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m-WEAK AMENABILITY OF (2n)TH DUALS OF BANACH

ALGEBRAS

Mina Ettefagh

Abstract. Let A be a Banach algebra such that its (2n)th dual for some (n ≥ 1) with
first Arens product is m−weakly amenable for some (m > 2n). We introduce some
conditions by which if m is odd [even], then A is weakly [2−weakly] amenable.
Keywords. Banach Algebra; Amenability; normed spaces; bilinear map.

1. Introduction and Preliminaries

Let X be a normed space and X
′

be the topological dual space of X ; the value
of f ∈ X

′

at x ∈ X is denoted by 〈f, x〉. By writing (X
′

)
′

= X
′′

we regard X as
a subspace of X

′′

by means of the natural mapping i : X → X
′′

(x 7−→ x̂) where
〈x̂, f〉 = 〈f, x〉(f ∈ X

′

). Also we denote the nth dual of X by X(n). The weak
topology on X is denoted by w = σ(X,X

′

) and weak∗−topology on X
′

is denoted
by w∗ = σ(X

′

, X).
Now let X,Y and Z be normed spaces and f : X ×Y → Z be a continuous bilinear
map. Arens in [2] offers two extensions f∗∗∗ and f t∗∗∗t of f from X

′′

× Y
′′

to Z
′′

as following

(1)f∗ : Z
′

×X −→ Y
′

(〈
f∗(z

′

, x), y
〉
=

〈
z

′

, f(x, y)
〉)

,

(2)f∗∗ : Y
′′

× Z
′

−→ X
′

(〈
f∗∗(y

′′

, z
′

), x
〉
=

〈
y

′′

, f∗(z
′

, x)
〉)

,

(3)f∗∗∗ : X
′′

× Y
′′

−→ Z
′′

(〈
f∗∗∗(x

′′

, y
′′

), z
′

〉
=

〈
x

′′

, f∗∗(y
′′

, z
′

)
〉)

.

The mapping f∗∗∗ is the unique extension of f such that x
′′

7−→ f∗∗∗(x
′′

, y
′′

) from
X

′′

into Z
′′

is w∗ − w∗−continuous for every y
′′

∈ Y
′′

. Let now f t : Y ×X → Z

be the transpose of f defined by f t(y, x) = f(x, y) for x ∈ X and y ∈ Y . We can
extend f t as above to f t∗∗∗ and then we have the mapping f t∗∗∗t : X

′′

×Y
′′

−→ Z
′′

.

Received February, 25, 2018; Accepted November 26, 2018
2010 Mathematics Subject Classification. Primary 46H25
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2 M. Ettefagh

If f∗∗∗ = f t∗∗∗t then f is called Arens regular. The mapping y
′′

7−→ f t∗∗∗t(x
′′

, y
′′

)
from Y

′′

into Z
′′

is w∗ − w∗−continuous for every x
′′

∈ X
′′

. Arens regularity of f
is equivalent to the following equality

lim
i
lim
j

〈
z

′

, f(xi, yi)
〉
= lim

j
lim
i

〈
z

′

, f(xi, yi)
〉
,

whenever both limits exist for any z
′

∈ Z
′

and all bounded nets (xi) and (yj) that

w∗−converges to x
′′

∈ X
′′

and y
′′

∈ Y
′′

, respectively.
Throughout this paper A is a Banach algebra. This algebra is called Arens regular
if its multiplication as a bilinear map π : A×A → A(π(a, b) = ab) is Arens regular.
We shall frequently use Goldstine’s theorem: for each a

′′

∈ A
′′

, there is a net (ai)

in A such that a
′′

= w∗ − lim
i
âi. Now let a

′′

= w∗ − lim
i

âi and b
′′

= w∗ − lim
j

b̂j be

elements of A
′′

. The first and second Arens products on A
′′

are denoted by symbols
� and ♦ respectively and defined by

a
′′

�b
′′

= π∗∗∗(a
′′

, b
′′

) , a
′′

♦b
′′

= πt∗∗∗t(a
′′

, b
′′

).

