texts in the Serbian language and its related languages (Bosnian, Croatian
and Montenegrin). Linguistic normalization of the texts in the Serbian language
was performed by D. Vitas et al. [20], who described tools and resources for the
processing of texts in the Serbian language. In addition to linguistic normalization,
normalization by stemming can be done using stemmers. The authors of the paper
[1] dealt with the impact of morphological, stemming and word embedding normal-
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ization on the sentiment classification of text in the Serbian language. They used
a movie review corpus and found that stemmer gives better results compared to
lemmatizer and that adding bag-of-words attributes increases the accuracy of clas-
sification methods. The application of the word embedding method (which requires
lemmatization) and the string kernel method (which does not require any normal-
ization) in the sentiment analysis of informal short texts in the Croatian language
is shown by L. Rotim et al. [17]. Their results show that word embedding out-
performs string kernels, which in turn outperform word and n-gram bag-of-words
baselines. Alternative methods of normalization are known, such as cutting off the
same length and n-gram analysis [11].

3. Dataset

The increasing use of social networks and the text availability make them popular
for research. In this paper, the experimental dataset consists of tweets in the Serbian
language. Tweets are short, informal texts that contain a lot of incorrectly written
words, use of slang, irony, and sarcasm. If we take all these into consideration, we
can conclude that normalization and classification of such informally written texts
is a very demanding task. Liu et al., [7] created special systems for normalizing such
texts. Tweets were collected using the Twitter Streaming API in the period from
30 November 2016 to 30 June 2017. The dataset was manually labeled by three
people, two men, and one woman. Background of annotators are the following: a
doctor of medicine, an electrical engineer and a student of the Serbian language and
literature. In case of disagreement on tweet marking between any two or all three
annotators, the tweet is thrown out of the set. The final dataset consists of 7663
tweets, 4193 of which are marked negative, 2625 neutral and 818 positives.

4. Normalization

Normalization is considered the process consisting of two phases. In the first phase,
a tokenization that is linguistically independent and specific to the type of data is
performed. The tokenizer deals with words that appear in tweets but do not carry
the meaning (such as retweet, via, etc.), spaces in the text, numbers, dates, and
punctuation characters in such a way that output tokens are only those that affect
the meaning of the text. The second phase of text normalization is partially or
completely linguistically dependent. In this paper, it involves removing the stop
words specific for the Serbian language and reducing different forms of the words
to their base. Reduction of the number of different types of words appearing in the
dataset is done in three ways: stemming (ST), normalization by using morphological
lexicon (MN) and cutting to the character of 4-grams, 5-grams, 6-grams and 7-grams
(4G, 5G, 6G, 7G).dgsd
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4.1. Stemming

Stemming belongs partly to linguistic, and partly to the heuristic approach of
reducing different word forms to their root. Stemming removes the word suffixes
by cutting them to the root of the word. There are publicly available stemming
algorithms in the Serbian language. The paper used a stemming algorithm for the
Serbian language described by N. Miloević [13]. This stemmer consists of a list of
irregular verbs: moći/can, hteti/want, jesam/I am, and biti/to be. For each form of
these verbs (a total of 68 infections), the word is reduced to its morphological root.
Stemmer also contains a list of 289 suffixes and substitutions that are added if the
suffix is taken from the word. Stemmer modifies the first words containing letters
with diacritic characters, so the letters with a diacritic sign are replaced with two
letters: ”š” is modified to ”sx”, ”č” to ”cx”, ”ć” to ”cy”, ”d̄” to ”dx” and ”ž” to
”zx”. Further, if the word belongs to the list of one of the 4 irregular verbs, then it
is shifted to the root; otherwise, the longest suffix contained in the word is found,
and the word is modified according to the rule for that suffix. If the word does
not contain any of the suffixes, then the stemmer returns the original word. This
stemmer is set to stem words longer than 4 characters and those with more than 3
characters after the suffix is taken away. Stemmers created by Kešelj and Šipka [5]
are also based on rules with suffixes. The algorithm for stemming of Ljubešić [10]
is rule-based and achieves F1 97.64

4.2. Normalization with the morphological lexicon

Lemmatization is the process of reducing different forms of a single word to
its linguistic root - lemma. Different forms of one and the same word occur when
this word appears in different grammatical cases, grammatical gender, grammatical
number, and grammatical tense or grammatical person. Lemmatization is used in
the morphological analysis of the text; the morphological lexicon is used for the
process of word reduction. The morphological lexicon contains all the forms of the
word and word lemma. The lemma is derived from the form of words and other
labels needed to uniquely map to its corresponding lemma. The additional tags
of the word include the aforementioned information about the grammatical case,
grammatical gender, grammatical number, grammatical tense or grammatical per-
son and other characteristics - depending on the type of the word that is reduced
to the lemma. For the application of lemmatization, a corpus with labeled word
POS tag is required. Due to the absence of such corpus, normalization is applied
in this paper by using the morphological lexicon that takes the first lemma for
the corresponding word form, without taking into account the characteristics of
the word. This normalization has defects in relation to real lemmatization. Since
lemmatization is performed by using a large number of rules (each word is consid-
ered separately), it is accordingly more complex and time-consuming in comparison
to stemming. The morphological lexicon of Krstev et al. is used for lemmatiza-
tion [6]. It consists of 3,630,613 entries for 85,721 lemmas covering 11 PoS: 646
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867 nouns, 2 315 640 adjectives, 654 159 verbs, 3233 adverbs, 4 794 numerals, 83
conjunctions, 218 interjections, 169 prepositions, 5 321 pronouns, 103 particles and
26 abbreviations.

4.3. Cutting to n-gram

An alternative way of normalization, which does not require any lexical resources
is normalization by cutting the word into the first n characters. For n, the values
of 4, 5, 6, and 7 are taken. This way of text normalization certainly results in
information loss, and it may happen that different words with different sentiments
are reduced to the same n-gram (ambicija/ambition, besplatno/free (positive words)
and ambis/ambis, bespomoćno/helpless (negative words) are reduced to the same
4-grams - ambi, besp). However, the advantages of reduction of a large number of
word forms with the same first n characters may bring greater benefits in comparison
to losses (e.g.ljubav/love, ljubavni/love, ljubavisati/love, ljubavi/love are reduced to
the same 4 grams ljuba/love). The gains and losses obtained by this normalization
were experimentally shown (in Section 5.). In the example of the Twitter sentiment
classification, this normalization was experimentally shown to positively affect the
accuracy of classification.

5. Normalized sentiment lexicons

The sentiment lexicons contain words that are marked positive or negative. They
serve in the sentiment analysis in the lexicon-based method. The sentiment lexicon
used in this paper as the starting lexicon consisted of 5632 words (reduced to the
morphological root), 4058 of which were negative and 1574 positive words [12]. The
three described normalizations were used, and three resulting lexicons were obtained
and used in a dataset, normalized by one of the three normalizations (stemming,
lemmatization or cutting to n-grams).

5.1. Normalization of sentiment lexicon

The application of normalization to sentiment lexicons affects the total number
of words in the lexicon as well as their quality. By using linguistic dependent
normalizers (stemmer and lemmatizer), the words with the same or similar meaning
are reduced to their common root. Using n-gram analysis, words from a lexicon are
cut into n-grams, without taking into account the meaning of the word. Due to
the characteristics of the corresponding normalizers, the resulting lexicons have
a significantly different number of words [11]. The small numbers of words with
different sentiments are transformed to the same root, due to which they become
contradictory. Normalizations based on language rules produce a lower number
of such words. Contradictory data will be excluded from the sentiment lexicons.
Table 5.1 shows the results after normalization of words in lexicons and removal of
contradictory words. The number of words in the lexicons is displayed as well as the
total number of different roots obtained after normalization. For better comparison,
the results are presented in cases when no normalization is applied (NN) and the
results of the application of different normalizations: stemming (ST), morphological
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Table 5.1: Number of words in normalized lexicons after the removal of contradic-
tory words and number of different roots to which they are reduced by normaliza-
tions

Type of normalization NN ST NM 4G 5G 6G 7G

Number of different words 5632 5596 5632 4139 5116 5481 5576
Number of different bases 5632 5218 5632 2271 3506 4283 4803

vocabulary normalization (NM), 4-grams (4G), 5-grams (5G), 6-grams (6G) and 7-
grams (7G).

The number of different words in nominalized lexicons decreases due to the
exclusion of contradictory words, which is best expressed in normalization by cutting
to 4-grams. Stemming is also part of the word ejected. The number of different
normalized roots to which the words from the basic lexicon are reduced is the
smallest in cutting to 4 grams, which increases with the length n. The number
of occurring sentiment words in the data set is calculated for lexicons. The total
number of sentiment words is: for stems 10777; for lemmas 12920; for 4-grams
22466; for 5-grams 15284; for 6-grams 10697; for 7-grams 7874. The distribution
of the number of occurrences of the sentiment in the corpus of polarity is shown in
Figure 5.1. The number of occurrences of terms from normalized lexicons in tweets
from the corpus is the largest for 4-grams and 5-grams and for the lemmas. This
distribution indicates that words cut to 4-grams are best mapped in tweets, which
is expected due to the number of different word forms, beginning with the same 4-
gram. What is visible from the chart and Table 5.1 is that the effect of normalization
is reduced with the increase of n length, so that by cutting to 7-grams, we obtain
those that are inclined towards results without normalization.

Fig. 5.1: The number of observation terms from lexicon in the corpus

In the next chapter, the quality of collected lexicon is verified by examining
whether these words from normalized lexicon appear in tweets with the correspond-
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ing polarity, and how such normalized lexicon affects the classification by sentiment.

6. Results and discussion

The results of normalization are presented in two directions. In the first direction,
the analysis of sentiment lexicons is done in the way that provides validation over
the marked set of tweets, so the appearance of specific words in tweets by class is
calculated. The second direction of results is based on the sentiment analysis of a
normalized dataset using normalized sentiment lexicons.

6.1. Validation of the sentiment lexicon over a tweet dataset
The validity of lexicon is based on a set of tweets that are normalized by corre-
sponding normalization. For each normalized root of sentiment word (stem, lemma
or n-gram), the calculation (the number of occurrences of that word in tweets with
the positive and negative sentiment) is done. If the sentiment word occurs within
the negation scope, its appearance is counted as having appeared in a tweet with
the opposite polarity. Normalization of the score is done by dividing the number of
occurrences with the number of tweets from that class (the data set is unbalanced).
The score is calculated by the formula (6.1) with n as a number of affirmative occur-
rences in positive tweets, and nn number of occurrences with negation in positive
tweets; m is a number of affirmative occurrences in negative tweets, and nm is the
number of occurrences with negation in negative tweets.

(6.1) score = (n− nn)/num positive tw − (m− nm)/num negativ tw.

By classifying the sentiment words based on whether they appear more in posi-
tive or in negative tweets, the effect of normalization on sentiment analysis is tested.
The sentiment is assigned to the word in the following way:
positive- if they appear more in positive than in negative tweets, (score>0).
negative- if they appear more in negative than in positive tweets, (score<0).
Sentiment word need not be classified (when score=0) for two reasons. The first
reason is that sentiment word does not appear in the corpus, and second is that
sentiment word appears equally in positive and negative tweets; this latter case is
rare. Table 6.1 shows the classification results of positive sentiment words, negative
sentiment words and all sentiment words from lexicons when different types of nor-
malization are applied. Formula (6.2) presents precision (Pre), as a the number of
correctly classified sentiment words(num corectly classified) divided by the total
number of sentiment words classified as belonging to the corresponding sentiment
class (total num classified). Formula (6.3) presents recall (Rcall) as the number
of correctly classified sentiment word(num corectly classified) divided by the to-
tal number of sentiment words that actually belong to the corresponding sentiment
class(total num). Measure F1 uses a combination of Precision and Recall presented
in formula (6.4), giving more relevant results with an unbalanced dataset.

(6.2) Pre = num corectly classified/total num classified
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Table 6.1: The obtained precision and recall for different types of used normaliza-
tions. The corresponding maximums are labeled red.

NN ST NM 4G 5G 6G 7G

ACC negative
words

Pre 82% 81% 80% 84% 82% 81% 80%

Rcall 16% 27% 25% 60% 45% 35% 28%
F1 26% 41% 38% 70% 58% 49% 41%

ACC positive
words

Pre 79% 67% 66% 52% 60% 64% 69%

Rcall 13% 24% 19% 47% 37% 28% 22%
F1 22% 35% 30% 49% 46% 39% 34%

ACC all words Pre 81% 77% 77% 75% 76% 76% 77%
Rcall 15% 26% 23% 57% 43% 33% 26%
F1 25% 39% 36% 65% 55% 46% 39%

(6.3) Rcall = num corectly classified/total num

(6.4) F1 = 2 ∗ Pre ∗Rcall/(Pre+Rcall)

From the obtained results, it can be concluded that n-grams (n < 7) are well
classified by sentiment (the classification has the best F1 score). The reason is that
a larger number of n-grams were found in the set of tweets compared to stemms
and lemmas. Being informal texts, tweets often contain misspelled words that are
rarer at length up to 6 letters. On the other hand, the Serbian language, being
morphologically rich is difficult to process, and a large number of words are found
in forms that are not adequately processed by stemmer and lemmatizer, hence
such sentimental words cannot be found in the sentiment lexicon. Testing the
improvement of classification of sentiment words by cutting them to n-grams versus
stemmer and lemmatizer is done using Mc Nemar’s test. We made a correlation
matrix for classification by using n-gram analysis and lemmatization and 4-gram
analysis and stemming. In both cases, the value of p <0.0001 was found, i.e. cutting
on n-grams had statistically significant influence on the improvement of sentiment
word classification.

6.2. Application of normalized lexicon to tweet sentiment analysis

The influence of the three normalization methods was tested on Twitter senti-
ment analysis. Normalized lexicons and normalized data set were used to determine
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the sentiment in two experiments. The first experiment classified tweets based only
on the words found in the sentiment lexicon. In another experiment, the method-
ology for learning Multinomial Logistic Regression (MLR) was used for classifica-
tion by sentiment. Figure 6.1 shows the system architecture from collecting data,
through normalization to sentiment analysis.

Fig. 6.1: System architecture from collecting tweets, through the normalization
process to the sentiment analysis

In the first experiment, the quality of the prediction for three normalization
methods was performed by a lexicon-based method. The advantage of this classifi-
cation method is that it does not require training and is independent of the dataset.
Although the results are worse than in the machine learning approach, this algo-
rithm gives us a better insight into the impact of different normalizations of the
sentiment analysis. The sentiment is calculated according to formula 6.5. The sum
of numbers of positive sentiment terms and negative sentiment terms within the
negation scope that appear in tweets is given in the sumPos attribute. The sum of
numbers of negative sentiment terms and positive sentiment terms in the negation
scope from that appear in tweets is given in the sumNeg attribute [9].

(6.5) Dit =











positive if sumPos>sumNeg

neutral if sumPos=sumNeg

negative if sumPos<sumNeg

The results obtained by this method are given in Table 6.2. The table contains
results when no normalization, stemming, morphologic dictionary or cutting to n-
grams (n = 4,5,6 and 7) are applied. The results of the 3-class (3K) classification of
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Table 6.2: Correctly Classified tweets using Lexicon-Based method depending on
normalization

Normalization NN ST NM 4G 5G 6G 7G

Lexicon-Based 3K 47.09% 50.51% 48.98% 49.25% 49.10% 50.13% 49.15%
Lexicon-Based 2K 33.45% 52.17% 50.73% 59.69% 53.54% 49.51% 43.76%

Table 6.3: Correctly Classified tweets using machine lerning method depending on
normalization

Normalization NN ST NM 4G 5G 6G 7G

MLR-3K 59.86% 64.17% 62.45% 59.23% 60.61% 62.49% 61.80%
MLR-2K 84.71% 85.27% 84.25% 83.96% 84.45% 84.47% 84.71%

tweets in positive, neutral and negative are presented, as well as the classification
for 2-class (2K) positive and negative. If we only look at the classification of positive
and negative tweets, we get 4-gram normalization giving the best accuracy. How-
ever, neutral tweets distort the classification quite a lot, so when classifying a group
of tweets with three classes, normalization using stemmer gives the best results. In
this case, cutting to n-gram finds a large number of n-grams with the sentiment
in tweets, even in neutral, which classifies them into positive or negative. Neutral
tweets often carry a part of the sentiment that is not clearly defined, and this can be
solved only by introducing the classification of tweets into several sentiment groups.
On the other hand, by cutting the word on n-grams, a set of sentiment words are
lost if, after normalization, they are infiltrated into a group of contradictory ones.
The omission of these sentiment words distorts the sentiment analysis classification.
The classification quality is shown using a percentage of accurately classified tweets
using formula (6.6).

(6.6) Correct classif = num corect classif tweets/total num of tweets

In the second experiment, supervised machine learning was performed using
MLR in 10-fold cross-validation (Table 6.3). The attributes used for this method
are the following: sumNeg, sumPoz, the number of words in negation scope, the
number of words in the tweet. Here we see a significant increase in the results
obtained for all three normalization methods, where stemming achieved the best
result. The normalization by cutting to the n-grams, in this case, is the best for 6-
grams and is more accurate than the normalization using the morphological lexicon.

6.3. Complexity of algorithms
Large amounts of data available for processing require techniques to quickly achieve
results. In order to measure the complexity of sentiment analysis algorithms, the
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time complexity of determining the sentiment for one tweet has been shown, by
using all three types of normalization. Differences in complexity of the sentiment
algorithm in different modes of normalization are reflected in the size of lexical
resources or the number of rules, used to normalize tweet and determine sentiment
by formula (6.7). The first part of normalization does not depend on the way
words are reduced and it will not be considered. Only the part that is specific for
each normalization is considered. Sentiment analysis algorithm does not directly
depend on normalization, but indirectly through the size of sentiment lexicon which
is obtained by normalization. How the complexity of sentiment analysis algorithm
depends on normalization is presented through the complexity of sentiment lexicon
used (6.8).

(6.7) iT = tweet normalization+ determ senti

(6.8) determ senti = num of words in tweet ∗ num of words in senti lex

1. The normalization with a stemmer, as a linguistic dependent normalization,
depends on the number of rules used in stemming and the size of the stemmed
sentiment lexicon. Based on previously presented values, it is obtained as described
in detail in Subsection 5.1. and Subsection 4.1. that:
tweet normalization = number of words in tweet * number od rules in stemmer=
m * (68 + 289)
determining sentiment = m * 5218
iT = m * 5575

2. The use of morphological lexicon is the most expensive process due to robust lex-
ical resources it uses. The size of morphological lexicon determines the complexity
of normalization. For the normalization of morphological lexicon based on formulas
(6.7) and (6.8), the following complexity is obtained:
tweet normalization = number of words in tweet *number od rules in lemmatizer=
m * 3,630,613
determining sentiment = m * 5632
iT = m * 3636245

3. Cutting to n-grams requires the fewest resources, as shown in Table 6.4. The
complexity of normalization is reduced to the number of words in the tweet. The sen-
timent lexicon normalized by cutting into n-grams is also smaller than the stemmed
and lemmatized lexicon. Depending on length n, the complexity by cutting to n-
grams is:
tweet normalization = number of words in tweet * number of ngram rules= m * 1

The obtained results indicate that normalization by cutting to n-grams is the
least required and the fastest normalization algorithm and gives better results than
lemmatization. If we compare it with stemming, the results are also satisfactory,
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Table 6.4: Complexity of sentiment analyses in case of cutting to n-gram normal-
ization

n determining sentiment iT

4 m*2271 m*2272
5 m*3506 m*3507
6 m*4283 m*4284
7 m*4803 m*4804

since the classification into two classes of sentiments is always satisfactory. The
problem occurs more due to the nature of sentiment analysis, i.e. unclearly defined
type of neutral tweets that mainly carry both sentiments words by nature.