It is easy to show that

a
′′

�b
′′

= w∗ − lim
i

w∗ − lim
j

âibj , a
′′

♦b
′′

= w∗ − lim
j

w∗ − lim
i
âibj.

On the other hand, we can define above Arens products in stages as follows. Let
a, b ∈ A, f ∈ A

′

and F,G ∈ A
′′

.

(1) Define f.a in A
′

by 〈f.a, b〉 = 〈f, ab〉, and a.f in A
′

by 〈a.f, b〉 = 〈f, ba〉.

(2) Define F.f in A
′

by 〈F.f, a〉 = 〈F, f.a〉, and f.F in A
′

by 〈f.F, a〉 = 〈F, a.f〉.

(3) Define F�G in A
′′

by 〈F�G, f〉 = 〈F,G.f〉, and F♦G in A
′′

by
〈F♦G, f〉 = 〈G, f.F 〉.

Then (A
′′

,�) and (A
′′

,♦) are Banach algebras, see [2, 7] for further details.

Now let E be a Banach A−module, then E
′

is a Banach A−module under actions

〈a.f, x〉 = 〈f, xa〉, 〈f.a, x〉 = 〈f, ax〉 (a ∈ A, x ∈ E, f ∈ E
′

),(1.1)

and E
′′

is a Banach (A
′′

,�)−module under actions

F • Λ = w∗ − lim
i
w∗ − lim

j
âixj , Λ • F = w∗ − lim

j
w∗ − lim

i
x̂jai ,(1.2)

where F = w∗ − lim
i
âi and Λ = w∗ − lim

j
x̂j such that (ai) and (xj) are bounded

nets in A and E, respectively.
For a Banach A−module E, the continuous linear map D : A → E is called a
derivation if

D(ab) = aD(b) +D(a)b (a, b ∈ A).
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For x ∈ E the derivation δx : A → E given by δx(a) = ax − xa is called
inner derivation. The Banach algebra A is called amenable if every derivation
D : A → E′ is inner, for each Banach A-module E, [12]. If every derivation
D : A → A′ [D : A → A(n) , n ∈ N ] is inner, A is called weakly amenable [n-weakly
amenable], see also [3, 6] for details.

Proposition 1.1. Let A be a Banach algebra and E be a Banach A−module and
D : A → E is a continuous derivation, then D′′ : (A′′,�) → E′′ is a continu-
ous derivation, where E

′′

is considered as a Banach A
′′

−module in accordance to
formula (1.2). ([7], theorem 2.7.17).

Proposition 1.2. Let A be a Banach algebra, and let n ∈ N. If A is
(n+ 2)−weakly amenable, then A is n-weakly amenable [6].

It was shown in [4, 11] that the n−weak amenability of A
′′

implies the n−weak
amenability of A. In [13] it was shown that if the Banach algebra A is complete
Arens regular and every derivation D : A → A′ is weakly compact, the weak
amenability of A(2n) for some n ≥ 1 implies of A. The authors in [5, 10] determined
the conditions that the 3−weak amenability of A′′ implies the 3−weak amenability
of A, and the 3−weak amenability of A(2n) for some (n ≥ 1) implies the 3−weak
amenability of A.
In this paper we always use the first Arens product � on Banach algebra
A(2n)(n ≥ 1). First, we introduce the following important notation.

If A(3) is considered as a dual space of A
′′

, we will use the symbol A(3) = (A
′′

)
′

and the formula (1.1) for A
′′

−module actions on A(3). On the other hand, the
symbol A(3) = (A

′

)
′′

shows A(3) as the second dual of A
′

, and we will use the
formula (1.2) for A

′′

−module actions on A(3).

In Section 2 we investigate

⊲ two A
′′

−module actions on A(3) = (A
′

)
′′

and A(3) = (A
′′

)
′

,

⊲ two A(4)−module actions on A(5) = ((A
′

)
′′

)
′′

and A(5) = ((A
′′

)
′′

)
′

,

...