7. Conclusion

Cutting to n-grams maps a great number of words in tweets, so the number of ac-
curately classified tweets is large. The problem arises with words that are thrown
out of the sentiment lexicon because they are reduced to words with the oppo-
site sentiment, therefore they do not participate in the sentiment analysis. Another
problem is that neutral tweets contain the sentiment word that makes them difficult
for classification. The results show that cutting off sentiment words into n-grams
gives good results in classifying sentiment words in tweets, especially due to the
informal form of tweet writing. Taking into account the accuracy of classification,
the minimum of lexical resources, and the simplicity of application, cutting to n-
grams is a method that has the advantage over linguistic dependent normalization
in the Twitter sentiment analysis. In linguistic dependent normalizers, the use of
stemmers takes precedence over the normalization with the morphological lexicon,
both due to low complexity of the algorithm and the best result in the tweet senti-
ment classification in the 3-class dataset. In order to improve results, the sentiment
analysis algorithm itself should be improved. Improving the result is possible using
domain sentiment lexicon with sentiments that are also validated on the appropri-
ate corpus. The introduction of several degrees in the sentiment analysis would
significantly solve the problem of neutral tweet classification by sentiment.
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NEW TYPE INEQUALITIES FOR B−1-CONVEX FUNCTIONS

INVOLVING HADAMARD FRACTIONAL INTEGRAL

Serap Kemali, Gultekin Tinaztepe and Gabil Adilov

Abstract. Abstract convexity is an important area of mathematics in recent years and
it has very significant applications areas like inequality theory. The Hermite-Hadamard
Inequality is one of these applications. In this article, we studied Hermite-Hadamard
Inequalities for B−1-convex functions via Hadamard fractional integral.
Keywords: Hermite-Hadamard Inequality; Hadamard fractional integral; convexity.

1. Introduction

Abstract convexity has an important area in convexity theory and it becomes dif-
ferent convexity types. These abstract convexity types have significant applications
variety fields like mathematical economy, operation research, inequality theory and
optimization theory. Additionally, B−1-convexity is one of these abstract convexity
types ([1, 4]). It has applications to mathematical economy and inequality theory
([4, 19]). There are many articles about B−1-convexity ([2, 3, 10, 16, 22]).

Hermite-Hadamard inequalities can be given as an application on inequality
theory for abstract convexity types ([6, 7, 8, 9, 13, 14, 17, 20]). We proved this
inequality for B

−1-convex functions ([19]). Hermite-Hadamard inequality is an
integral inequality and it has be given with classic integral operator up to now.
But, recently, the studies are made with fractional integral operators that are more
general([5, 11, 12, 15, 18, 21]). Therefore, we study Hermite-Hadamard inequalities
involving Hadamard fractional integral operator for B−1-convexity.

The outline of paper as follows: Second section is given on two parts that are re-
quired definitions and theorems of B−1-convexity and Hermite-Hadamard inequality
for B−1-convex functions, respectively. In third section, we give Hermite-Hadamard
type inequalities involving Hadamard fractional integral.
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2. Preliminaries

In this section, we give some required definition and theorems.

Lets recall the following definition of fractional integral type. Along the paper,
let f : [a, b] → R be a given function, where 0 ≤ a < b < +∞ and f ∈ L1 [a, b].
Also, Γ (α) is the Gamma function.

Definition 2.1. [11] The left-sided Hadamard fractional integral Jα
a+ of order α >

0 of f is defined by

(2.1) Jα
a+f (x) =

1

Γ (α)

∫ x

a

(

ln
x

t

)α−1 f (t)

t
dt, x > a

provided that the integral exists. The right-sided Hadamard fractional integral Jα
b−

of order α > 0 of f is defined by

(2.2) Jα
b−f (x) =

1

Γ (α)

∫ b

x

(

ln
t

x

)α−1
f (t)

t
dt, x < b

provided that the integral exists.

2.1. B−1-convexity

For r ∈ Z−, the map x → ϕr(x) = x2r+1 is a homeomorphism from R∗ = R \ {0}
to itself; x = (x1, x2, ..., xn) → Φr(x) = (ϕr(x1), ϕr(x2), ..., ϕr(xn)) is homeomor-
phism from Rn

∗ to itself.

For a finite nonempty set A =
{

x
(1),x(2), ...,x(m)

}

⊂ Rn
∗ the Φr-convex hull

(shortly r-convex hull) of A, which we denote Cor(A) is given by

Cor(A) =

{

Φ−1
r

(

m
∑

i=1

tiΦr(x
(i))

)

: ti ≥ 0,
m
∑

i=1

ti = 1

}

.

We denote by
m
∧
i=1

x
(i) the greatest lower bound with respect to the coordinate-

wise order relation of x(1),x(2), ...,x(m) ∈ Rn, that is:

m
∧
i=1

x
(i) =

(

min
{

x
(1)
1 , x

(2)
1 , ..., x

(m)
1

}

, ...,min
{

x(1)
n , x(2)

n , ..., x(m)
n

})

where, x
(i)
j denotes jth coordinate of the point x(i).

Thus, we can define B−1-polytopes as follows:

Definition 2.2. [1] The Kuratowski-Painleve upper limit of the sequence of sets
{Cor(A)}r∈Z− , denoted by Co−∞(A) where A is a finite subset of Rn

∗ , is called
B
−1-polytope of A.
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The definition of B−1-polytope can be expressed in the following form in R
n
++.

Theorem 2.1. [1] For all nonempty finite subsets A =
{

x
(1),x(2), ...,x(m)

}

⊂
Rn

++ we have

Co−∞(A) = lim
r→−∞

Cor(A) =

{

m
∧
i=1

tix
(i) : ti ≥ 1, min

1≤i≤m
ti = 1

}

.

Next, we give the definition of B−1-convex sets.

Definition 2.3. [1] A subset U of Rn
∗ is called a B−1-convex if for all finite subsets

A ⊂ U the B−1-polytope Co−∞(A) is contained in U .

By Theorem 2.1, we can reformulate the above definition for subsets of Rn
++:

Theorem 2.2. [1] A subset U ofRn
++ is B−1-convex if and only if for all x(1),x(2) ∈

U and all λ ∈ [1,∞) one has λx(1) ∧ x
(2) ∈ U .

Remark 2.1. As a result of Theorem 2.2, we can say that B
−1-convex sets in R++ are

positive intervals.

Definition 2.4. [10] For U ⊂ Rn
∗ , a function f : U → R∗ is called a B−1-convex

function if epi∗(f) = {(x, µ) |x ∈ U, µ ∈ R∗, µ ≥ f (x)} is a B−1-convex set.

In Rn
++, we can give the following fundamental theorem which provides a suffi-

cient and necessary condition for B−1-convex functions [10].

Theorem 2.3. Let U ⊂ Rn
++ and f : U → R++. The function f is B−1-convex if

and only if the set U is B−1-convex and one has the inequality

(2.3) f (λx ∧ y) ≤ λf (x) ∧ f (y)

for all x,y ∈ U and all λ ∈ [1,+∞).

2.2. Hermite-Hadamard Inequality for B−1-convex Functions

We proved the following theorem that gives the Hermite-Hadamard inequality in-
volving classic integral for B−1-convex functions in [19].

Theorem 2.4. Suppose f : [a, b] ⊂ R++ −→ R++ is a B−1-convex function. Then
the following inequality holds

(2.4)
1

b− a

∫ b

a

f (t) dt ≤







f(a)(a+b)
2a , b

a ≤ f(b)
f(a)

2bf(a)f(b)−a[(f(a))2+(f(b))2]
2(b−a)f(a) , 1 ≤ f(b)

f(a) <
b
a .
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3. Hermite-Hadamard Type Inequalities Involving Hadamard

Fractional Integral

Hadamard fractional integral is one of the important fractional integral types. So,
we introduce Hermite-Hadamard type inequalities including Hadamard fractional
integral in this section.

Theorem 3.1. Let α > 0. If f is a B−1-convex function on [a, b], then

(3.1) J
α
a+f (b) ≤







f(a)
Γ(α)

∫ b
a

1

(

ln b
λa

)α−1
dλ, b

a ≤ f(b)
f(a)

f(a)
Γ(α)

∫

f(b)

f(a)

1

(

ln b
λa

)α−1
dλ+

f(b)(ln bf(a)

af(b))
α

Γ(α+1) , 1 ≤ f(b)
f(a) <

b
a .

Proof. The inequality (2.3) is satisfy for f , because of its B−1-convexity of f . Lets’

multiply both sides of this inequality by (ln(min{λa,b}))′

[ln b−lnλa]1−α then integrate with respect

to λ over [1,+∞). For the left sided of inequality, we have that

∫ +∞

1

(ln (min {λa, b}))
′

[ln b− lnλa]
1−α f (min {λa, b}) dλ

=

∫ b
a

1

(ln (min {λa, b}))
′

[ln b− lnλa]1−α f (min {λa, b}) dλ+

∫ +∞

b
a

(ln (min {λa, b}))
′

[ln b− lnλa]1−α f (min {λa, b}) dλ

=

∫ b
a

1

1

λ
(

ln b
λa

)1−α f (λa) dλ

=

∫ b

a

[

ln
b

t

]α−1
f (t)

t
dt = Γ (α)Jα

a+f (b) .

For the right sided of the inequality, we have to examine two cases of f(b)
f(a) . One

of these cases is b
a ≤ f(b)

f(a) and in this situation the equation is

∫ +∞

1

(ln (min {λa, b}))
′

[ln b− lnλa]
1−α min {λf (a) , f (b)} dλ

=

∫ b
a

1

(ln (min {λa, b}))′

[ln b− lnλa]
1−α min {λf (a) , f (b)} dλ+

+

∫ +∞

b
a

(ln (min {λa, b}))
′

[ln b− lnλa]
1−α min {λf (a) , f (b)} dλ

= f (a)

∫ b
a

1

(

ln
b

λa

)α−1

dλ.

Thus, with these calculations the first part of requested inequality is
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(3.2) Jα
a+f (b) ≤

f (a)

Γ (α)

∫ b
a

1

(

ln
b

λa

)α−1

dλ .

The other case is 1 ≤ f(b)
f(a) <

b
a , thence we obtain the followings:

∫ +∞

1

(ln (min {λa, b}))
′

[ln b− lnλa]1−α min {λf (a) , f (b)} dλ

=

∫

f(b)

f(a)

1

1

λ
(

ln b
λa

)1−αλf (a) dλ+

∫ b
a

f(b)

f(a)

1

λ
(

ln b
λa

)1−αλf (a) dλ

= f (a)

∫
f(b)

f(a)

1

(

ln
b

λa

)α−1

dλ+
f (b)

(

ln bf(a)
af(b)

)α

α
.

Hence, we attain that

(3.3) Jα
a+f (b) ≤

f (a)

Γ (α)

∫

f(b)

f(a)

1

(

ln
b

λa

)α−1

dλ+
f (b)

(

ln bf(a)
af(b)

)α

Γ (α+ 1)
.

Finally, the inequality (3.1) can be get from (3.2) and (3.3).

Theorem 3.2. Let α > 0. If f is a B−1-convex function on [a, b], then
(3.4)

J
α
b−f (a) ≤







f(a)
Γ(α)

∫ b
a

1 (lnλ)
α−1

dλ, b
a ≤ f(b)

f(a)

f(a)
Γ(α)

∫

f(b)

f(a)

1 (lnλ)
α−1

dλ+ f(b)
Γ(α+1)

[

(

ln b
a

)α
−
(

ln f(b)
f(a)

)α]

, 1 ≤ f(b)
f(a) <

b
a .

Proof. Let the function f be B−1-convex. Thus, the inequality (2.3) holds. If we

multiply by (ln(min{λa,b}))′

[ln(min{λa,b})−ln a]1−α and integrate with respect to λ over [1,+∞) to

this inequality, then we have

∫ +∞

1

(ln (min {λa, b}))
′

[ln (min {λa, b})− ln a]1−α f (min {λa, b}) dλ

=

∫ b
a

1

(ln (min {λa, b}))
′

[ln (min {λa, b})− ln a]
1−α f (min {λa, b}) dλ+

+

∫ +∞

b
a

(ln (min {λa, b}))
′

[ln (min {λa, b})− ln a]
1−α f (min {λa, b}) dλ

=

∫ b

a

(

ln
t

a

)α−1
f (t)

t
dt = Γ (α)Jα

b−f (a) .
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There are two following situations that have to been examined for the right sided

of inequality. The first is b
a ≤ f(b)

f(a) . Hence,

∫ +∞

1

(ln (min {λa, b}))
′

[ln (min {λa, b})− ln a]
1−α min {λf (a) , f (b)} dλ

=

∫ b
a

1

(ln (min {λa, b}))
′

[ln (min {λa, b})− ln a]
1−α min {λf (a) , f (b)} dλ+

+

∫ +∞

b
a

(ln (min {λa, b}))
′

[ln (min {λa, b})− ln a]
1−α min {λf (a) , f (b)} dλ

= f (a)

∫ b
a

1

(lnλ)α−1 dλ.

Therefore, the inequality is obtained

(3.5) Jα
b−f (a) ≤

f (a)

Γ (α)

∫ b
a

1

(lnλ)
α−1

dλ .

The second case is 1 ≤ f(b)
f(a) <

b
a . At this stage, we get that

∫ +∞

1

(ln (min {λa, b}))
′

[ln b− lnλa]
1−α min {λf (a) , f (b)} dλ

=

∫
f(b)

f(a)

1

1

(lnλ)
1−α f (a) dλ+

∫ b
a

f(b)

f(a)

1

λ (lnλ)
1−α f (b) dλ

= f (a)

∫
f(b)

f(a)

1

(lnλ)α−1 dλ+
f (b)

α

[(

ln
b

a

)α

−

(

ln
f (b)

f (a)

)α]

.

So, the inequality is in that form:

(3.6) Jα
b−f (a) ≤

f (a)

Γ (α)

∫

f(b)

f(a)

1

(lnλ)
α−1

dλ+
f (b)

Γ (α+ 1)

[(

ln
b

a

)α

−

(

ln
f (b)

f (a)

)α]

.

Consequently, we have proven the inequality (3.4) by using the inequalities (3.5)
and (3.6).
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FUNCTIONS AND SOME PROPERTIES IN 2-NORMED SPACES
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Abstrat. In this study, we introdued the onepts of pointwise and uniform onver-

gene, statistial onvergene and statistial Cauhy double sequenes of funtions in

2-normed spae. Also, were studied some properties about these onepts and investi-

gated relationships between them for double sequenes of funtions in 2-normed spaes.

Keywords: Uniform onvergene, Statistial Convergene, Double sequenes of Fun-

tions, Statistial Cauhy sequene, 2-normed Spaes.

1. Introdution and Bakground

Throughout the paper, N and R denote the set of all positive integers and the set of

all real numbers, respetively. The onept of onvergene of a sequene of real num-

bers has been extended to statistial onvergene independently by Fast [16℄ and

Shoenberg [35℄. Gökhan et al. [21℄ introdued the onepts of pointwise statistial

onvergene and statistial Cauhy sequene of real-valued funtions. Balerzak et

al. [5℄ studied statistial onvergene and ideal onvergene for sequene of fun-

tions. Duman and Orhan [7℄ studied µ-statistially onvergent funtion sequenes.

Gökhan et al. [22℄ introdued the notion of pointwise and uniform statistial onver-

gene of double sequenes of real-valued funtions. Dündar and Altay [8,9℄ studied

the onepts of pointwise and uniformly I-onvergene and I∗
-onvergene of dou-

ble sequenes of funtions and investigated some properties about them. Also, a lot

of development have been made about double sequenes of funtions (see [4,14,20℄).

The onept of 2-normed spaes was initially introdued by Gähler [18, 19℄ in

the 1960's. Gürdal and Pehlivan [25℄ studied statistial onvergene, statistial

Cauhy sequene and investigated some properties of statistial onvergene in 2-
normed spaes. Sharma and Kumar [32℄ introdued statistial onvergene, statis-

tial Cauhy sequene, statistial limit points and statistial luster points in prob-

abilisti 2-normed spae. Statistial onvergene and statistial Cauhy sequene

Reeived September 18, 2018; aepted Otober 29, 2018
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of funtions in 2-normed spae were studied by Yegül and Dündar [37℄. Sarabadan

and Talebi [31℄ presented various kinds of statistial onvergene and I-onvergene
for sequenes of funtions with values in 2-normed spaes and also de�ned the no-

tion of I-equistatistially onvergene and study I-equistatistially onvergene of

sequenes of funtions. Futhermore, a lot of development have been made in this

area (see [1�3,6, 15, 23, 24, 26�29,33, 34℄).

2. De�nitions and Notations

Now, we reall the onepts of double sequenes, density, statistial onvergene,

2-normed spae and some fundamental de�nitions and notations (See [5, 10�13,17,

19�21,23�25,30�32,36℄).

Let X be a real vetor spae of dimension d, where 2 ≤ d < ∞. A 2-norm on X
is a funtion ‖·, ·‖ : X ×X → R whih satis�es the following statements:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent.

(ii) ‖x, y‖ = ‖y, x‖.

(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R.

(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.

The pair (X, ‖·, ·‖) is then alled a 2-normed spae. As an example of a 2-normed

spae we may take X = R2
being equipped with the 2-norm ‖x, y‖ := the area of

the parallelogram based on the vetors x and y whih may be given expliitly by

the formula

‖x, y‖ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R
2.

In this study, we suppose X to be a 2-normed spae having dimension d; where
2 ≤ d < ∞.

Let (X, ‖., .‖) be a �nite dimensional 2-normed spae and u = {u1, · · · , ud} be

a basis of X . We an de�ne the norm ‖.‖∞ on X by ‖x‖∞ = max{‖x, ui‖ : i =
1, ..., d}.

Assoiated to the derived norm ‖.‖∞, we an de�ne the (losed) balls Bu(x, ε)
entered at x having radius ε by Bu(x, ε) = {y : ‖x− y‖∞ ≤ ε}, where ‖x− y‖∞ =
max{‖x− y, uj‖, j = 1, ..., d}.

Throughout the paper, we let X and Y be two 2-normed spaes, {fn}n∈N and

{gn}n∈N be two sequenes of funtions and f, g be two funtions from X to Y .

The sequene of funtions {fn}n∈N is said to be onvergent to f if fn(x) →
f(x)(‖., .‖Y ) for eah x ∈ X . We write fn → f(‖., .‖Y ). This an be expressed by

the formula (∀y ∈ Y )(∀x ∈ X)(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)‖fn(x) − f(x), y‖ < ε.
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If K ⊆ N, then Kn denotes the set {k ∈ K : k ≤ n} and |Kn| denotes the

ardinality of Kn. The natural density of K is given by δ(K) = lim
n→∞

1
n |Kn|, if it

exists.

The sequene {fn}n∈N is said to be (pointwise) statistial onvergent to f, if
for every ε > 0, lim

n→∞

1
n

∣

∣{n ∈ N : ‖fn(x) − f(x), z‖ ≥ ε}
∣

∣ = 0, for eah x ∈ X

and eah nonzero z ∈ Y . It means that for eah x ∈ X and eah nonzero z ∈ Y ,

‖fn(x) − f(x), z‖ < ε, a.a. (almost all) n. In this ase, we write

st− lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖ or fn →st f(‖., .‖Y ).

The sequene of funtions {fn} is said to be statistially Cauhy sequene, if for

every ε > 0 and eah nonzero z ∈ Y, there exists a number k = k(ε, z) suh that

δ({n ∈ N : ‖fn(x) − fk(x), z‖ ≥ ε}) = 0, for eah x ∈ X , i.e., ‖fn(x) − fk(x), z‖ <
ε, a.a. n.

Let X be a 2-normed spae. A double sequene (xmn) in X is said to be

onvergent to L ∈ X , if for every z ∈ X , lim
m,n→∞

‖xmn − L, z‖ = 0. In this ase, we

write lim
n,m→∞

xmn = L and all L the limit of (xmn).

Let K ⊂ N× N. Let Kmn be the number of (j, k) ∈ K suh that j ≤ m, k ≤ n.
That is, Kmn = |{(j, k) : j ≤ m, k ≤ n}|, where |A| denotes the number of elements

in A. If the double sequene

{

Kmn

mn

}

has a limit then we say that K has double

natural density and is denoted by d2(K) = lim
m,n→∞

Kmn

mn .

A double sequene x = (xmn) of real numbers is said to be statistially onver-

gent to L ∈ R, if for any ε > 0 we have d2(A(ε)) = 0, where A(ε) = {(m,n) ∈
N× N : |xmn − L| ≥ ε}.

Let {xmn} be a double sequene in 2-normed spae (X, ‖., .‖). The double

sequene (xmn) is said to be statistially onvergent to L, if for every ε > 0, the set
{(m,n) ∈ N×N : ‖xmn − L, z‖ ≥ ε} has natural density zero for eah nonzero z in

X , in other words (xmn) statistially onverges to L in 2-normed spae (X, ‖., .‖)
if lim

m,n→∞

1
mn

∣

∣{(m,n) : ‖xmn − L, z‖ ≥ ε}
∣

∣ = 0, for eah nonzero z in X . It

means that for eah z ∈ X , ‖xmn − L, z‖ < ε , a.a. (m,n). In this ase, we write

st− lim
m,n→∞

‖xmn, z‖ = ‖L, z‖.

A double sequene (xmn) in 2-normed spae (X, ‖., .‖) is said to be statistially

Cauhy sequene in X , if for every ε > 0 and every nonzero z ∈ X there exist two

number M = M(ε, z) and N = N(ε, z) suh that d2
(

{(m,n) ∈ N × N : ‖xmn −

xMN , z‖ ≥ ε}
)

= 0, i.e., for eah nonzero z ∈ X, ‖xmn − xMN , z‖ < ε, a.a. (m,n).

A double sequene of funtions {fmn} is said to be pointwise onvergent to f
on a set S ⊂ R, if for eah point x ∈ S and for eah ε > 0, there exists a positive

integer N = N(x, ε) suh that |fmn(x) − f(x)| < ε, for all m,n > N . In this ase

we write lim
m,n→∞

fmn(x) = f(x) or fmn → f, on S.

A double sequene of funtions {fmn} is said to be uniformly onvergent to f
on a set S ⊂ R, if for eah ε > 0, there exists a positive integer N = N(ε) suh that
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for all m,n > N implies |fmn(x) − f(x)| < ε, for all x ∈ S. In this ase we write

fmn ⇒ f, on S.

A double sequene of funtions {fmn} is said to be pointwise statistially on-

vergent to f on a set S ⊂ R, if for every ε > 0,

lim
i,j→∞

1

ij
|{(m,n),m ≤ i and n ≤ j : |fmn(x) − f(x)| ≥ ε}| = 0,

for eah (�xed) x ∈ S, i.e., for eah (�xed) x ∈ S, |fmn(x)− f(x)| < ε, a.a. (m,n).
In this ase, we write st− lim

m,n→∞
fmn(x) = f(x) or fmn →st f, on S.

A double sequene of funtions {fmn} is said to be uniformly statistially on-

vergent to f on a set S ⊂ R, if for every ε > 0,

lim
i,j→∞

1

ij
|{(m,n),m ≤ i and n ≤ j : |fmn(x) − f(x)| ≥ ε}| = 0,

for all x ∈ S, i.e., for all x ∈ S, |fmn(x) − f(x)| < ε, a.a. (m,n). In this ase we

write fmn ⇒ f, on S.

Let {fmn} be a double sequene of funtions de�ned on a set S. A double

sequene {fmn} is said to be statistially Cauhy if for every ε > 0 , there exist

N(= N(ε)) and M(= M(ε)) suh that |fmn(x) − fMN (x)| < ε a.a. (m,n) and for

eah (�xed) x ∈ S, i.e.,

lim
i,j→∞

1

ij
|{(m,n),m ≤ i and n ≤ j : |fmn(x)− fMN (x)| ≥ ε}| = 0

for eah (�xed)x ∈ S

Lemma 2.1. [9℄ Let f and fmn, m,n = 1, 2, ..., be ontinuous funtions on D =
[a, b] ⊂ R. Then fmn ⇒ f on D if and only if lim

m,n→∞
cmn = 0, where cmn =

max
x∈D

|fmn(x) − f(x)|.

3. Main Results

In this paper, we study onepts of onvergene, statistial onvergene and statis-

tial Cauhy sequene of double sequenes of funtions and investigate some prop-

erties and relationships between them in 2-normed spaes.

Throughout the paper, we letX and Y be two 2-normed spaes, {fmn}(m,n)∈N×N

and {gmn}(m,n)∈N×N be two double sequenes of funtions, f and g be two funtions
from X to Y .

De�nition 3.1. A double sequene {fmn} is said to be pointwise onvergent to

f if, for eah point x ∈ X and for eah ε > 0, there exists a positive integer

k0 = k0(x, ε) suh that for all m,n ≥ k0 implies ‖fmn(x) − f(x), z‖ < ε, for every
z ∈ Y . In this ase, we write fmn → f(‖., .‖Y ).
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De�nition 3.2. A double sequene {fmn} is said to be uniformly onvergent to

f, if for eah ε > 0, there exists a positive integer k0 = k0(ε) suh that for all

m,n > k0 implies ‖fmn(x) − f(x), z‖ < ε, for all x ∈ X and for every z ∈ Y . In

this ase, we write fmn ⇒ f(‖., .‖Y ).

Theorem 3.1. Let D be a ompat subset of X and f and fmn, (m,n = 1, 2, ...),
be ontinuous funtions on D. Then,

fmn ⇒ f(‖., .‖Y )

on D if and only if

lim
m,n→∞

cmn = 0,

where cmn = max
x∈D

‖fmn(x)− f(x), z‖.

Proof. Suppose that fmn ⇒ f(‖., .‖Y ) on D. Sine f and fmn are ontinuous

funtions on D, so (fmn(x) − f(x)) is ontinuous on D, for eah (m,n) ∈ N × N.

Sine fmn ⇒ f(‖., .‖Y ) on D then, for eah ε > 0, there is a positive integer

k0 = k0(ε) ∈ N suh that m,n > k0 implies

‖fmn(x) − f(x), z‖ <
ε

2

for all x ∈ D and every z ∈ Y . Thus, when m,n > k0 we have

cmn = max
x∈D

‖fmn(x) − f(x), z‖ <
ε

2
< ε.

This implies

lim
m,n→∞

cmn = 0.

Now, suppose that

lim
m,n→∞

cmn = 0.

Then, for eah ε > 0, there is a positive integer k0 = k0(ε) ∈ N suh that

0 ≤ cmn = max
x∈D

‖fmn(x)− f(x), z‖ < ε,

for m,n > k0 and every z ∈ Y . This implies that ‖fmn(x) − f(x), z‖ < ε, for all
x ∈ D, every z ∈ Y and m,n > k0. Hene, we have

fmn ⇒ f(‖., .‖Y ),

for all x ∈ D and every z ∈ Y .

De�nition 3.3. A double sequene {fmn} is said to be (pointwise) statistial

onvergent to f, if for every ε > 0,

lim
i,j→∞

1

ij

∣

∣{(m,n),m ≤ i, n ≤ j : ‖fmn(x) − f(x), z‖ ≥ ε}
∣

∣ = 0,
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for eah (�xed) x ∈ X and eah nonzero z ∈ Y. It means that for eah (�xed) x ∈ X
and eah nonzero z ∈ Y,

‖fmn(x) − f(x), z‖ < ε, a.a. (m,n).

In this ase, we write

st− lim
m,n→∞

‖fmn(x) − z‖ = ‖f(x), z‖ or fmn −→st f(‖., .‖Y ).

Remark 3.1. {fmn} is any double sequene of funtions and f is any funtion from X

to Y , then set

{(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε, for each x ∈ X and each z ∈ Y } = Ø,

sine if z =
−→
0 (0 vektor), ‖fmn(x)− f(x), z‖ = 0 6≥ ε so the above set is empty.

Theorem 3.2. If for eah x ∈ X and eah nonzero z ∈ Y,

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and st− lim
m,n→∞

‖fmn(x), z‖ = ‖g(x), z‖

then, for eah x ∈ X and eah nonzero z ∈ Y

‖fmn(x), z‖ = ‖gmn(x), z‖

(i.e., f = g).

Proof. Assume f 6= g. Then, f − g 6=
−→
0 , so there exists a z ∈ Y suh that f, g and

z are linearly independent (suh a z exists sine d ≥ 2). Therefore, for eah x ∈ X
and eah nonzero z ∈ Y,

‖f(x)− g(x), z‖ = 2ε, with ε > 0.

Now, for eah x ∈ X and eah nonzero z ∈ Y, we get

2ε = ‖f(x)− g(x), z‖ = ‖(f(x)− fmn(x)) + (fmn(x)− g(x)), z‖

≤ ‖fmn(x)− g(x), z‖+ ‖fmn(x) − f(x), z‖

and so

{(m,n) ∈ N×N : ‖fmn(x)−g(x), z‖ < ε} ⊆ {(m,n) ∈ N×N : ‖fmn(x)−f(x), z‖ ≥ ε}.

But, for eah x ∈ X and eah nonzero z ∈ Y,

d2 ({(m,n) ∈ N× N : ‖fmn(x)− g(x), z‖ < ε}) = 0,

then ontraditing the fat that fmn −→st g(‖., .‖Y ).

Theorem 3.3. If {gmn} is a onvergent sequene of double sequenes of funtions

suh that fmn = gmn, a.a. (m,n) then, {fmn} is statistially onvergent.
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Proof. Suppose that for eah x ∈ X and eah nonzero z ∈ Y,

d2({(m,n) ∈ N×N : fmn(x) 6= gmn(x)}) = 0 and lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖,

then for every ε > 0,

{(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε}

⊆ {(m,n) ∈ N× N : ‖gmn(x)− f(x), z‖ ≥ ε}

∪{(m,n) ∈ N× N : fmn(x) 6= gmn(x)}.

Therefore,

d2({(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε})(3.1)

≤ d2({(m,n) ∈ N× N : ‖gmn(x)− f(x), z‖ ≥ ε)

+d2({(m,n) ∈ N× N : fmn(x) 6= gmn}).

Sine lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖, for eah x ∈ X and eah nonzero z ∈ Y, the

set {(m,n) ∈ N × N : ‖gmn(x) − f(x), z‖ ≥ ε} ontains �nite number of integers

and so

d2({(m,n) ∈ N× N : ‖gmn(x)− f(x), z‖ ≥ ε}) = 0.

Using inequality (3.1) we get for every ε > 0

d2({(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥ ε}) = 0,

for eah x ∈ X and eah nonzero z ∈ Y and so onsequently

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖.

Theorem 3.4. If st − lim ‖fmn(x), z‖ = ‖f(x), z‖ for eah x ∈ X and eah

nonzero z ∈ Y , then {fmn} has a subsequene of funtion {fmini
} suh that

lim
i→∞

‖fmini
(x), z‖ = ‖f(x), z‖

for eah x ∈ X and eah nonzero z ∈ Y .

Proof. Proof of this Theorem is as an immediate onsequene of Theorem 3.3.

Theorem 3.5. Let α ∈ R. If for eah x ∈ X and eah nonzero z ∈ Y ,

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and st− lim
m,n→∞

‖gmn(x), z‖ = ‖g(x), z‖,

then

(i) st− lim
m,n→∞

‖fmn(x) + gmn(x), z‖ = ‖f(x) + g(x), z‖ and

(ii) st− lim
m,n→∞

‖αfmn(x), z‖ = ‖αf(x), z‖.
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Proof. (i) Suppose that

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and st− lim
m,n→∞

‖gmn(x), z‖ = ‖g(x), z‖

for eah x ∈ X and eah nonzero z ∈ Y . Then, δ(K1) = 0 and δ(K2) = 0 where

K1 = K1(ε, z) :
{

(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥
ε

2

}

and

K2 = K2(ε, z) :
{

(m,n) ∈ N× N : ‖gmn(x) − g(x), z‖ ≥
ε

2

}

for every ε > 0, eah x ∈ X and eah nonzero z ∈ Y . Let

K = K(ε, z) = {(m,n) ∈ N× N : ‖(fmn(x) + gmn(x))− (f(x) + g(x)), z‖ ≥ ε}.

To prove that δ(K) = 0, it su�es to show that K ⊂ K1 ∪K2. Let (m0, n0) ∈ K
then, for eah x ∈ X and eah nonzero z ∈ Y,

‖(fm0n0
(x) + gm0n0

(x)) − (f(x) + g(x)), z‖ ≥ ε.(3.2)

Suppose to the ontrary, that (m0, n0) 6∈ K1 ∪ K2. Then, (m0, n0) 6∈ K1 and

(m0, n0) 6∈ K2. If (m0, n0) 6∈ K1 and (m0, n0) 6∈ K2 then, for eah x ∈ X and eah

nonzero z ∈ Y,

‖fm0n0
(x)− f(x), z‖ <

ε

2
and ‖gm0n0

(x) − g(x), z‖ <
ε

2
.

Then, we get

‖(fm0n0
(x) + gm0n0

(x))− (f(x) + g(x)), z‖

≤ ‖fm0n0
(x)− f(x), z‖+ ‖gm0n0

(x)− g(x), z‖

<
ε

2
+

ε

2
= ε,

for eah x ∈ X and eah nonzero z ∈ Y, whih ontradits (3.2). Hene, (m0, n0) ∈
K1 ∪K2 and so K ⊂ K1 ∪K2.

(ii) Let α ∈ R (α 6= 0) and for eah x ∈ X and eah nonzero z ∈ Y,

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖.

Then, we get

d2

({

(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥
ε

|α|

})

= 0.

Therefore, for eah x ∈ X and eah nonzero z ∈ Y, we have

{(m,n) ∈ N× N : ‖αfmn(x)− αf(x), z‖ ≥ ε}

= {(m,n) ∈ N× N : |α|‖fmn(x) − f(x), z‖ ≥ ε}

=

{

(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥
ε

|α|

}

.
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Hene, density of the right hand side of above equality equals 0. Therefore, for eah
x ∈ X and eah nonzero z ∈ Y, we have

st− lim
m,n→∞

‖αfmn(x), z‖ = ‖αf(x), z‖.

Theorem 3.6. A double sequene of funtions {fmn} is pointwise statistially on-

vergent to a funtion f if and only if there exists a subset Kx = {(m,n)} ⊆ N×N,

m,n = 1, 2, ... for eah (�xed) x ∈ X d2(Kx) = 1 and lim
m,n→∞

‖fmn(x), z‖ =

‖f(x), z‖ for eah (�xed) x ∈ X and eah nonzero z ∈ Y .

Proof. Let st2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖. For r = 1, 2, ... put

Kr,x = {(m,n) ∈ N× N : ‖fmn(x), z‖ ≥
1

r
}

and

Mr,x = {(m,n) ∈ N× N : ‖fmn(x), z‖ <
1

r
}

for eah (�xed) x ∈ X and eah nonzero z ∈ Y . Then, d2(Kr,x) = 0 and

M1,x ⊃ M2,x ⊃ ... ⊃ Mi,x ⊃ Mi+1,x ⊃ ...(3.3)

and

d2(Mr,x) = 1, r = 1, 2, ...(3.4)

for eah (�xed) x ∈ X and eah nonzero z ∈ Y .

Now, we have to show that for (m,n) ∈ Mr,x, {fmn} is onvergent to f . Suppose
that {fmn} is not onvergent to f . Therefore, there is ε > 0 suh that

‖fmn(x), z‖ = ‖f(x), z‖ ≥ ε

for in�nitely many terms and some x ∈ X and eah nonzero z ∈ Y . Let

Mε,x = {(m,n) : ‖fmn(x) − f(x), z‖ < ε}

and ε > 1
r (r = 1, 2, ...). Then, d2(Mε,x) = 0 and by (3.3) Mr,x ⊂ (Mε,x). Hene,

d2(Mr,x) = 0 whih ontradits (3.4). Therefore, {fmn} is onvergent to f .

Conversely, suppose that there exists a subset Kx = {(m,n)} ⊆ N× N for eah

(�xed) x ∈ X and eah nonzero z ∈ Y suh that d2(Kx) = 1 and lim
m,n→∞

‖fmn(x), z‖ =

‖f(x), z‖, i.e., there exist an N(x, ε) suh that for eah (�xed) x ∈ X , eah nonzero

z ∈ Y and eah ε > 0, m,n ≥ N implies ‖fmn(x), z‖ = ‖f(x), z‖ < ε. Now,

Kε,x = {(m,n) : ‖fmn(x), z‖ ≥ ε} ⊆ N× N− {(mN+1, nN+1), (mN+2, nN+2), ...}

for eah (�xed) x ∈ X and eah nonzero z ∈ Y . Therefore, d2(Kε,x) ≤ 1− 1 = 0 for

eah (�xed) x ∈ X and eah nonzero z ∈ Y . Hene, {fmn} is pointwise statistially
onvergent to f .
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De�nition 3.4. A double sequene of funtions {fmn} is said to uniformly statis-

tially onvergent to f , if for every ε > 0 and for eah nonzero z ∈ Y ,

lim
i,j→∞

1

ij
|{(m,n),m ≤ i, n ≤ j : ‖fmn(x) − f(x), z‖ ≥ ε}| = 0,

for all x ∈ X. That is, for all x ∈ X and for eah nonzero z ∈ Y

‖fmn(x)− f(x), z‖ < ε, a.a (m,n).(3.5)

In this ase, we write fmn ⇒st f(‖., .‖Y ).

Theorem 3.7. Let D be a ompat subset of X and f and {fmn}, m,n = 1, 2, ...
be ontinuous funtions on D. Then,

fmn ⇒st f(‖., .‖Y )

on D if and only if

st2 − lim
m,n→∞

‖cmn(x), z‖ = 0,

where cmn = max
x∈S

‖fmn(x)− f(x), z‖.