⊲ two A(2n)−module actions on A(2n+1) = (((A
′

)
′′

)
′′

· · ·)
′′

and
A(2n+1) = ((((A

′′

)
′′

) · · ·)
′′

)
′

,

and also in Section 3 we investigate

⊲ two A
′′

−module actions on A(4) = ((A
′

)
′

)
′′

and A(4) = ((A
′′

)
′

)
′

,

⊲ two A(4)−module actions on A(6) = (((A
′

)
′

)
′′

)
′′

and A(6) = ((A
′′

)
′′

)
′

)
′

,

...
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⊲ two A(2n)−module actions on A(2n+2) = ((((A
′

)
′

)
′′

)
′′

· · ·)
′′

and
A(2n+2) = (((((A

′′

)
′′

) · · ·)
′′

)
′

)
′

.

In these sections we shall frequently use the formulas (1.1) and (1.2), and the
induction process. In each case we will find conditions to make two different actions
equal. These are generalizations of the methods in [9]. In Section 4 we consider
continuous derivations D : A → A

′

and D : A → A
′′

. This section is about pulling
the inner-ness of (2n)−th duals of D down to the inner-ness of D. In our main
results in Section 5 we show, using the conditions obtained from previous sections,
that m−weak amenability of A(2n) for some n ≥ 1 and m > 2n implies weak or
2−weak amenability of A.

2. A(2n)−Module actions on A(2n+1)

First, for n = 1, we consider two A′′−module actions on A(3) when A(3) = (A
′

)
′′

and A(3) = (A
′′

)
′

. Let a(3) = w∗ − lim
α

â
′

α, a
′′

= w∗ − lim
β

âβ and b
′′

= w∗ − lim
i

b̂i

in which (a
′

α) is a bounded net in A
′

and (aβ) and (bi) are bounded nets in A.

For the left A′′−module action on A(3) = (A
′

)
′′

we can write

〈a
′′

• a(3), b
′′

〉 = lim
β

lim
α
〈b

′′

, aβ .a
′

α〉 = lim
β

lim
α

lim
i
〈a

′

α, biaβ〉,(2.1)

and for the left A′′−module action on A(3) = (A
′′

)
′

as dual of A
′′

we can write

〈a
′′

.a(3), b
′′

〉 = 〈a(3), b
′′

�a
′′

〉 = lim
α

lim
i
lim
β
〈a

′

α, biaβ〉(2.2)

This shows that two left A′′−module actions on A(3) = (A
′′

)
′

and A(3) = (A
′

)
′′

are not equal. But two right A′′−module actions a(3) • a
′′

and a(3) · a
′′

are equal,
because they are obtained from π∗(∗∗∗) and π(∗∗∗)∗, which obviously are equal.

Proposition 2.1. Let A be a Banach algebra with the following conditions:

(i) A is Arens regular,

(ii) the map A×A
′

→ A
′

(
(a, a

′

) 7−→ a.a
′

)
is Arens regular.

Then two A′′-module actions on A(3) = (A
′

)
′′

and A(3) = (A
′′

)
′

coincide.

Proof. It is enough to prove that the left module actions in (2.1) and (2.2) coincide.
We begin with the equation (2.1)
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〈a
′′

• a(3), b
′′

〉 = lim
β

lim
α
〈b

′′

, aβ .a
′

α〉

= lim
α

lim
β
〈b

′′

, aβ .a
′

α〉 (by (ii))

= lim
α

lim
β

lim
i
〈aβ .a

′

α, bi〉

= lim
α

lim
β

lim
i
〈a

′

α, biaβ〉

= lim
α

lim
i
lim
β
〈a

′

α, biaβ〉 (by (i)).

This proves the equality of (2.1) and (2.2).

Now for n = 2 we consider two A(4)−module actions on A(5) when

A(5) = ((A
′

)
′′

)
′′

and A(5) = ((A
′′

)
′′

)
′

. Let a(5) = w∗ − lim
α

â
(3)
α , a(4) = w∗ − lim

β
â

′′

β

and b(4) = w∗ − lim
i

b̂
′′

i such that (a
(3)
α ) is a bounded net in A(3) and (a

′′

β), (b
′′

i ) are

bounded nets in A
′′

. For the left A(4)−module action on A(5) = ((A
′

)
′′

)
′′

we have

〈a(4) • a(5), b(4)〉 = lim
β

lim
α
〈b(4), a

′′

β • a(3)α 〉 = lim
β

lim
α

lim
i
〈a

′′

β • a(3)α , b
′′

i 〉,(2.3)

and for the left A(4)−module action on A(5) = ((A
′′

)
′′

)
′

we have

〈a(4).a(5), b(4)〉 = 〈a(5), b(4)�a(4)〉 = lim
α

lim
i
lim
β
〈a(3)α , b

′′

i �a
′′

β〉.(2.4)