Proof. Suppose that {fmn} uniformly statistially onvergent to f on D. Sine f
and {fmn} are ontinuous funtions on D, so (fmn(x) − f(x)) is ontinuous on D,
for eah m,n ∈ N. By statistially onvergene for ε > 0

d2({(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥ ε}) = 0,

for eah x ∈ D and for eah nonzero z ∈ Y . Hene, for ε > 0 it is lear that

cmn = max
x∈D

‖fmn(x) − f(x), z‖ ≥ ‖fmn(x) − f(x), z‖ ≥
ε

2

for eah x ∈ D and for eah nonzero z ∈ Y. Thus we have

st− lim
m,n→∞

cmn = 0.

Now, suppose that st− lim
m,n→∞

cmn = 0. We let following set

A(ε) = {(m,n) ∈ N× N : max
x∈D

‖fmn(x) − f(x), z‖ ≥ ε},

for ε > 0 and for eah nonzero z ∈ Y . Then, by hypothesis we have d2(A(ε)) = 0.
Sine for ε > 0

max
x∈D

‖fmn(x) − f(x), z‖ ≥ ‖fmn(x) − f(x), z‖ ≥ ε

we have

{(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥ ε} ⊂ A(ε)

and so

d2({(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥ ε}) = 0,

for eah x ∈ D and for eah nonzero z ∈ Y. This proves the theorem.
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Now, we an give the relations between well-known onvergene models and our

studied models as the following result.

Corollary 3.1. (i) fmn ⇒ f(‖., .‖Y ) ⇒ fmn −→ f(‖., .‖Y ) ⇒ fmn −→st f(‖., .‖Y ).

(ii)fmn ⇒ f(‖., .‖Y ) ⇒ fmn ⇒st f(‖., .‖Y ) ⇒ fmn −→st f(‖., .‖Y ).

Now, we give the onept of statistial Cauhy sequene and investigate rela-

tionships between statistial Cauhy sequene and statistial onvergene of double

sequenes of funtions in 2-normed spae.

De�nition 3.5. The double sequenes of funtions {fmn} is said to be statistially
Cauhy sequene, if for every ε > 0 and eah nonzero z ∈ Y, there exist two numbers

k = k(ε, z) , t = t(ε, z) suh that

d2({(m,n) ∈ N× N : ‖fmn(x) − fkt(x), z‖ ≥ ε}) = 0, for eah (�xed) x ∈ X,

i.e., for eah nonzero z ∈ Y,

‖fnm(x) − fkt(x), z‖ < ε, a.a. (m,n).

Theorem 3.8. Let {fmn} be a statistially Cauhy sequene of double sequene of

funtions in a �nite dimensional 2-normed spae (X, ‖., .‖). Then, there exists a

onvergent sequene of double sequenes of funtions {gmn} in (X, ‖., .‖) suh that

fmn = gmn, for a.a. (m,n).

Proof. First note that {fmn} is a statistially Cauhy sequene of funtions in

(X, ‖.‖∞). Choose a natural number k(1) and j(1) suh that the losed ball B1
u =

Bu(fk(1)j(1)(x), 1) ontains fmn(x) for a.a. (m,n) and for eah x ∈ X . Then, hoose

a natural number k(2) and j(2) suh that the losed ball B2 = Bu(fk(2)j(2)(x),
1
2 )

ontains fmn(x) for a.a. (m,n) and for eah x ∈ X . Note that B2
u = B1

u ∩B2 also

ontains fmn(x) for a.a. (m,n) and for eah x ∈ X . Thus, by ontinuing of this

proess, we an obtain a sequene {Br
u}r≥1 of nested losed balls suh that diam

(Br
u) ≤

1
2r . Therefore,

∞
⋂

r=1

Br
u = {h(x)},

where h is a funtion from X to Y. Sine eah Br
u ontains fmn(x) for a.a. (m,n)

and for eah x ∈ X , we an hoose a sequene of stritly inreasing natural numbers

{Sr}r≥1 suh that for eah x ∈ X ,

1

mn
|{(m,n) ∈ N× N : fmn(x) 6∈ Br

u}| <
1

r
, if m, n > Sr.

Put Tr = {(m,n) ∈ N × N : m,n > Sr, fmn(x) 6∈ Br
u} for eah x ∈ X , for all

r ≥ 1 and R =
⋃∞

r=1 Rr. Now, for eah x ∈ X , de�ne the sequene of funtions

{gmn} as following

gmn(x) =

{

h(x) , if (m,n) ∈ R×R
fmn(x) , otherwise.
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Note that, lim
m,n→∞

gmn(x) = h(x), for eah x ∈ X . In fat, for eah ε > 0 and

for eah x ∈ X , hoose a natural number m suh that ε > 1
r > 0. Then, for eah

m,n > Sr and for eah x ∈ X , gmn(x) = h(x) or gmn(x) = fmn(x) ∈ Br
u and so in

eah ase

‖gmn(x) − h(x)‖∞ ≤ diam(Br
u) ≤

1

2r−1
.

Sine, for eah x ∈ X ,

{(m,n) ∈ N× N : gmn(x) 6= fn(x)} ⊆ {(m,n) ∈ N× N : fmn(x) 6∈ Br
u},

we have

1

mn
|{(m,n) ∈ N× N : gmn(x) 6= fmn(x)}|

≤
1

mn
|{(n,m) ∈ N× N : fmn(x) 6∈ Br

u}|

<
1

r
,

and so

d2({(m,n) ∈ N× N : gmn(x) 6= fmn(x)}) = 0.

Thus, gmn(x) = fmn(x) for a.a. m,n and for eah x ∈ X in (X, ‖.‖∞). Suppose

that {u1, ..., ud} is a basis for (X, ‖., .‖). Sine, for eah x ∈ X ,

lim
m,n→∞

‖gmn(x) − h(x)‖∞ = 0 and ‖gmn(x)− h(x), ui‖ ≤ ‖gmn(x) − h(x)‖∞

for all 1 ≤ i ≤ d, then we have

lim
m,n→∞

‖gmn(x)− h(x), z‖∞ = 0,

for eah x ∈ X and eah nonzero z ∈ X. It ompletes the proof.

Theorem 3.9. The sequene {fmn} is statistially onvergent if and only if {fmn}
is a statistially Cauhy sequene of double sequene of funtions.

Proof. Assume that f be funtion from X to Y and st − lim
m,n→∞

‖fmn(x), z‖ =

‖f(x), z‖ for eah x ∈ X and eah nonzero z ∈ Y and ε > 0. Then, for eah x ∈ X
and eah nonzero z ∈ Y , we have

‖fmn(x)− f(x), z‖ <
ε

2
, a.a. (m,n).

If k = k(ε, z) and t = t(ε, z) are hosen so that for eah x ∈ X and eah nonzero

z ∈ Y ,

‖fkt(x)− f(x), z‖ <
ε

2
,
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and so we have

‖fmn(x)− fkt(x), z‖ ≤ ‖fmn(x) − f(x), z‖+ ‖f(x)− fkt(x), z‖

<
ε

2
+

ε

2
= ε, a.a. (m,n).

Hene, {fmn} is statistially Cauhy sequene of double sequene of funtions.

Now, assume that {fmn} is statistially Cauhy sequene of double sequene of

funtion. By Theorem 3.8, there exists a onvergent sequene {gmn} from X to Y
suh that fmn = gmn for a.a. (m,n). By Theorem 3.3, we have

st− lim ‖fmn(x), z‖ = ‖f(x), z‖,

for eah x ∈ X and eah nonzero z ∈ Y .

Theorem 3.10. Let {fmn} be a double sequene of funtions. The following state-

ments are equivalent

(i) {fmn} is (pointwise) statistially onvergent to f(x),

(ii) {fmn} is statistially Cauhy,

(iii) There exisits a subsequene {gmn} of {fmn} suh that lim
m,n→∞

‖gmn(x), z‖ =

‖f(x), z‖.

Proof. Proof of this Theorem is as an immediate onsequene of Theorem 3.6 and

Theorem 3.9.

De�nition 3.6. Let D be a ompat subset of X and {fmn} be a double sequene
of funtions on D. {fmn} is said to be statistially uniform Cauhy if for every ε > 0
and eah nonzero z ∈ Y , there exists k = k(ε, z), t = t(ε, z) suh that

d2({(m,n) ∈ N× N : ‖fmn(x) − fkt(x), z‖ ≥ ε}) = 0

for all x ∈ X .

Theorem 3.11. Let D be a ompat subset of X and {fmn}, be a sequene of

bounded funtions on D. Then, {fmn} is uniformly statistially onvergent if and

only if it is uniformly statistially Cauhy on D.

Proof. Proof of this theorem is similar the Theorem 3.9. So, we omit it.
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SEQUENCE SPACES OVER n-NORMED SPACES DEFINED BY
MUSIELAK-ORLICZ FUNCTION OF ORDER (α, β)
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Abstract. In the present paper, we introduce sequence spaces over n-normed spaces
defined by a Musielak-Orlicz function M = (Mk) of order (α, β). We examine some
topological properties and prove some inclusion relations between the resulting sequence
spaces.

Keywords: Musielak-Orlicz function; lacunary sequence; n-normed spaces; statistical
convergence; paranorm space

1. Introduction and preliminaries

Mursaleen and Noman [29] introduced the notion of λ-convergent and λ-bounded
sequences as follows : Let λ = (λk)

∞
k=1 be a strictly increasing sequence of positive

real numbers tending to infinity i.e.

0 < λ0 < λ1 < · · · and λk → ∞ as k → ∞

and said that a sequence x = (xk) ∈ w is λ-convergent to the number L, called the
λ-limit of x if Λm(x) −→ L as m → ∞, where

Λm(x) =
1

λm

m
∑

k=1

(λk − λk−1)xk.

The sequence x = (xk) ∈ w is λ-bounded if supm |Λm(x)| < ∞. It is well known
[29] that if limm xm = a in the ordinary sense of convergence, then

lim
m

(

1

λm

( m
∑

k=1

(λk − λk−1)|xk − a|

)

= 0.
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This implies that

lim
m

|Λm(x) − a| = lim
m

|
1

λm

m
∑

k=1

(λk − λk−1)(xk − a)| = 0

which yields that limm Λm(x) = a and hence x = (xk) ∈ w is λ-convergent to a.

The concept of 2-normed spaces was initially developed by Gähler [14] in the
mid of 1960’s, while that of n-normed spaces one can see in Misiak [22]. Let n ∈ N

and X be a linear space over the field K, where K is the field of real or complex
numbers of dimension d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on Xn

satisfying the following four conditions:

1. ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent in X ;

2. ||x1, x2, · · · , xn|| is invariant under permutation;

3. ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ K, and

4. ||x+ x′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x′, x2, · · · , xn||

is called a n-norm on X , and the pair (X, ||·, · · · , ·||) is called a n-normed space over
the field K.

For example, if we take X = Rn being equipped with the n-norm
||x1, x2, · · · , xn||E = the volume of the n-dimensional parallelopiped spanned by
the vectors x1, x2, · · · , xn which may be given explicitly by the formula

||x1, x2, · · · , xn||E = | det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n. Let (X, ||·, · · · , ·||)
be an n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, · · · , an} be linearly
independent set in X . Then, the following function ||·, · · · , ·||∞ on Xn−1 given by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, · · · , an}.

An Orlicz function M is a function, which is continuous, non-decreasing and
convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞.

Let w be the space of all real or complex sequences x = (xk). Lindenstrauss and
Tzafriri [20] used the idea of Orlicz function to define the following sequence space

ℓM =
{

x ∈ w :

∞
∑

k=1

M
( |xk|

ρ

)

< ∞
}

,

which is called as an Orlicz sequence space. The space ℓM is a Banach space with
the norm

||x|| = inf
{

ρ > 0 :

∞
∑

k=1

M
( |xk|

ρ

)

≤ 1
}

.
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It is shown in [20] that every Orlicz sequence space ℓM contains a subspace iso-
morphic to ℓp(p ≥ 1). The ∆2-condition is equivalent to M(Lx) ≤ kLM(x) for all
values of x ≥ 0, and for L > 1. A sequence M = (Mk) of Orlicz functions is called
a Musielak-Orlicz function (see [33]). A sequence N = (Nk) is defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its sub-
space hM are defined as follows

tM =
{

x ∈ w : IM(cx) < ∞ for some c > 0
}

,

hM =
{

x ∈ w : IM(cx) < ∞ for all c > 0
}

,

where IM is a convex modular defined by

IM(x) =

∞
∑

k=1

(Mk)(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{

k > 0 : IM

(x

k

)

≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{ 1

k

(

1 + IM(kx)
)

: k > 0
}

.

Let X be a linear metric space. A function p : X → R is called paranorm, if

1. p(x) ≥ 0 for all x ∈ X ,

2. p(−x) = p(x) for all x ∈ X ,

3. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X ,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence
of vectors with p(xn − x) → 0 as n → ∞, then p(λnxn − λx) → 0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm.

For some other recent works related to sequence spaces, we refer the interested
reader to [4, 9, 16, 17, 18, 19, 21, 23, 24, 27, 30, 31, 32, 34, 35, 44] and reference
therein.

The notion of statistical convergence was introduced by Fast [10]. Over the years
and under different names, statistical convergence has been discussed in the theory
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of Fourier analysis, ergodic theory and number theory. Later on, it was further
investigated from the sequence space point of view and linked with summability
theory (see [1, 2, 3, 5, 8, 12, 15, 26, 28, 36, 37]). In recent years, generalizations
of statistical convergence have appeared in the study of strong integral summabil-
ity and the structure of ideals of bounded continuous functions on locally compact
spaces. Statistical convergence and its generalizations are also connected with sub-
sets of the stone-Cech compactification of natural numbers. Moreover, statistical
convergence is closely related to the concept of convergence in probability. In the
recent past, Çolak [6] introduced the concept of statistical convergence order α (also
see [7, 38]).

By a lacunary sequence we mean an increasing sequence θ = (kr) of non-negative
integers such that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. Throughout this
paper the intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio
kr

kr−1

will be abbreviated by qr, and q1 = k1 for convenience.

Nθ =
{

x ∈ w : lim
r→∞

1

hr

∑

k∈Ir

|xk − l| = 0, for some l
}

.

The notion of lacunary statistically convergent sequences of order (α, β) was
first defined by Şengül [40] and then studied in [41, 42, 43, 25]. Let θ = (kr) be a
lacunary sequence and 0 < α ≤ β ≤ 1 be given. We say that the sequence x = (xk)
is Sβ

α(θ)-statistically convergent(or lacunary statistically convergent sequences of
order (α, β)) if there is a real number L such that

lim
r→∞

1

hα
r

|{k ∈ Ir : |xk − L| ≥ ǫ}|β = 0,

where Ir = (kr−1, kr] and hα
r denotes the αth power (hr)

α of hr, that is hα =
(hα

r ) = (hα
1 , h

α
2 , · · · , h

α
r , · · · ) and |{k ≤ n : k ⊂ E}|β denotes the βth power of

number of elements of E not exceeding n. In the present case this convergence is
indicated by Sβ

α(θ)− limxk = L. Sβ
α(θ) will denote the set of all Sβ

α(θ)-statistically
convergent sequences. If θ = (2r), then we will write Sβ

α (see [39]). If α = β = 1
and θ = (2r), then we obtain the notion of statistical convergence. The choice of
β = 1 and θ = (2r) gives the notion of statistical convergence of order α due to
Çolak [6]. Further, if we take α = β = 1, then we obtain the notion of lacunary
statistical convergence given by Fridy and Orhan [13].

Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence
of positive real numbers. In the present paper, we define the following sequence
spaces:

wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0 =

{

x = (xk) ∈ w :

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

= 0, ρ > 0, s ≥ 0
}

,
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wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖) =

{

x = (xk) ∈ w :

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)−L

ρ
, z1, . . . , zn−1‖

)]pk
]β

=0, for some L, ρ > 0, s≥0
}

and
wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞ =
{

x = (xk) ∈ w :

sup
r

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

< ∞, ρ > 0, s ≥ 0
}

.

If we take M(x) = x, we get

wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)0 =

{

x = (xk) ∈ w :

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)pk
]β

= 0, ρ > 0, s ≥ 0
}

,

wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖) =

{

x = (xk) ∈ w :

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[(

‖
Λk(x)− L

ρ
, z1, · · · , zn−1‖

)pk
]β

= 0, for some L, ρ > 0, s ≥ 0
}

and
wβ

α(Λ, θ, p, s, ‖·, · · · , ·‖)∞ =
{

x = (xk) ∈ w :

sup
r

1

hα
r

∑

k∈Ir

k−s
[(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)pk
]β

< ∞, ρ > 0, s ≥ 0
}

.

If we take p = (pk) = 1 for all k ∈ N, we have

wβ
α(M,Λ, θ, s, ‖·, · · · , ·‖)0 =

{

x = (xk) ∈ w :

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]β

= 0, ρ > 0, s ≥ 0
}

,

wβ
α(M,Λ, θ, s, ‖·, · · · , ·‖) =

{

x = (xk) ∈ w :

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[

Mk

(

‖
Λk(x)−L

ρ
, z1, · · · , zn−1‖

)]β

= 0, for some L, ρ>0, s≥0
}

and
wβ

α(M,Λ, θ, s, ‖·, · · · , ·‖)∞ =
{

x = (xk) ∈ w :

sup
r

1

hα
r

∑

k∈Ir

k−s
[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]β

< ∞, ρ > 0, s ≥ 0
}

.
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The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk = H ,
K = max(1, 2H−1) then

(1.1) |ak + bk|
pk ≤ K{|ak|

pk + |bk|
pk}

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.

2. Main results

In this section, we study some topological properties of sequence spaces over n-
normed spaces defined by a Musielak-Orlicz function of order (α, β) and prove some
inclusion relations between the resulting spaces.

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a
bounded sequence of positive real numbers the spaces wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0,
wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖) and wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞ are linear spaces over

the field of complex number C.

Proof. Let x = (xk), y = (yk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0 and α, β ∈ C. In order

to prove the result we need to find some ρ3 such that

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(αx+ βy)

ρ3
, z1, z2, · · · , zn−1‖

)]pk
]β

= 0.

Since x = (xk), y = (yk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0, there exist positive numbers

ρ1, ρ2 > 0 such that

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ1
, z1, z2, · · · , zn−1‖

]pk
]β

= 0

and

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(y)

ρ2
, z1, z2, · · · , zn−1‖

]pk
]β

= 0.

Define ρ3 = max(2|α|ρ1, 2|β|ρ2). Since (Mk) is non-decreasing, convex function
and so by using inequality (1.1), we have
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1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(αx+ βy)

ρ3
, z1, z2, · · · , zn−1‖

]pk
]β

≤
1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
αΛk(x)

ρ3
, z1, · · · , zn−1‖+ ‖

βΛk(y)

ρ3
, z1, · · · , zn−1‖

)]pk
]β

≤K
1

hα
r

∑

k∈Ir

1

2pk
k−s

[[

Mk

(

‖
Λk(x)

ρ1
, z1, · · · , zn−1‖

)]pk
]β

+ K
1

hα
r

∑

k∈Ir

1

2pk
k−s

[[

Mk

(

‖
Λk(y)

ρ2
, z1, z2, · · · , zn−1‖

)]pk
]β

≤ K
1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ1
, z1, z2, · · · , zn−1‖

)]pk
]β

+ K
1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(y)

ρ2
, z1, z2, · · · , zn−1‖

)]pk
]β

→ 0 as r → ∞.

Thus we have αx + βy ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0. Hence

wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0 is a linear space. Similarly, we can prove that

wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖) and wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞ are linear spaces.

Theorem 2.2. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a
bounded sequence of positive real numbers. Then wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0 is
a topological linear spaces paranormed by

g(x) = inf
{

ρ
pr
H :

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤ 1
}

,

where H = max(1, sup
k

pk) < ∞.

Proof. Clearly g(x) ≥ 0 for x = (xk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0. Since Mk(0) =

0 we get g(0) = 0. Again if g(x) = 0 then

inf
{

ρ
pr
H :

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤ 1
}

= 0.

This implies that for a given ǫ > 0 there exists some ρǫ(0 < ρǫ < ǫ) such that

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρǫ
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤ 1.

Thus
( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ǫ
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤
( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρǫ
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

.
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Suppose (xk) 6= 0 for each k ∈ N. This implies that Λk(x) 6= 0 for each k ∈ N. Let
ǫ → 0 then

‖
Λk(x)

ǫ
, z1, z2, · · · , zn−1‖ → ∞.

It follows that
( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ǫ
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

→ ∞,

which is a contradiction. Therefore Λk(x) = 0 for each k and thus (xk) = 0 for each
k ∈ N. Let ρ1 > 0 and ρ2 > 0 be such that

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ1
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤ 1

and
( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(y)

ρ2
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤ 1.

Let ρ = ρ1 + ρ2, then by using Minkowski’s inequality, we have

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x+ y)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

=
( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x) + Λk(y)

ρ1 + ρ2
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤
( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

( ρ1
ρ1 + ρ2

)[

‖
Λk(x)

ρ1
, z1, z2, · · · , zn−1‖

]

+
( ρ2
ρ1 + ρ2

)[

‖
Λk(y)

ρ2
, z1, z2, · · · , zn−1‖

]]pk
]β) 1

H

≤
( ρ1
ρ1 + ρ2

)( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ1
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

+
( ρ2
ρ1 + ρ2

)( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(y)

ρ2
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤ 1.

Since ρ, ρ1 and ρ2 are non-negative, so we have

g(x+ y) = inf
{

ρ
pr
H :

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x+ y)

ρ
, z1, · · · , zn−1‖

)]pk
]β) 1

H

≤1
}

≤ inf
{

(ρ1)
pr
H :

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ1
, z1, · · · , zn−1‖

)]pk
]β) 1

H

≤1
}

+ inf
{

(ρ2)
pr
H :

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(y)

ρ2
, z1, · · · , zn−1‖

)]pk
]β) 1

H

≤1
}

.
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Therefore g(x+ y) ≤ g(x) + g(y). Finally we prove that the scalar multiplication is
continuous. Let µ be any complex number. By definition

g(µx) = inf
{

ρ
pr
H :

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(µx)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤ 1
}

.

Thus

g(µx) = inf
{

(|µ|t)
pr
H :

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

t
, z1, z2, · · · , zn−1‖

)]pk
]β) 1

H

≤ 1
}

,

where t = ρ
|µ| . Since |µ|pr ≤ max(1, |µ|sup pr ), we have

g(µx)≤max(1, |µ|sup pr ) inf
{

t
pr
H :

( 1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

t
, z1,· · ·, zn−1‖

)]pk
]β) 1

H

≤1
}

.

So the fact that scalar multiplication is continuous follows from the above inequality.
This completes the proof of the theorem.

Theorem 2.3. Let M = (Mk) be a Musielak-Orlicz function. If
sup
k
[Mk(x)]

pk < ∞ for all fixed x > 0, then wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0 ⊆

wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞.

Proof. Let x = (xk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0, then there exists a positive

number ρ1 such that

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ1
, z1, z2, · · · , zn−1‖

)]pk
]β

= 0.

Define ρ = 2ρ1. Since (Mk) is non-decreasing, convex and so by using inequality
(1.1), we have

sup
r

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

= sup
r

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x) + L− L

ρ
, z1, z2, · · · , zn−1‖

]pk
]β

≤ K sup
r

1

hα
r

∑

k∈Ir

k−s 1

2pk

[[

Mk

(

‖
Λk(x)− L

ρ1
, z1, z2, · · · , zn−1‖

]pk
]β

+ K sup
r

1

hα
r

∑

k∈Ir

k−s 1

2pk

[[

Mk

(

‖
L

ρ1
, z1, z2, · · · , zn−1‖

)]pk
]β

≤ K sup
r

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)− L

ρ1
, z1, z2, · · · , zn−1‖

)]pk
]β

+ K sup
r

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
L

ρ1
, z1, z2, · · · , zn−1‖

)]pk
]β

< ∞.
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Hence x = (xk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞.

Theorem 2.4. Let 0 < inf pk = h ≤ pk ≤ sup pk = H < ∞ and
M = (Mk),M

′ = (M ′
k) be Musielak-Orlicz functions satisfying ∆2-condition, then

we have

(i) wβ
α(M

′,Λ, θ, p, s, ‖·, · · · , ·‖)0 ⊂ wβ
α(M◦M′,Λ, θ, p, s, ‖·, · · · , ·‖)0;

(ii) wβ
α(M

′,Λ, θ, p, s, ‖·, · · · , ·‖) ⊂ wβ
α(M◦M′,Λ, θ, p, s, ‖·, · · · , ·‖);

(iii) wβ
α(M

′,Λ, θ, p, s, ‖·, · · · , ·‖)∞ ⊂ wβ
α(M◦M′,Λ, θ, p, s, ‖·, · · · , ·‖)∞.

Proof. Let x = (xk) ∈ wβ
α(M

′,Λ, θ, p, s, ‖·, · · · , ·‖)0 then we have

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

M ′
k

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

= 0.

Let ǫ > 0 and choose δ with 0 < δ < 1 such that Mk(t) < ǫ for 0 ≤ t ≤ δ. Let

(yk) = M ′
k

[

‖Λk(x)
ρ , z1, z2, · · · , zn−1‖

]

for all k ∈ N. We can write

1

hα
r

∑

k∈Ir

k−s
[(

Mk[yk]
)pk

]β

=
1

hα
r

∑

k∈Ir

yk≤δ

k−s
[(

Mk[yk]
)pk

]β

+
1

hα
r

∑

k∈Ir

yk≥δ

k−s
[(

Mk[yk]
)pk

]β

.

So we have

1

hα
r

∑

k∈Ir

yk≤δ

k−s
[

(

Mk[yk]
)pk

]β

≤ [Mk(1)]
H 1

hα
r

∑

k∈Ir

yk≤δ

k−s
[

(

Mk[yk]
)pk

]β

(2.1) ≤ [Mk(2)]
H 1

hα
r

∑

k∈Ir

yk≤δ

k−s
[

(

Mk[yk]
)pk

]β

for yk > δ, yk < yk

δ < 1+ yk

δ . Since (Mk)
′s are non-decreasing and convex, it follows

that

Mk(yk) < Mk(1 +
yk
δ
) <

1

2
Mk(2) +

1

2
Mk(

2yk
δ

).

Since M = (Mk) satisfies ∆2-condition, we can write

Mk(yk) <
1

2
T
yk
δ
Mk(2) +

1

2
T
yk
δ
Mk(2) = T

yk
δ
Mk(2).

Hence,

(2.2)
1

hα
r

∑

k∈Ir

yk≥δ

k−s
(

Mk[yk]
pk
)β

≤ max
(

1, (T
Mk(2)

δ
)H

) 1

hα
r

∑

k∈Ir

yk≤δ

k−s
(

[yk]
pk
)β
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From equation (2.1) and (2.2), we have x = (xk) ∈ wβ
α(M◦M′,Λ, θ, p, s, ‖·, · · · , ·‖)0.

This completes the proof of (i). Similarly we can prove that

wβ
α(M

′,Λ, θ, p, s, ‖·, · · · , ·‖) ⊂ wβ
α(M◦M′,Λ, θ, p, s, ‖·, · · · , ·‖).

and

wβ
α(M

′,Λ, θ, p, s, ‖·, · · · , ·‖)∞ ⊂ wβ
α(M◦M′,Λ, θ, p, s, ‖·, · · · , ·‖)∞.

Theorem 2.5. Let 0 < h = inf pk = pk < sup pk = H < ∞. Then for a Musielak-
Orlicz function M = (Mk) which satisfies ∆2-condition, we have
(i) wβ

α(Λ, θ, p, s, ‖·, · · · , ·‖)0 ⊂ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0;

(ii) wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖) ⊂ wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖);
(iii) wβ

α(Λ, θ, p, s, ‖·, · · · , ·‖)∞ ⊂ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞.

Proof. The proof is on similar lines. We omit the details.

Theorem 2.6. Let M = (Mk) be a Musielak-Orlicz function and 0 < h = inf pk.
Then wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞ ⊂ wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)0 if and only if

(2.3) lim
r→∞

1

hα
r

∑

k∈Ir

k−s
((

Mk(t)
)pk

)β
= ∞

for some t > 0.

Proof. Let wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞ ⊂ wβ

α(Λ, θ, p, s, ‖·, · · · , ·‖)0. Suppose that
(2.3) does not hold. Therefore there are subinterval Ir(j) of the set of interval Ir
and a number t0 > 0, where

t0 = ‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖ for all k,

such that

(2.4)
1

hα
r(j)

=
∑

k∈Ir(j)

k−s
((

Mk(t0)
)pk

)β
≤ K < ∞,m = 1, 2, 3, · · ·

Let us define x = (xk) as follows :

Λk(x) =

{

ρt0, k ∈ Ir(j)
0, k /∈ Ir(j)

.

Thus, by (2.4), x ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞. But x /∈ wβ

α(Λ, θ, p, s, ‖·, · · · , ·‖)0.
Hence (2.3) must hold.
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Conversely, suppose that (2.3) holds and let x ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞. Then

for each r,

(2.5)
1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

≤ K < ∞.

Suppose that x /∈ wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)0. Then for some number ǫ > 0, there is a

number k0 such that for a subinterval Ir(j), of the set of interval Ir ,

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖ > ǫ for k ≥ k0.

From properties of sequence of Orlicz functions, we obtain

[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

≥ Mk(ǫ)
pk ,

which contradicts (2.3), by using (2.5). Hence we get

wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞ ⊂ wβ

α(Λ, θ, p, s, ‖·, · · · , ·‖)0.

This completes the proof.

Theorem 2.7. Let M = (Mk) be a Musielak-Orlicz function. Then the following
statements are equivalent :
(i) wβ

α(Λ, θ, p, s, ‖·, · · · , ·‖)∞ ⊂ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞;

(ii) wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)0 ⊂ wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞;

(iii) sup
r

1

hα
r

∑

k∈Ir

k−s
((

Mk(t)
)pk

)β
< ∞ for all t > 0.

Proof. (i) ⇒ (ii). Let (i) holds. To verify (ii), it is enough to prove

wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)0 ⊂ wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞.

Let x = (xk) ∈ wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)0. Then for ǫ > 0 there exists r ≥ 0, such

that
1

hα
r

∑

k∈Ir

k−s
[[

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

]pk
]β

< ǫ.

Hence there exists K > 0 such that

sup
r

1

hα
r

∑

k∈Ir

k−s
[[

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

]pk
]β

< K.

So we get x = (xk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞.

(ii) ⇒ (iii). Let (ii) holds. Suppose (iii) does not hold. Then for some t > 0

sup
r

1

hα
r

∑

k∈Ir

k−s
[(

Mk(t)
)pk

]β
= ∞
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and therefore we can find a subinterval Ir(j), of the set of interval Ir such that

(2.6)
1

hα
r(j)

∑

k∈Ir(j)

k−s
[(

Mk

(1

j

)

)pk
]β

> j, j = 1, 2, 3, · · ·

Let us define x = (xk) as follows :

Λk(x) =

{ ρ
j , k ∈ Ir(j)
0, k /∈ Ir(j)

.

Then x = (xk) ∈ wβ
α(Λ, p, s, ‖·, · · · , ·‖)0. But by (2.6), x /∈

wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞, which contradicts (ii). Hence (iii) must holds.

(iii) ⇒ (i). Let (iii) holds and suppose x = (xk) ∈ wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)∞.

Suppose that x = (xk) /∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)∞, then

(2.7) sup
r

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

= ∞.

Let t = ‖Λk(x)
ρ , z1, z2, · · · , zn−1‖ for each k, then by (2.7)

sup
r

1

hα
r

∑

k∈Ir

k−s
[(

Mk(t)
)pk

]β
= ∞

which contradicts (iii). Hence (i) must holds.

Theorem 2.8. Let M = (Mk) be a Musielak-Orlicz function. Then the following
statements are equivalent :
(i) wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0 ⊂ wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)0;

(ii) wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0 ⊂ wβ

α(Λ, θ, p, s, ‖·, · · · , ·‖)∞;

(iii) inf
r

1

hα
r

∑

k∈Ir

k−s
[(

Mk(t)
)pk

]β
> 0 for all t > 0.

Proof. (i) ⇒ (ii). It is obvious.
(ii) ⇒ (iii). Let the inclusion in (ii) hold. Suppose that (iii) does not hold. Then

inf
r

1

hα
r

∑

k∈Ir

k−s
[(

Mk(t)
)pk

]β
= 0 for some t > 0,

and we can find a subinterval Ir(j), of the set of interval Ir such that

(2.8)
1

hα
r(j)

∑

k∈Ir(j)

k−s
[(

Mk(j)
)pk

]β
<

1

j
, j = 1, 2, 3, · · ·

Let us define x = (xk) as follows :

Λk(x) =

{

ρj, k ∈ Ir(j)
0, k /∈ Ir(j)

.
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Thus by (2.8), x = (xk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0 but x = (xk) /∈

wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)∞, which contradicts (ii). Hence (iii) must hold.

(iii) ⇒ (i). Let (iii) holds. Suppose that x = (xk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖)0.

Then

(2.9)
1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

→ 0 as r → ∞.

Again suppose that x = (xk) /∈ wβ
α(Λ, θ, p, s, ‖·, · · · , ·‖)0 for some number ǫ > 0 and

a subinterval Ir(j), of the set of interval Ir, we have

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖ ≥ ǫ for all k.

Then from properties of the Orlicz function, we can write

[[

Mk

(

‖
Λk(x)

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

≥
[(

Mk(ǫ)
)pk

]β
.

Consequently, by (2.9), we have

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[(

Mk(ǫ)
)pk

]β
= 0,

which contradicts (iii). Hence (i) must hold.

Theorem 2.9. (i) If 0 < inf pk ≤ pk ≤ 1 for all k ∈ N, then

wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖) ⊆ wβ

α(M,Λ, θ, s, ‖·, · · · , ·‖).

(ii) If 1 ≤ pk ≤ sup pk = H < ∞, for all k ∈ N, then

wβ
α(M,Λ, θ, s, ‖·, · · · , ·‖) ⊆ wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖).

Proof. (i) Let x = (xk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖), then

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)− L

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

= 0.

Since 0 < inf pk ≤ pk ≤ 1. This implies that

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[

Mk

(

‖
Λk(x) − L

ρ
, z1, z2, · · · , zn−1‖

)]β

≤ lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)− L

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

,
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therefore,

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[

Mk

(

‖
Λk(x) − L

ρ
, z1, z2, · · · , zn−1‖

)]β

= 0.

Hence
wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖) ⊆ wβ
α(M,Λ, θ, s, ‖·, · · · , ·‖).

(ii) Let pk ≥ 1 for each k and sup pk < ∞. Let x = (xk) ∈ wβ
α(M,Λ, θ, s, ‖·, · · · , ·‖),

then for each ρ > 0, we have

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x)− L

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

= 0 < 1.

Since 1 ≤ pk ≤ sup pk < ∞, we have

lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[[

Mk

(

‖
Λk(x) − L

ρ
, z1, z2, · · · , zn−1‖

)]pk
]β

≤ lim
r→∞

1

hα
r

∑

k∈Ir

k−s
[

Mk

(

‖
Λk(x) − L

ρ
, z1, z2, · · · , zn−1‖

)]β

= 0

< 1.

Therefore x = (xk) ∈ wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖), for each ρ > 0. Hence

wβ
α(M,Λ, θ, s, ‖·, · · · , ·‖) ⊆ wβ

α(M,Λ, θ, p, s, ‖·, · · · , ·‖).

This completes the proof of the theorem.

Theorem 2.10. If 0 < inf pk ≤ pk ≤ sup pk = H < ∞, for all k ∈ N, then

wβ
α(M,Λ, θ, p, s, ‖·, · · · , ·‖) = wβ

α(M,Λ, θ, s, ‖·, · · · , ·‖).

Proof. The proof is on similar lines, we omit the details.
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SOME EQUIVALENT QUASINORMS ON Lφ,E

Pnar Zengin Alp and Emrah Evren Kara

Abstract. In this paper we define a new operator ideal Lφ,E by using block sequence
spaces and symmetric norming function. Also we define different quasi-norms on this
class and deal with equivalence of these quasi-norms.

Keywords: Operator ideal; sequence spaces; norming function; quasi-norm.

1. Introduction

The operator ideal theory has a special importance in functional analysis. One
of the most important methods of constructing operator ideals is using s− num-
bers. Pietsch defined the approximation numbers of a bounded linear operator in
Banach spaces, in 1963 [14]. Later on, the other examples of s−numbers, namely
Kolmogorov numbers, Weyl numbers, etc. are introduced to the Banach space
setting.

In this paper, we denote the set of all natural numbers and nonnegative real
numbers by N and R+, respectively.

A finite rank operator is defined as a bounded linear operator whose dimension
of the range space is finite [10].

Let ω be the set of all real valued sequences. A sequence space is any vector
subspace of ω.

Maddox defined the linear space l (p) as follows in [8]:

l (p) =

{

x ∈ ω :

∞
∑

n=1

|xn|
pn < ∞

}

,

where (pn) is a bounded sequence of strictly positive real numbers.

Received September 28, 2018; accepted November 01, 2018
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The set of all sequences whose generalized weighted mean transforms are in the
space l (p) is the sequence space l (u, v; p) which is is introduced by Altay and Başar
in [1] as follows:

l (u, v; p) =

{

x ∈ ω :

∞
∑

n=1

∣

∣

∣

∣

∣

un

n
∑

k=1

vkxk

∣

∣

∣

∣

∣

pn

< ∞

}

,

where un, vk 6= 0 for all n, k ∈ N .

If pn = p for all n ∈ N, l (u, v; p) = Z (u, v; lp) which is defined by Malkowsky
and Savaş [12] as follows:

Z (u, v; lp) =

{

x ∈ ω :
∞
∑

n=1

∣

∣

∣

∣

∣

un

n
∑

k=1

vkxk

∣

∣

∣

∣

∣

p

< ∞

}

,

where 1 < p < ∞.

The Cesaro sequence space cesp is defined as

cesp =

{

x = (xk) ∈ ω :

∞
∑

n=1

(

1

n

n
∑

k=1

|xk|

)p

< ∞

}

,

where 1 < p < ∞ ([18], [21], [22]). Afterwards, Mursaleen and Khan defined the
Cesaro vector-valued sequence space by

Ces (X, p, q) =

{

x = (xk) :
∞
∑

k=1

(

1

Qk

k
∑

n=1

|xn|

)pk

< ∞

}

,

where p = (pk) and q = (qk) are bounded sequences of positive real numbers and

Qn =
n
∑

k=0

qk, (n ∈ N) [13]. Here if qk = 1 for each k then Ces (X, p, q) is reduced to

cesp.

Let E and F be real or complex Banach spaces. L (E,F ) and L denotes the
space of all bounded linear operators from E to F and the space of all bounded
linear operators between any two arbitrary Banach spaces, respectively.