But two right A(4)−module actions a(5) • a(4) and a(5) · a(4) are equal. To prove
the equality of the left A(4)−module actions on A(5), we need the equality of two
left A

′′

−module actions on A(3) = (A
′′

)
′

and A(3) = (A
′

)
′′

by the following lemma,
whose proof is straightforward.

Lemma 2.1. Let A be a Banach algebra with the following conditions

(i) A
′′

is Arens regular,

(ii) the map A
′′

×A
′′′

→ A
′′′

(
(a

′′

, a(3)) 7−→ a
′′

.a(3)
)
is Arens regular.

Then the conditions of the proposition 2.1 hold.

Proposition 2.2. Let A be a Banach algebra with the conditions of Lemma 2.1,
then two A(4)−module actions on A(5) = ((A

′

)
′′

)
′′

and A(5) = ((A
′′

)
′′

)
′

coincide.

Proof. By Lemma 2.1, two left A′′−module actions on A(3) = (A
′

)
′′

and
A(3) = (A

′′

)
′

are equal. We begin with the equality (2.3)

〈a(4) • a(5), b(4)〉 = lim
β

lim
α
〈b(4), a

′′

β • a(3)α 〉

= lim
α

lim
β
〈b(4), a

′′

β .a
(3)
α 〉

= lim
α

lim
β

lim
i
〈a

′′

β .a
(3)
α , b

′′

i 〉

= lim
α

lim
β

lim
i
〈a(3)α , b

′′

i �a
′′

β〉

= lim
α

lim
i
lim
β
〈a(3)α , b

′′

i �a
′′

β〉.
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This proves the equality of (2.3) and (2.4).

We can extend our results to each n, in the following proposition.

Proposition 2.3. Let A be a Banach algebra with the following conditions for
some n ≥ 1

(i) A2n−2 is Arens regular,

(ii) the map A(2n−2) ×A(2n−1) → A(2n−1) ((a, f) 7−→ a.f) is Arens regular.

Then two A(2n)−module actions on A(2n+1) = ((((A
′′

)
′′

) · · ·)
′′

)
′

and
A(2n+1) = ((((A

′

)
′′

) · · ·)
′′

)
′′

coincide.

3. A(2n)−Module actions on A(2n+2)

Our methods in this section are similar to those in Section 2, so we just mention
our conclusions very briefly.

Proposition 3.1. Let A be a Banach algebra with the following conditions

(i) A
′′

is Arens regular,

(ii) the maps A×A
′

→ A
′

((a, f) 7−→ a.f) and A
′

×A → A
′

((f, a) 7−→ f · a) are
Arens regular.

Then two A′′-module actions on A(4) = ((A
′

)
′

)
′′

and A(4) = ((A
′′

)
′

)
′

coincide.

To extend our results to A(6) we need the following lemma that is similar to Lemma
2.1.

Lemma 3.1. Let A be a Banach algebra with the following conditions

(i) A(4) is Arens regular,

(ii) the maps A
′′

×A
′′′

→ A
′′′

((F,Λ) 7−→ F.Λ) and A
′′′

×A
′′

→ A
′′′

((Λ, F ) 7−→ Λ.F )
are Arens regular.

Then the conditions of the proposition 3.1 hold.

Proposition 3.2. Let A be a Banach algebra with the conditions of Lemma 3.1,
then two A(4)-module actions on A(6) = (((A

′

)
′

)
′′

)
′′

and A(6) = (((A
′′

)
′′

)
′

)
′

coin-
cide.

Similar to the proposition 2.3 we have the following extension.