A map s = (sn) : L → R
+ assigning to every operator T ∈ L a non-negative

scalar sequence (sn (T ))n∈N
is called an s−number sequence if the following condi-

tions are satisfied for all Banach spaces E,F,E0 and F0:

(S1) ‖T ‖ = s1 (T ) ≥ s2 (T ) ≥ . . . ≥ 0 for every T ∈ L (E,F ) ,

(S2) sm+n−1 (S + T ) ≤ sm (S) + sn (T ) for every S, T ∈ L (E,F ) and m,n ∈ N,

(S3) sn (RST ) ≤ ‖R‖ sn (S) ‖T ‖ for some R ∈ L (F, F0) , S ∈ L (E,F ) and
T ∈ L (E0, E) , where E0, F0 are arbitrary Banach spaces,

(S4) If rank (T ) ≤ n, then sn (T ) = 0,

(S5) sn (I : ln2 → ln2 ) = 1, where I denotes the identity operator on the n−dimensional
Hilbert space ln2 , where sn (T ) denotes the n− th s−number of the operator T [2].
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One of the example of s-number sequence is the approximation number, which is
defined by Pietsch. The n−th approximation number, denoted by an (T ), is defined
as

an (T ) = inf {‖T −A‖ : A ∈ L (E,F ) , rank (A) < n} ,

where T ∈ L (E,F ) and n ∈ N [14].

Pietsch [14] defined an operator T ∈ L (E,F ) to be lp type operator if
∞
∑

n=1
(an (T ))

p
< ∞ for 0 < p < ∞. Then, in [3] Constantin defined the class of

ces − p type operators by using the Cesaro sequence spaces, where an operator

T ∈ L (E,F ) is called ces − p type if
∞
∑

n=1

(

1
n

n
∑

k=1

ak (T )

)p

< ∞, 1 < p < ∞.

Afterwards Tita in [24] proved that the class of lp type operators and the class of
ces− p type operators are coincides.

As a generalization of lp type operators, A − p type operators were examined
in [5]. Also in [9], [10], [11] Maji and Srivastava studied the class A(s) − p of
s−type cesp operators using s−number sequence and Cesaro sequence spaces and

they introduced a new class A
(s)
p,q of s−type ces (p, q) operators by using weighted

Cesaro sequence space for 1 < p < ∞. Recently, the class of s−type Z (u, v; lp)
operators have been defined and studied on some properties of this class in [4].

The idea of quasi-normed operator ideals is developed by the fact that, some
important operator ideals which do not possess a natural norm should also be
covered. There exists a lot of different quasi-norms on every operator ideal. In
addition to this, the nice quasi-norms are determined by the completeness of the
corresponding topology [15].

Now give the definitions of operator ideal and quasi-norm:

Let E′ be the dual of E, which is composed of continuous linear functionals on
E. Let x′ ∈ E′ and y ∈ F , then the map x′ ⊗ y : E → F is defined by

(x′ ⊗ y) (x) = x′ (x) y, x ∈ E.

A subcollection F of L is called an operator ideal if each component
F (E,F ) = F ∩ L (E,F ) satisfies the following conditions:

(OI − 1) if x′ ∈ E′, y ∈ F , then x′ ⊗ y ∈ F (E,F ) ,

(OI − 2) if S, T ∈ F (E,F ) , then S + T ∈ F (E,F ) ,

(OI − 3) if S ∈ F (E,F ) , T ∈ L (E0, E) and R ∈ L (F, F0) , then
RST ∈ F (E0, F0)[15].

A function α : F → R+ is said to be a quasi-norm on the operator ideal F if the
following conditions hold:

(QN − 1) If x′ ∈ E′, y ∈ F , then α (x′ ⊗ y) = ‖x′‖ ‖y‖ ;

(QN − 2) there exists a constant C ≥ 1 such that α (S + T ) ≤ C [α (S) + α (T )] ;

(QN − 3) if S ∈ F (E,F ) , T ∈ L (E0, E) and R ∈ L (F, F0) , then
α (RST ) ≤ ‖R‖α (S) ‖T ‖[15].
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In particular if C = 1 then α becomes a norm on the operator ideal F.

An ideal F with a quasi-norm α,which is denoted by [F, α] , is said to be a quasi-
Banach operator ideal if each component F (E,F ) is complete under the quasi-norm
α.

Let ℓ∞ be the space of all bounded real sequences and K ⊂ ℓ∞ be the set of all
sequences x such that card {i ∈ N, xi 6= 0} < n and x1 ≥ x2 ≥ . . . ≥ 0.

A function φ : K → R is called symmetric norming function, if the following
conditions satisfied

(φ1) φ(x) > 0 for every x ∈ K,

(φ2) φ (αx) = αφ (x) for every x ∈ K and α ≥ 0,

(φ3) φ (x+ y) ≤ φ (x) + φ (y) for every x, y ∈ K

(φ4) φ (1, 0, 0, . . .) = 1

(φ5) if the inequality
k
∑

1
xi ≤

k
∑

1
yi holds for k = 1, 2, . . . , then φ (x) ≤ φ (y)

holds [28].

It’s given that ([27], [19]) for all symmetric norming functions φ, the function
φ(p) defined as

φ(p) : (xi) ∈ K → (φ ({xp
i }))

1

p , 1 ≤ p ≤ ∞

is also a symmetric norming function. For more details on symmetric norming
functions we refer to ([7], [20], [23], [25]-[27], [30], [31]).

By using the properties of symmetric norming function and the sequence (an (T )) ,
the class Lφ (E,F ) is defined in [25] and [29] as follows

Lφ (E,F ) = {T ∈ L (E,F ) : φ ({an (T )}) < ∞} .

Let E = (En) be a partition of finite subsets of the positive integer such that

maxEn < minEn+1

for n = 1, 2, . . . . In [6] Foroutannia defined the sequence space lp (E) as

lp (E) =







x = (xn) ∈ ω :

∞
∑

n=1

∣

∣

∣

∣

∣

∣

∑

j∈En

xj

∣

∣

∣

∣

∣

∣

p

< ∞







, (1 ≤ p < ∞)

with the seminorm ‖|·|‖p,E , which is defined in the following way:

‖|x|‖p,E =





∞
∑

n=1

∣

∣

∣

∣

∣

∣

∑

j∈En

xj

∣

∣

∣

∣

∣

∣

p



1

p

.

For example, if En = {2n− 1, 2n} for all n, then x = (xn) ∈ lp (E) if and only if
∞
∑

n=1
|x2n−1 + x2n|

p
< ∞. It is obvious that ‖|·|‖p,E cannot be a norm, since we have



Some Equivalent Quasinorms on Lφ,E 743

‖|x|‖p,E = 0 while x = (1,−1, 0, 0, . . .) 6= θ and En = {2n− 1, 2n} for all n. In the
special case En = {n} for n = 1, 2, . . . , we have lp (E) = lp and ‖|x|‖p,E = ‖x‖p .

For more information about block sequence spaces, we refer to [16],[17].

In [32], the class of lp (E) type operators, which is denoted by Lp,E (E,F ) ,
is given and it is shown that this class is a quasi-Banach operator ideal by the
quasinorm

‖T ‖p,E =





∞
∑

n=1





∑

j∈En

sj (T )





p



1

p

.

Also a new class of operators Lφ(p),E is defined. Further it is proved that by quasi-
norm

‖T ‖φ(p),E
= φ(p)











∑

j∈Ei

sj (T )











this class is a quasi-Banach operator ideal.

2. Main Results

Now we define a new class Lφ,E (E,F ) including the class Lφ (E,F ) as

Lφ,E (E,F ) =







T ∈ L (E,F ) : φ











∑

j∈En

sj (T )









 < ∞







.

For example if we take En = {n} for n = 1, 2, . . . , we have Lφ,E (E,F ) = Lφ (E,F ) .
Also if we take En = {2n− 1, 2n} for all n, we get φ ({s2n−1 (T ) + s2n (T )}) < ∞.

In this section we show some equivalent quasinorms on operator ideal Lφ,E (E,F ).

Theorem 2.1. ‖T ‖φ,E = φ

({

∑

j∈En

sj (T )

})

is a quasinorm on operator ideal

Lφ,E (E,F ) .

Proof. If x′ ∈ E and y ∈ F, then the equality

φ











∑

j∈En

sj (x
′ ⊗ y)









 = φ ({s1 (x
′ ⊗ y)}) = ‖x′ ⊗ y‖ = ‖x′‖ ‖y‖ < ∞

holds since x′ ⊗ y is a rank one operator, sn (x
′ ⊗ y) = 0 for n ≥ 2. Therefore

‖x′ ⊗ y‖φ,E = ‖x′‖ ‖y‖ and x′ ⊗ y ∈ Lφ,E.

Let S, T ∈ Lφ,E. Then we have that
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∞
∑

n=1





∑

j∈En

sj (S + T )



 ≤
∞
∑

n=1





∑

j∈En

s2j−1 (S + T ) +
∑

j∈En

s2j (S + T )





≤
∞
∑

n=1



2
∑

j∈En

s2j−1 (S + T )





≤

∞
∑

n=1



2
∑

j∈En

sj (S) + sj (T )



 .

By using (φ5) we can get

φ











∑

j∈En

sj (S + T )









 ≤ φ











2





∑

j∈En

sj (S) +
∑

j∈En

sj (T )















≤ 2



φ















∑

j∈En

sj (S)













 + φ















∑

j∈En

sj (T )



















< ∞.

It follows that
‖S + T ‖φ,E ≤ 2

(

‖S‖φ,E + ‖T ‖φ,E

)

and also S + T ∈ Lφ,E.

We have that

∞
∑

n=1





∑

j∈En

sj (RST )



 ≤

∞
∑

n=1





∑

j∈En

‖R‖ ‖T ‖ sj (S)





≤ ‖R‖ ‖T ‖

∞
∑

n=1





∑

j∈En

sj (S)



 .

By using the properties of φ function, we obtain

φ











∑

j∈En

sj (RST )









 ≤ ‖R‖ ‖T ‖φ











∑

j∈En

sj (S)









 < ∞

and also the inequality

‖RST ‖φ,E ≤ ‖R‖ ‖T ‖ ‖S‖φ,E

holds.

Hence, ‖T ‖φ,E = φ

({

∑

j∈En

sj (T )

})

is a quasinorm on operator ideal Lφ,E (E,F ) .
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Proposition 2.1. The quasinorm ‖T ‖
+
φ,E = φ

({

∑

j∈En

s2j−1 (T )

})

is equivalent

with ‖T ‖φ,E .

Proof. The equivalence can be easily seen from the fact that

k
∑

n=1

∑

j∈En

s2j−1 (T ) ≤
k
∑

n=1

∑

j∈En

sj (T ) ≤ 2
k
∑

n=1

∑

j∈En

s2j−1 (T ) .

Remark 2.1. For the particular case if En = {n} for n = 1, 2, . . . , we get Proposition
1.1 in [28].

Proposition 2.2. The quasinorm ‖T ‖φ(p),E
is equivalent with

‖T ‖
∇
φ(p),E

= φ(p)











1

n

n
∑

i=1

∑

j∈Ei

sj (T )









 , 1 < p < ∞

where

En = {nN −N + 1, nN −N + 2, . . . , nN} forall n.

Proof. This is a consequence of Hardy’s inequality.

k
∑

n=1





∑

j∈En

sj (T )





p

≤

k
∑

n=1





1

n

n
∑

i=1

∑

j∈Ei

sj (T )





p

≤

(

p

p− 1

)p k
∑

n=1





∑

j∈En

sj (T )





p

.

Remark 2.2. In particular case if we take N = 1 we get Proposition 1.2 in [28].

Theorem 2.2. If (αn) is a nonincreasing positive sequence and limαNn 6= 0, then
the quasinorm ‖T ‖φ(p),E

is equivalent with the quasinorm

‖T ‖
◦
φ(p),E

= φ(p)

({

1

α1 + . . .+ αn

n
∑

i=1

∑

j∈Ei

sj (T )

})

, 1 < p < ∞ where

En = {nN −N + 1, nN −N + 2, . . . , nN} for all n .

Proof. We know that the sequences (αn) and (sn (T )) are decreasing, so we can
write that

1

nα1
nαNn

∑

j∈Ei

sj (T ) =
αNn

α1

∑

j∈Ei

sj (T ) ≤
1

α1 + . . .+ αn

n
∑

i=1

∑

j∈Ei

αjsj (T )

≤
1

nαNn
α1

n
∑

i=1

∑

j∈Ei

sj (T ) .
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If limαNn = α 6= 0, we get

α

α1

∑

j∈Ei

sj (T ) ≤
1

α1 + . . .+ αn

n
∑

i=1

∑

j∈Ei

αjsj (T ) ≤
α1

α





1

n

n
∑

i=1

∑

j∈Ei

sj (T )



 .

By using Hardy’s inequality we obtain

n
∑

i=1





α

α1

∑

j∈Ei

sj (T )





p

≤

n
∑

i=1





1

α1 + . . .+ αn

n
∑

i=1

∑

j∈Ei

αjsj (T )





p

≤

n
∑

i=1

(α1

α

)p





1

n

n
∑

i=1

∑

j∈Ei

sj (T )





p

≤
(α1

α

)p
(

p

p− 1

)p n
∑

i=1

∑

j∈Ei

(sj (T ))
p
, 1 < p < ∞.

By the property (φ5) it results

α1

α
‖T ‖φ(p),E

≤ ‖T ‖◦φ(p),E
≤

α1

α

p

p− 1
‖T ‖φ(p),E

.

Hence ‖T ‖φ(p),E
is equivalent with ‖T ‖◦φ(p),E

.

Remark 2.3. In particular case if we take N = 1 then we get Theorem 1.4 in [28].

Theorem 2.3. Let (un) and (wn) are sequences of non-negative real numbers such

that u1 ≥ u2 ≥ ... ≥ un ≥ . . . and w1 ≤ w2 ≤ ... ≤ wn ≤ ... and wn ≤ n ≤
wn

un
. Let

lim
n→∞

uNn 6= 0, then the quasinorm ‖T ‖φ(p),E
is equivalent to

‖T ‖
γ
φ(p),E

= φ(p)











1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T )









 for 1 ≤ p < ∞.

where

En = {nN −N + 1, nN −N + 2, . . . , nN} for all n.

Proof. Since the sequences (un) and (an (T )) are decreasing, we can write

1

n
nuNn

∑

j∈Ei

sj (T ) ≤
1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T ) ≤
1

nuNn
u1

n
∑

i=1

∑

j∈Ei

sj (T ) .
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Summing from n = 1 to k, we get

k
∑

n=1



uNn

∑

j∈Ei

sj (T )





p

≤

k
∑

n=1





1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T )





p

≤
k
∑

n=1





u1

nuNn

n
∑

i=1

∑

j∈Ei

sj (T )





p

.

If lim
n→∞

uNn = u 6= 0, then we obtain

up
k
∑

n=1





∑

j∈Ei

sj (T )





p

≤

k
∑

n=1





1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T )





p

≤
(u1

u

)p k
∑

n=1





1

n

n
∑

i=1

∑

j∈Ei

sj (T )





p

for every k ∈ N. By using Hardy’s inequality, we get

up
k
∑

n=1





∑

j∈Ei

sj (T )





p

≤

k
∑

n=1





1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T )





p

≤
(u1

u

)p
(

p

p− 1

)p n
∑

i=1





∑

j∈Ei

sj (T )





p

for every k ∈ N. From the properties of the function φ, we obtain that

u ‖T ‖φ(p),E
≤ ‖T ‖

γ
φ(p),E

≤
(u1

u

)

(

p

p− 1

)

‖T ‖φ(p),E
.

Remark 2.4. For the particular case, if we choose N = 1, we get Theorem 2.2 in [30].
And also if we take ui = αi and wn = α1+α2+ ...+αn in Theorem 3, where N = 1 then
we obtain Theorem 1.4 in [28], where α1 ≤ 1. If we take ui = 1 and wn = n in Theorem
3, then we obtain Proposition 1.2 in [28].
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NONLINEAR INVARIANTS OF PLANAR POINT CLOUDS

TRANSFORMED BY MATRICES

Stelios Kotsios and Evangelos Melas

Abstract. The goal of this paper is to present invariants of planar point clouds, that
is functions which take the same value before and after a linear transformation of a
planar point cloud via a 2× 2 invertible matrix. In the approach we adopt here, these
invariants are functions of two variables derived from the least squares straight line of
the planar point cloud under consideration. A linear transformation of a point cloud
induces a nonlinear transformation of these variables. The said invariants are solutions
to certain Partial Differential Equations, which are obtained by employing Lie theory.
We find cloud invariants in the general case of a four−parameter transformation matrix,
as well as, cloud invariants of various one−parameter sets of transformations which can
be practically implemented. Case studies and simulations which verify our findings are
also provided.

1. Introduction

Analysing level shapes is the key problem in many computer science areas, as
image analysis, geometric computing, optical character recognition e.t.c. [2, 7].
Usually, by means of the modern sensing technology, we make detailed scans of
complex plane objects by generating point cloud data, consisting from thousands
or millions of points. Then we study the underlying properties, either by creating
appropriate models or by discovering properties which remain constant under sets
of transformations or under the influence of noise distortions.

In particular, when we deal with planar set of points, a basic approach, which is
widely used, is that of determining quantities which can characterize collectively the
behaviour of the whole set, as well as its change, when a transformation is applied
to it. In other words, we determine quantities which can represent the planar set
of points under consideration, as a whole.

One approach along this line is the classical work of Ming−Kuei Hu [6], who
introduced the moment invariants methodology, followed in the course of time by
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many others [3, 4, 9, 10], to mention but a few. The key element of their approach
was to introduce the so−called moments of planar figures, in order to identify a
planar geometrical figure as a whole, and then to study their invariants under
translation, similitude and orthogonal transformations.

In the present paper, we consider planar set of points, called henceforth point
cloud or cloud of points. We advocate a different approach, and in order to char-
acterize collectively the behaviour of the whole cloud of points we introduce two
variables M and H . These variables stem from the least squares line assigned
to these points. In fact M is the slope of this line, and H is a variation of the
y−intercept of this line.

Any transformation of the cloud of points, by means of a 2×2 matrix, induces a
nonlinear transformation, to be precise a rational one, of the quantities M and H .
We assume throughout this paper that any 2× 2 transformation matrix of a cloud
of points is invertible.

The purpose of this paper is to find cloud invariants, or shortly invariants,
expressed in terms of the variables M and H . By the term “invariants” [8] we mean
functions which take the same value at the original and at the transformed values of
M and H , when a cloud of points undergoes a transformation with a 2× 2 matrix.
In order to solve this problem we use Lie Theory [5, 1]. As a result, the problem
is reduced to solving certain Partial Differential Equations. Any solution to these
PDEs, provides us with a cloud invariant.

Since the problem, in its general form, does not have a solution which can be
practically implemented, we are examining the special case of an one−parameter
set of transformations. This is the case when the entries of a transformation matrix
are functions of one parameter only. In this case a general solution is found by using
Lie theory implemented with symbolic computation.

At first sight it might seem that restricting ourselves to a one−parameter set
of transformations, useful as it may be, cannot be of great use. However, this is
not the case, because as we point out in section 5.2.1. any given matrix belongs
to one such one−parameter set of transformations. As a result we find a family
of cloud invariants for any given matrix and this certainly lends itself to practical
implementation.

By practical implementation we mean that these invariants can be used as a
tool for studying changes of planar figures and for creating proper software which
monitors and displays these changes in real time. This would have many applica-
tions in optical character recognition, as well as, in image analysis and computer
graphics techniques; icons created by the same “source” will be readily identified.

This potential application of our results suggests a direction for future research.
The cloud of points may come from an icon which has a parabolic− like shape. In
this case it is natural to look for cloud invariants which are expressed in terms of
variables which appear as coefficients, or variations thereof, of the parabola which
is the best fit for the cloud points we consider. Comparison with already existing
methodologies, which address the same questions, via simulations and computa-
tional experiments, will be also the subject of future research.
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In section 2. we introduce the variables M and H, and we find the transformation
of these variables which is induced from a transformation with a 2×2 matrix of the
cloud of points under consideration. In section 3. we define the notion of an invariant
function, and we prove in the current case, Lie’s theory fundamental result that the
nonlinear invariant condition is equivalent to a linear condition provided that the
invariant function is properly analytic. Moreover, by using this linear condition, we
find the cloud invariants in the general case of a four−parameter transformation
matrix of the cloud of points under consideration. In section 4. we find a family of
cloud invariants for a general one−parameter set of transformations. In section 5.
we find families of cloud invariants for various sets of transformations. We also find
a family of cloud invariants for a “linear” one−parameter set of transformations and
we point out that any given matrix belongs to such a set. In section 6. we verify
our results with simulations and computational experiments in a cloud of 10.000
points. In section 7. we close the paper with some concluding remarks.

2. The Basic Quantities and their Transformations

In this section we present two quantitiesM andH which characterize collectively
a cloud of points and serve as the independent variables of the invariant functions
we are going to construct. They originate from the least squares straight line fitted
to the cloud of points under consideration.

Let (xi, yi), i = 1, ..., N , be a cloud of points on the plane. We define the
quantities:

M =
N
∑N

i=1 xiyi −
∑N

i=1 xi

∑N
i=1 yi

N
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

, and,(2.1)

H =
N
∑N

i=1 y
2
i − (

∑N
i=1 yi)

2

N
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

.(2.2)

M is the slope of the least squares straight line and H is suggested by the cal-
culations. We call them the linear coefficients of the cloud. Sometimes M is
referred as the slope of the cloud and H as the constant term of the cloud. A
transformation of the cloud of points under the action of a 2 × 2 matrix induces a
transformation to M and H . This last transformation is of prime importance to our
construction of invariant functions and so we proceed to find it. Firstly, we need a
definition.

Definition 2.1. Let (xi, yi), i = 1, . . . , N , be a cloud of points and A =

(

α β
γ δ

)

,

α, β, γ, δ ∈ R, a given 2 × 2 matrix. Let us suppose that every point (xi, yi),

i = 1, . . . , N , of the cloud undergoes a transformation TA :

(

xi

yi

)

→

(

x̂i

ŷi

)

according to the rule

(

x̂i

ŷi

)

= A

(

xi

yi

)

.
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We say that the cloud is transformed under the matrix A, and in particular we

say that the cloud (x̂i, ŷi), i = 1, . . . , N, is the transformation of the cloud (xi, yi),
i = 1, . . . , N, under the matrix A.

The transformation of M and H induced by a transformation of the cloud of points
via a matrix A is given in the following Theorem.

Theorem 2.1. Let (xi, yi), i = 1, 2, . . . , N , be a cloud of points with linear coef-

ficients M and H. Let (x̂i, ŷi), i = 1, 2, . . . , N , be the transformation of the cloud

(xi, yi), i = 1, . . . , N, under a matrix A =

(

α β
γ δ

)

, α, β, γ, δ ∈ R. Let M̂ and

Ĥ be the linear coefficients of the cloud (x̂i, ŷi), i = 1, 2, . . . , N . Then the following

relations hold

M̂ =
(αδ + βγ)M + βδH + αγ

2αβM + β2H + α2
,(2.3)

Ĥ =
2γδM + δ2H + γ2

2αβM + β2H + α2
.(2.4)

Proof: Let (xi, yi), i = 1, 2, . . . , N , be a cloud of points with linear coefficients M
and H . It is convenient to define the quantities Mn, Hn, and D, as follows

Mn = N

N
∑

i=1

xiyi −

N
∑

i=1

xi

N
∑

i=1

yi,(2.5)

Hn = N
∑

i

y2i − (
∑

i

yi)
2,(2.6)

D = N
∑

i

x2
i − (

∑

i

xi)
2.(2.7)

The relations (2.1) and (2.2) which define the linear coefficients M and H of the
cloud of points under consideration can now be written in the following shorter
form:

M =
Mn

D
, H =

Hn

D
.(2.8)

A transformation of the cloud of points under a matrix A =

(

α β
γ δ

)

, α, β, γ, δ ∈

R, induces a transformation to the quantitiesMn, Hn, D. The induced transformed
values M̂n, Ĥn, D̂, which are assigned to the cloud (x̂i, ŷi), i = 1, 2, . . . , N , are
calculated as follows:

M̂n = N
∑

i

x̂iŷi −
∑

i

x̂i

∑

i

ŷi =

= N
∑

i

(αxi + βyi)(γxi + δyi)−
∑

i

(αxi + βyi)
∑

i

(γxi + δyi) =
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= αγ



N
∑

x2
i −

(

∑

i

xi

)2


+ (αδ + βγ)

[

N
∑

i

xiyi −
∑

i

xi

∑

i

yi

]

+

+βδ

[

N
∑

i

y2i −

(

∑

i

y2i

)]

= αγD + (αδ + βγ)Mn + βδHn,(2.9)

Ĥn = N
∑

i

ŷ2i −

(

∑

i

ŷi

)2

= N
∑

i

(γxi + δyi)−

[

∑

i

(γxi + δyi)

]2

=

= γ2



N
∑

i

x2
i −

(

∑

i

xi

)2


+ δ2

[

N
∑

i

y2i −

(

∑

i

y2i

)]

+(2.10)

+2γδ

[

N
∑

i

xiyi −
∑

i

xi

∑

i

yi

]

= γ2D + δ2Hn + 2γδMn,

and,

D̂ = N
∑

i

x̂2
i − (x̂i)

2 = N
∑

i

(αxi + βyi)
2 −

[

∑

i

(αxi + βyi)

]2

=

= α2



N
∑

i

x2
i −

(

∑

i

xi

)2


+ β2

[

N
∑

i

y2i −

(

∑

i

y2i

)]

+(2.11)

+2αβ

[

N
∑

i

xiyi −
∑

i

xi

∑

i

yi

]

= α2D + β2Hn + 2αβMn.

From relations (2.8), (2.9), (2.10), and (2.11), we conclude that the linear coefficients
M̂ and Ĥ of the cloud (x̂i, ŷi), i = 1, 2, . . . , N , are given by the relations (2.3), (2.4)
and the theorem has been proved. �

We denote the set of transformations (2.3) and (2.4) by T (A). These are trans-
formations of the form

M̂ = M(M,H,α, β, γ, δ), Ĥ = H(M,H,α, β, γ, δ).(2.12)

If A is a matrix with entries (α, β; γ, δ), then we can associate to it an element of
the set T (A), namely the transformation given by (2.3) and (2.4). We denote this
transformation by T (A)(α,β,γ,δ). The following remarks are in order regarding this
association:

• The set of transformations T (A) form a Lie group, under the usual compo-
sition of transformations, if and only if the set of matrices A form also a Lie
group, under the usual multiplication of matrices, namely the group GL(2),
i.e., the group of 2× 2 invertible matrices.
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• This association is not one−to−one. Indeed, one can easily check that

T (A)(α,β,γ,δ) = T (A)(κα,κβ,κγ,κδ),

κ ∈ R, κ 6= 0. Therefore all matrices κA are associated to the same element
T (A)(α,β,γ,δ) of T (A).

• We can make the association between the sets A and T (A) one−to−one by
assigning arbitrarily a fixed non−zero value to any of the entries (α, β; γ, δ)
of the matrices of the set A.

• In this paper we prefer not to make this association one−to−one because
this may give the false impression that restrictions are imposed to the set of
transformations A which act on the cloud of points under consideration.

• Needless to say that the results are identical regardless of whether we make
or we do not make the association between the sets A and T (A) one−to−one.

We note that in the search for invariants we do not need to restrict to the case
where A, and therefore T (A), is a group. As it will become evident from the proof in
the next section, and as it will be demonstrated in the example given in subsection
5.2.1., what it is really necessary is that the set A, and subsequently the set T (A),
must contain the identity element. The identity elements of both A and T (A) are
obtained when α = 1, β = 0, γ = 0, and, δ = 1. For brevity we write e = (1, 0, 0, 1)
and we denote by ei, i = 1, 2, 3, 4, its components.

3. Invariants

A main objective in cloud of points theory is that of finding invariants. These
are quantities which remain unchanged whenever a cloud of points is transformed
under the action of a 2×2 matrix. Invariant quantities enable us to recognize clouds
of points arising from the same “source”.

In our approach the entities which identify a cloud of points are M and H .
Therefore, we are looking for invariants which are functions of these two quantities.
This is formalized in the following definition:

Definition 3.1. Let (xi, yi), i = 1, ..., N, be a cloud of points on the plane with

linear coefficients M and H. Let (x̂i, ŷi), i = 1, . . . , N, be the transformation of the

cloud (xi, yi), i = 1, . . . , N, under a matrix A. Let M̂ , Ĥ be the linear coefficients

of the cloud (x̂i, ŷi), i = 1, . . . , N. M̂ and Ĥ are the transformed values of M and H
under the induced set of transformations T (A). We say that a function I : R2 → R

is a cloud invariant if and only if

I(M̂, Ĥ) = I(M,H).(3.1)
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The next theorem is the key result in our study because it provides us with
a mechanism for finding cloud invariants. Its proof, is the proof in our case, of
Lie’s theory fundamental result [1] that the nonlinear condition (3.1) is equivalent
to a linear condition provided that the invariant function is properly analytic. The
details are as follows:

Theorem 3.1. Let (xi, yi), i = 1, ..., N, be a cloud of points on the plane with

linear coefficients M and H, and let (x̂i, ŷi), i = 1, ..., N, be the transformation

of the cloud (xi, yi), i = 1, ..., N, under a matrix A =

(

α β
γ δ

)

. A function

I : R2 → R, analytic in the parameters α, β, γ, δ, is a cloud invariant if and only if

the following equations hold simultaneously

ξ1α
∂I

∂M
+ ξ2α

∂I

∂H
= 0,(3.2)

ξ1β
∂I

∂M
+ ξ2β

∂I

∂H
= 0,(3.3)

ξ1γ
∂I

∂M
+ ξ2γ

∂I

∂H
= 0,(3.4)

ξ1δ
∂I

∂M
+ ξ2δ

∂I

∂H
= 0,(3.5)

where,

ξ1Q =

(

∂M̂

∂Q

)

e

=
∂M(M,H, 1, 0, 0, 1)

∂Q
, ξ2Q =

(

∂Ĥ

∂Q

)

e

=
∂H(M,H, 1, 0, 0, 1)

∂Q
,

Q = α, β, γ, δ.

Proof: Let (xi, yi), i = 1, ..., N, be a cloud of points on the plane with linear
coefficients M and H. Let (x̂i, ŷi), i = 1, . . . , N, be the transformation of the cloud

(xi, yi), i = 1, . . . , N, under a matrix A =

(

α β
γ δ

)

. Let M̂ , Ĥ be the linear

coefficients of the cloud (x̂i, ŷi), i = 1, . . . , N. M̂ and Ĥ are the transformed values
of M and H under the induced set of transformations T (A), given by equations
(2.3) and (2.4). Let I(M̂, Ĥ) be a real−valued function analytic in the parameters
α, β, γ, and δ. The Taylor expansion of I(M̂, Ĥ), with center e, reads:

I(M̂, Ĥ) = I(M,H) + (α− 1)

(

∂I(M̂, Ĥ)

∂α

)

e

+ β

(

∂I(M̂, Ĥ)

∂β

)

e

+

γ

(

∂I(M̂, Ĥ)

∂γ

)

e

+ (δ − 1)

(

∂I(M̂, Ĥ)

∂δ

)

e

++
1

2!

(

(α− 1)2

(

∂2I(M̂, Ĥ)

∂α2

)

e

+ β2

(

∂2I(M̂, Ĥ)

∂β2

)

e

+ γ2

(

∂2I(M̂, Ĥ)

∂γ2

)

e

+
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(δ − 1)2

(

∂2I(M̂, Ĥ)

∂δ2

)

e

+ 2(α− 1)β

(

∂I(M̂, Ĥ)

∂α

)

e

+ · · ·

2γ(δ − 1)

(

∂I(M̂, Ĥ)

∂γ

)

e

(

∂I(M̂, Ĥ)

∂δ

)

e

)

+ · · · .(3.6)

The form of the functional dependence of I(M̂, Ĥ) on the parameters α, β, γ, δ
allows to simplify (3.6) in a way which suggests the conclusion of the theorem.
To illustrate the point at hand we use the chain rule to evaluate the derivative
(

∂I(M̂, Ĥ)

∂α

)

e

:

(

∂I(M̂, Ĥ)

∂α

)

e

=

(

∂I(M̂, Ĥ)

∂M̂

∂M̂

∂α
+

∂I(M̂, Ĥ)

∂Ĥ

∂Ĥ

∂α

)

e

(3.7)

(

∂I(M̂, Ĥ)

∂α

)

e

=

(

∂I(M̂, Ĥ)

∂M̂

)

e

(

∂M̂

∂α

)

e

+

(

∂I(M̂, Ĥ)

∂Ĥ

)

e

(

∂Ĥ

∂α

)

e

(3.8)

By introducing the quantities:

ξ1Q =

(

∂M̂

∂Q

)

e

, ξ2Q =

(

∂Ĥ

∂Q

)

e

, Q = α, β, γ, δ,(3.9)

and by noting

(

∂I(M̂, Ĥ)

∂M̂

)

e

=
∂I(M,H)

∂M
, and,

(

∂I (M̂ , Ĥ )

∂Ĥ

)

e

=
∂I (M ,H )

∂H
,(3.10)

we can rewrite equation (3.8) in the following shorter form

(

∂I(M̂, Ĥ)

∂α

)

e

= ξ1α
∂I(M,H)

∂M
+ ξ2α

∂I(M,H)

∂H
(3.11)

By introducing the operator

Xα = ξ1α
∂

∂M
+ ξ2α

∂

∂H
,(3.12)

we rewrite equation (3.11) as

(

∂I(M̂, Ĥ)

∂α

)

e

= XαI,(3.13)
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where for short we wrote I instead of I(M,H). For the second order derivative
(

∂2I(M̂,Ĥ)
∂α2

)

e
we have:

(

∂2I(M̂, Ĥ)

∂α2

)

e

=





∂
(

∂I(M̂,Ĥ)
∂α

)

∂α





e

= ξ1α

∂
(

∂I(M̂,Ĥ)
∂α

)

e

∂M
+ ξ2α

∂
(

∂I(M̂,Ĥ)
∂α

)

e

∂H

= Xα (XαI)(3.14)

A similar analysis applies to the derivatives of all orders in the Taylor expansion
(3.6). As a result the Taylor expansion (3.6) reads:

I(M̂, Ĥ) = I(M,H) +
4
∑

i=1

(Qi − ei) (XQi
I) +

1

2!

4
∑

i,j=1

(Qi − ei)(Qj − ej)XQi

(

XQj
I
)

+

1

3!

4
∑

i,j,k=1

(Qi − ei)(Qj − ej)(Qk − ek)XQi

(

XQj
(XQk

I)
)

+ · · ·(3.15)

For convenience, by Q we denote the vector (α, β, γ, δ), and by Qi, i = 1, 2, 3, 4, its
components.

From equation (3.15) we conclude that when the linear infinitesimal conditions

XQi
I = 0, Qi = α, β, γ, δ,(3.16)

are satisfied then I(M̂, Ĥ) = I(M,H). Therefore I is a cloud invariant.

Conversely, when I is a cloud invariant, then I(M̂, Ĥ) = I(M,H), and equation
(3.15) gives:

4
∑

i=1

(Qi − ei) (XQi
I) +

1

2!

4
∑

i,j=1

(Qi − ei)(Qj − ej)XQi

(

XQj
I
)

+

1

3!

4
∑

i,j,k=1

(Qi − ei)(Qj − ej)(Qk − ek)XQi

(

XQj
(XQk

I)
)

+ · · · = 0(3.17)

For every pair of values M and H equation (3.17) becomes a polynomial in the
variables α, β, γ, δ. Consequently equation (3.17) can only hold if for every pair
of values M and H the coefficients of the polynomial vanish, i.e., if the following
relations hold

XQi
I = XQi

(

XQj
I
)

=

XQi

(

XQj
(XQk

I)
)

= · · · = 0, i, j, k ∈ {1, 2, 3, 4},(3.18)
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for every pair of values M and H. If XQi
I = 0, Qi = α, β, γ, δ, the rest of the

relations (3.18) follow. Equations (3.16), XQi
I = 0, Qi = α, β, γ, δ, are nothing

but equations (3.2), (3.3), (3.4), and (3.5), respectively. This completes the proof.
�

Sophus Lie’s great advance was to replace the complicated, nonlinear finite in-
variance condition (3.1) by the vastly more useful linear infinitesimal condition
(3.16) and to recognize that if a function satisfies the infinitesimal condition then
it also satisfies the finite condition, and vice versa, provided that the function is
analytic in the parameters α, β, γ, and δ.

It is to be noted that in the proof of Lie’s main Theorem (3.1) we used the
following:

1. The assumption that cloud invariant I is a function analytic in the parameters
α, β, γ, and δ.

2. The assumption that the set of transformations T (A), and subsequently the
set of transformations A, contain the identity element, which is obtained when
α = 1, β = 0, γ = 0, and δ = 1.

3. The chain rule for the differentiation of composite functions.

Nowhere in the proof of Lie’s main Theorem (3.1) is the assumption made that
the set of transformations T (A) is closed under the usual composition of transfor-
mations, or equivalently, that the associated set of matrices A is closed under the
usual matrix multiplication. This will become evident and exemplified in subsec-
tion 5.2.1. where we find cloud invariants I under a set of transformations T (A)
which are such that the associated set of matrices A are not closed under the usual
multiplication of matrices.

3.1. Cloud invariants in the general case

As a first application of Theorem (3.1) we find the cloud invariants under a general
matrix A. This is the content of the next Corollary.

Corollary 3.1. If a cloud of points is transformed via a matrix A =

(

α β
γ δ

)

,

then the only cloud invariants are:

1. The constant functions I(M,H) = c, c ∈ R.

2. The level curve I(M,H) = 0 of the function I(M,H) =
H

M2
− 1.

Proof: According to Theorem (3.1) a function I(M̂, Ĥ), analytic in the parameters
α, β, γ, δ, is a cloud invariant if and only if it satisfies the system of PDEs (3.2),
(3.3), (3.4), and (3.5), which read:
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ξ1α(x)
∂I

∂M
+ ξ2α(x)

∂I

∂H
= −M

∂I

∂M
− 2H

∂I

∂H
= 0,(3.19)

ξ1β(x)
∂I

∂M
+ ξ2β(x)

∂I

∂H
= (H − 2M2)

∂I

∂M
− 2HM

∂I

∂H
= 0,(3.20)

ξ1γ(x)
∂I

∂M
+ ξ2γ(x)

∂I

∂H
=

∂I

∂M
− 2M

∂I

∂H
= 0,(3.21)

ξ1δ (x)
∂I

∂M
+ ξ2δ (x)

∂I

∂H
= M

∂I

∂M
+ 2H

∂I

∂H
= 0.(3.22)

We easily find that the only solutions to the last system of equations are:

1. The constant functions I(M,H) = c, c ∈ R.

2. The level curve I(M,H) = 0 of the function I(M,H) =
H

M2
− 1.

This completes the proof.�

The second invariant implies in particular that when the values of M and H are
such that H = M2, then their transformed values Ĥ and M̂ are such that Ĥ = M̂2.

4. The One−Parameter Case

The cloud invariants under a general matrix A, given in Corollary 3.1, do not
lend themselves to practical implementation. This leads us to examining particular
cases of A. We start by considering the one−parameter case, i.e. the case where the
entries of the matrix A are analytic functions of a single parameter ϕ. Interestingly
enough it turns out that in this case we can find cloud invariants in closed form
which can be practically implemented. The first step to prove this assertion is the
next Corollary.

Corollary 4.1. Let (xi, yi), i = 1, ..., N, be a cloud of points on the plane with

linear coefficients M and H, and let (x̂i, ŷi), i = 1, ..., N, be the transformation of

the cloud (xi, yi), i = 1, ..., N, under a matrix A(ϕ) =

(

α(ϕ) β(ϕ)
γ(ϕ) δ(ϕ)

)

, where

α(ϕ), β(ϕ), γ(ϕ), and δ(ϕ), are real analytic functions of a parameter ϕ ∈ R. We

assume that there exists a value of ϕ, denoted by ϕ∗, such that A(ϕ∗) = I, I the

2× 2 identity matrix. An analytic function I : R2 → R is a cloud invariant if and

only if the next equation holds:

[(H−2M2)β′(ϕ∗)−δM+γ′(ϕ∗)]
∂I

∂M
+2[γ′(ϕ∗)M−β′(ϕ∗)HM−δH ]

∂I

∂H
= 0,(4.1)

where, δ = α′(ϕ∗)− δ′(ϕ∗).
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Proof: In order to find the cloud invariants we apply Theorem 3.1. The key point is
that in the case under consideration all the entries of the matrix A(ϕ) are functions
of a single parameter ϕ. This implies in particular that equations (3.2), (3.3), (3.4),
and (3.5), whose solution space are the cloud invariants, reduce to one equation:

ξ1ϕ
∂I

∂M
+ ξ2ϕ

∂I

∂H
= 0,(4.2)

ξ1ϕ =

(

∂M̂

∂ϕ

)

e

=
∂M(M,H, 1, 0, 0, 1)

∂ϕ
, ξ2ϕ =

(

∂Ĥ

∂ϕ

)

e

=
∂H(M,H, 1, 0, 0, 1)

∂ϕ
.

Differentiation is now with respect to ϕ, that is Q = ϕ. Consequently cloud invari-
ants in the one−parameter case are solutions to equation (4.2) which reads:

[(H − 2M2)β′(ϕ∗)− δM + γ′(ϕ∗)]
∂I

∂M
+ 2[γ′(ϕ∗)M − β′(ϕ∗)HM − δH ]

∂I

∂H
= 0,

where, δ = α′(ϕ∗)− δ′(ϕ∗). This completes the proof. �

It is difficult to obtain in closed form the whole set of solutions of equation (4.1).
However we can find, in closed form, a wide subclass of solutions of equation (4.1).
This is the content of the following Theorem.

Theorem 4.1. A class of solutions of equation (4.1), and hence a family of in-

variants of a cloud of points (xi, yi), i = 1, ..., N, when it is transformed under a

matrix A(ϕ) =

(

α(ϕ) β(ϕ)
γ(ϕ) δ(ϕ)

)

, is given by:

I(M,H) = F

(

M2 −H

(Hβ′(ϕ∗)− γ′(ϕ∗) + δM)2

)

,(4.3)

where F (.), is an arbitrary real valued function and δ = α′(ϕ∗)−δ′(ϕ∗). We assume

that α(ϕ), β(ϕ), γ(ϕ), and δ(ϕ), are real analytic functions of a single parameter

ϕ ∈ R. We also assume that there exists a value of ϕ, denoted by ϕ∗, such that

A(ϕ∗) = I, I being the 2× 2 identity matrix.

Proof: In order to find solutions of equation (4.1) we use the undetermined co-
efficients method. This method consists in seeking for solutions I(M,H) of the
form:

F

(

∑n
i=1

∑m
j=1 aijM

iHj

∑n
i=1

∑m
j=1 bijM

iHj

)

,(4.4)

where aij and bij are unknown coefficients to be determined. By substituting this
particular form of the solution into equation (4.1) we obtain that a polynomial in
the two variablesM and H is equal to zero. The resulting condition, the coefficients
of the polynomial are equal to zero, gives solution (4.3). This completes the proof.
�

A Corollary of the previous theorem is that we can find cloud invariants, when
the cloud is transformed under a matrix, provided the matrix is an element of the
one−parameter set of transformations A(ϕ), considered in this theorem.
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Corollary 4.2. Let (xi, yi), i = 1, ..., N, be a cloud of points and let this cloud be

transformed under a matrix A =

(

a11 a12
a21 a22

)

, aij ∈ R. If there exist real valued,

analytic, functions α(ϕ), β(ϕ), γ(ϕ), δ(ϕ) and values ϕ∗, ϕ1, such that:

1. α(ϕ∗) = 1, β(ϕ∗) = 0, γ(ϕ∗) = 0, δ(ϕ∗) = 1

2. α(ϕ1) = a11, β(ϕ1) = a12, γ(ϕ1) = a21, δ(ϕ1) = a22

then, the quantity

I(M,H) = F

(

M2 −H

(Hβ′(ϕ∗)− γ′(ϕ∗) + δM)2

)

,

where F (.) is an arbitrary real valued function and δ = α′(ϕ∗)− δ′(ϕ∗), is a cloud

invariant.

Proof: This is an immediate consequence of Theorem 4.1. �

5. Examples of Invariants

In this section, by using Theorem theorem 4.1, we find cloud invariants when
a cloud is transformed under various sets of transformations A(ϕ). As we pointed
out in section 2. it is not necessary the set A(ϕ) to form a group under the usual
multiplication of matrices. Firstly we consider sets of transformations A(ϕ) which
do form a group and then we consider a set A(ϕ) which does not form a group. Fi-
nally, in the last subsection, by using the previous findings, we find cloud invariants
for any given matrix.

5.1. Sets A(ϕ) which form a group

We start with simpler sets of transformations A(ϕ) and gradually proceed to more
general cases.

5.1.1. A(ϕ) is a diagonal matrix

We start by assuming that A(ϕ) is diagonal and has the form:

A(ϕ) =

(

1 0
0 ϕ

)

,(5.1)

where ϕ ∈ R.
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In this case we can easily see that ϕ∗ = 1 and that β′(ϕ∗) = 0, γ′(ϕ∗) =
0, δ = α′(ϕ∗) − δ′(ϕ∗) = −1. Therefore, according to Theorem 4.1, a family of
cloud invariants is:

F

(

M2 −H

(−M)2

)

= h

(

H

M2

)

,(5.2)

where F (·) and h(·) are arbitrary real valued functions.

5.1.2. A(ϕ) is an upper triangular matrix

We assume that A(ϕ) is upper triangular and has the form:

A(ϕ) =

(

1 ϕ
0 1

)

,(5.3)

ϕ ∈ R.

In this case we easily verify that ϕ∗ = 0 and that β′(ϕ∗) = 1, γ′(ϕ∗) = 0, δ =
α′(ϕ∗) − δ′(ϕ∗) = 0. Consequently, according to Theorem 4.1, a family of cloud
invariants is:

F

(

M2 −H

(H · 1)2

)

= F

(

M2 −H

H2

)

,(5.4)

where F (·) is an arbitrary real valued function.

5.1.3. A(ϕ) is a lower triangular matrix

We assume that A(ϕ) is lower triangular and has the form:

A(ϕ) =

(

1 0
ϕ 1

)

,(5.5)

ϕ ∈ R.

In this case we easily find that ϕ∗ = 0 and that β′(ϕ∗) = 0, γ′(ϕ∗) = 1, δ =
α′(ϕ∗) − δ′(ϕ∗) = 0. Consequently, according to Theorem 4.1, a family of cloud
invariants is:

F

(

M2 −H

(−1)2

)

= h(H −M2),(5.6)

where F (·) and h(·) are arbitrary real valued functions.

5.1.4. A(ϕ) is a rotation matrix
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Finally, we assume that A(ϕ) is a rotation matrix and has the form:

A(ϕ) =

(

cosϕ sinϕ
− sinϕ cosϕ

)

,(5.7)

ϕ ∈ R.

In this case we easily obtain that ϕ∗ = 0 and that β′(ϕ∗) = 1, γ′(ϕ∗) = −1, δ =
α′(ϕ∗) − δ′(ϕ∗) = 0. Consequently, according to Theorem 4.1, a family of cloud
invariants is:

F

(

M2 −H

(H + 1)2

)

,(5.8)

where F (·) is an arbitrary real valued function.

5.2. A set A(ϕ) which does not form a group

5.2.1. A “linear” matrix

A set of transformations A(ϕ) which subsumes the sets of transformations con-
sidered in subsections 5.1.1., 5.1.2., and 5.1.3. is the set of “linear” matrices

A(ϕ) =

(

a11 a12

a21 a22

)

+ ϕ

(

b11 b12
b21 b22

)

=

(

a11 + b11ϕ a12 + b12ϕ

a21 + b21ϕ a22 + b22ϕ

)

,(5.9)

where aij , bij ∈ R, and ϕ is a real free parameter. The set of matrices A(ϕ∗) does
not, in general, form a group under matrix multiplication. However, we assume
that there exists a value of ϕ, denoted by ϕ∗, such that A(ϕ∗) = I, I being the 2×2
identity matrix. One can easily check that such a value ϕ∗ exists if and only if the
entries aij , bij satisfy one of the following conditions:

b22 6= 0∧a21 =
(a22 − 1) b21

b22
∧a12 =

(a22 − 1) b12
b22

∧a11 =
a22b11 − b11 + b22

b22
,(5.10)

or

b22 = 0 ∧ a22 = 1 ∧ b21 6= 0 ∧ a12 =
a21b12
b21

∧ a11 =
a21b11 + b21

b21
,(5.11)

or

b22 = 0 ∧ b21 = 0 ∧ a22 = 1 ∧ a21 = 0 ∧ b12 6= 0 ∧ a11 =
a12b11 + b12

b12
,(5.12)

or
b22 = 0 ∧ b21 = 0 ∧ b12 = 0 ∧ a22 = 1 ∧ a21 = 0 ∧ a12 = 0 ∧ b11 6= 0.(5.13)

In this case we easily find that β′(ϕ∗) = b12, γ′(ϕ∗) = b21, δ = α′(ϕ∗) − δ′(ϕ∗) =
b11 − b22. According to Theorem 4.1, a family of cloud invariants is:

F

(

M2 −H

(Hb12 − b21 + (b11 − b22)M)2

)

,(5.14)

where F (·) is an arbitrary real valued function.
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5.2.2. Cloud invariants for an arbitrary matrix

For any given matrix there always exists a set of transformations A(ϕ), of the
form (5.9), which contains this matrix. In fact one can easily prove that there exists
a two parameter family of such sets A(ϕ). According to Corollary 4.2, a family of
cloud invariants, when a cloud of points is transformed under this matrix, is given
by relation (5.14). As a case study we consider the matrix:

M =

(

0.4 −0.4
−0.05 0.9

)

.(5.15)

Let A(ϕ) be the set of transformations:

A(ϕ) =

(

−2 −2
−1/4 1/2

)

+ ϕ

(

12 8
1 2

)

=

(

−2 + 12ϕ −2 + 8ϕ
−1/4 + ϕ 1/2 + 2ϕ

)

.(5.16)

One can easily check that A(0.2) = M. We have b12 = 8, b21 = 1, b11 − b22 = 10.
According to Corollary 4.2, a family of cloud invariants is:

F

(

M2 −H

(8H − 1 + 10M)2

)

,(5.17)

where F (·) is an arbitrary real valued function. Since there exists a two parameter
family of sets A(ϕ), of the form (5.9), which containM, there exists a two parameter
family of cloud invariants of the form (5.17), when a cloud is transformed via M.
However, the explicit form of this two parameter family of cloud invariants is not
needed here.

6. Simulations

To see how the above theory works in practise, we consider a cloud of 10.000
points forming the scheme of Figure 6.1. Using relations (2.1) and (2.2), we calculate
the linear coefficients M and H of the cloud. We find M = 1.52244 and H =
2.46998. We transform now this cloud by using various matrices.

Firstly we let the the diagonal matrix A =

(

1 0
0 2

)

to act on the cloud. Both

the initial and the transformed schemes are depicted in Figure 6.2. Using relations
(2.3) and (2.4) we calculate the linear coefficients of the new cloud and we obtain
M̂ = 3.04488 and Ĥ = 9.87991. According to our findings in subsection 5.1.1., a
family of cloud invariants, when a cloud is transformed with the diagonal matrix A,
is I(M,H) = F (H/M2), where F (·) is an arbitrary real valued function. Indeed,
for the initial and the transformed linear coefficients, we find H/M2 = Ĥ/M̂2 =
1.06564. It follows that we have I(M,H) = I(M̂, Ĥ) for any real valued function
F (·).



Nonlinear Invariants of Planar Point Clouds Transformed by Matrices 767

Fig. 6.1: The Original Scheme

Fig. 6.2: A Diagonal Transformation

As a second example of transformation, we let the upper triangular matrix B =
(

1 0.7
0 1

)

to act on the cloud. The result of this transformation is given in Figure

6.3. The transformation of the cloud we consider under B has linear coefficients
M̂ = 0.748882 and Ĥ = 0.568896. As we found in subsection 5.1.2., a family of
cloud invariants, when a cloud is transformed with the upper triangular matrix B,
is I(M,H) = F ((M2 − H)/H2), where F (·) is an arbitrary real valued function.
Indeed, we have (M2 − H)/H2 = (M̂2 − Ĥ)/Ĥ2 = −0.0249396. Consequently we
have I(M,H) = I(M̂, Ĥ) for any real valued function F (·).

As a third example of transformation, we act on the cloud of points with a rota-

Fig. 6.3: An Upper Triangular Transformation
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Fig. 6.4: A Rotation

Fig. 6.5: An Arbritrary Matrix

tion matrix C =









cos
π

3
sin

π

3

− sin
π

3
cos

π

3









. The initial and the rotated clouds are shown

in Figure 6.4. The linear coefficients of the rotated cloud are M̂ = −0.0364518
and Ĥ = 0.0143303. We found in subsection 5.1.4., that a family of cloud in-
variants, when a cloud is transformed with the rotation matrix C, is I(M,H) =

F

(

M2 −H

(H + 1)2

)

, where F (·) is an arbitrary real valued function. Indeed, we have

M2 −H

(H + 1)2
=

M̂2 − Ĥ

(Ĥ + 1)2
= −0.0126368. Henceforth we have I(M,H) = I(M̂, Ĥ), for

any real valued function F (·).

Finally, we act on the cloud of points with the matrix D =

(

0.4 −0.4
−0.05 0.9

)

.

The result of this transformation is shown in Figure 6.5. The linear coefficients of
the transformed cloud are M̂ = −4.86159 and Ĥ = 27.4371.We found in subsection
5.2.1., that a family of cloud invariants, when a cloud is transformed with the matrix

D, is I(M,H) = F

(

M2 −H

(8H − 1 + 10M)2

)

, where F (·) is an arbitrary real valued

function. Indeed, we have
M2 −H

(8H − 1 + 10M)2
=

M̂2 − Ĥ

(8Ĥ − 1 + 10M̂)2
= −0.000131743.

Consequently we obtain I(M,H) = I(M̂, Ĥ), for any real valued function F (·).
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We note that the results we obtained by considering the aforementioned cloud
of points verify our findings in section 5.

7. Concluding Remarks

We have studied transformations, with 2×2 matrices

(

α β
γ δ

)

, α, β, γ, δ ∈ R,

of planar set of points, called clouds of points for convenience. Our aim in this paper
is to find cloud invariants, i.e. functions which take the same value when they are
evaluated for the initial and for the transformed cloud of points. It is natural the
cloud invariants to be functions of variables which carry information for the whole
cloud. The cloud invariants we find are functions of two such variables M and H.

M and H are functions of the coordinates of the points of the cloud. As a result
we find that any transformation of a cloud of points by a 2 × 2 matrix induces
a nonlinear transformation (M,H) → (M̂, Ĥ), M̂ = M(M,H,α, β, γ, δ), Ĥ =
H(M,H,α, β, γ, δ), given explicitly by equations (2.3) and (2.4), of the variables M
and H.

M and H originate from the best fitting straight line through the cloud of points
under consideration. This straight line is determined by the least squares fitting
technique. Henceforth by definition a cloud invariant is any function I(M,H) which
satisfies the relation (3.1), I(M,H) = I(M̂, Ĥ), where M̂ and Ĥ are the values of
the variables M and H for the transformed cloud.

We find cloud invariants by using Lie theory. Lie theory replaces the compli-
cated, nonlinear finite invariance condition (3.1) by the more useful and tractable
linear infinitesimal condition (3.16) provided that the function I(M̂, Ĥ) is analytic
in the parameters α, β, γ, and δ. Linear condition (3.16) is a set of linear PDEs.
Any solution to this system of PDEs gives a cloud invariant.

Cloud invariants can be practically implemented in various fields, e.g. in optical
character recognition, in image analysis and computer graphics techniques, by pro-
viding the necessary tools in order to identify icons created by the same “source”.
The cloud invariants we find for the general four−parameter case, when a cloud is

transformed with a matrix

(

α β
γ δ

)

, cannot be practically implemented.

However, the cloud invariants we find for various one−parameter groups of trans-
formations can be practically implemented. In particular we find cloud invariants
for a group consisting of diagonal matrices, for a group consisting of upper triangu-
lar matrices, for a group consisting of lower triangular matrices, and for the group
of rotations SO(2).

More importantly, for the practical implementation of our findings, we find cloud
invariants for any given matrix. We find these cloud invariants by noticing that any
given matrix belongs to a one−parameter “linear” set of transformations of the form
A+Bϕ, A and B are given 2× 2 matrices, and ϕ ∈ R. Our findings are verified by
examples and simulations in a cloud of 10.000 points.
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We expressed the cloud invariants in terms of the variables M and H. M and H
are essentially the coefficients of the straight line which is the best fit for the cloud
of points under consideration. This provides a natural guide for future research.
With a view to apply our results in fields such as character recognition, the next
logical step is to consider the case where the cloud of points originates from an icon
which has a parabolic−like shape.

In this case we will look for cloud invariants which are expressed in terms of
variables which appear as coefficients, or variations thereof, of the parabola which
is the best fit for the cloud of points under consideration. For similar reasons,
subsequently, we will look for new cloud invariants expressed in terms of variables
which appear as coefficients in third or higher degree curves. We will compare our
findings, with simulations and computational experiments, with those acquired by
other approaches.
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