Proposition 3.3. Let A be a Banach algebra with the following conditions for
some n ≥ 1
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(i) A(2n) is Arens regular,

(ii) the maps
(
A(2n−2) ×A(2n−1) → A(2n−1)(f,Λ) 7−→ f.Λ

)
and(

A(2n−1) ×A(2n−2) → A(2n−1)(Λ, f) 7−→ Λ.f
)
are Arens regular.

Then two A(2n)−module actions on A(2n+2) = (((((A
′

)
′

)
′′

· · ·)
′′

)
′′

and
A(2n+2) = (((((A

′′

)
′′

) · · ·)
′′

)
′

)
′

coincide.

Remark 3.1. There are many other module actions in sections 2 and 3 that we do not
need to mention. We just introduce the module actions that we will apply in the next
sections.

4. Duals of derivations D : A → A
′

and D : A → A
′′

We consider the following duals of the continuous derivation D : A → A
′

as in the
proposition 1.1

D
′′

: A
′′

−→ A(3) = (A
′

)
′′

D(4) : A(4) = (A
′′

)
′′

−→ A(5) = ((A
′

)
′′

)
′′

...

D(2n) : A(2n) = ((A
′′

)
′′

· · ·)
′′

−→ A(2n+1) = (((A
′

)
′′

)
′′

· · ·)
′′

,

and the following duals of the continuous derivation D : A → A
′′

= (A
′

)
′

D
′′

: A
′′

−→ A(4) = ((A
′

)
′

)
′′

D(4) : A(4) = (A
′′

)
′′

−→ A(6) = (((A
′

)
′

)
′′

)
′′

...

D(2n) : A(2n) = ((A
′′

)
′′

· · ·)
′′

−→ A(2n+2) = (((A
′

)
′

)
′′

· · ·)
′′

.

We recall that the above D
′′

, D(4), · · · , D(2n) are also continuous derivations.

Lemma 4.1. Let A be a Banach algebra with the hypothesis of the proposition 2.1.
If the second dual D

′′

of the continuous derivation D : A → A
′

is inner, then D is
inner.

Proof. Since D
′′

: A
′′

−→ A(3) = (A
′

)
′′

is inner, there is a(3) ∈ A(3) such that for
every a

′′

∈ A
′′

we have

D
′′

(a
′′

) = a
′′

• a(3) − a(3) • a
′′

,
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Now let a
′

=: i∗(a(3)), where i : A −→ A
′′

is the natural map and so
i∗ : (A

′′

)
′

= A(3) −→ A
′

. Then for each a, b ∈ A we can write

〈D(a), b〉 = 〈D
′′

(â), b̂〉

= 〈â • a(3) − a(3) • â, b̂〉

= 〈a(3), b̂�â− â�b̂〉 ( by proposition 2.1 )

= 〈a(3), ̂ba− ab〉

= 〈i∗(a(3)), ba− ab〉

= 〈a
′

, ba− ab〉

= 〈a.a
′

− a
′

.a, b〉,

hence D(a) = a.a
′

− a
′

.a.

Using the reasoning similar to that in the proof of the previous lemma we have the
next lemmas.

Lemma 4.2. Let A be a Banach algebra with hypothesis of the proposition 2.3.
If (2n)−th dual D(2n) of the continuous derivation D : A → A

′

is inner for some
n ≥ 1, then D(2n−2), · · · , D

′′

and D are inner.

Lemma 4.3. Let A be a Banach algebra with the hypothesis of the proposition 3.3.
If (2n)−th dual D(2n) of the continuous derivation D : A → A

′′

is inner for some
n ≥ 1, then D(2n−2), · · · , D

′′

and D are inner.

5. Main results

The results of this section are immediate consequences of the previous sections, and
so the proofs will be very short.

Proposition 5.1. Let A be a Banach algebra with the hypothesis of the proposition
2.1. If A

′′

is weakly amenable, then A is weakly amenable.

Proof. Suppose that D : A → A
′

is a continuous derivation. Then
D

′′

: A
′′

−→ A(3) = (A
′

)
′′

is a continuous derivation by the proposition 1.1. But
two A

′′

−module actions on A(3) = (A
′

)
′′

and A(3) = (A
′′

)
′

are equal by the propo-
sition 2.1, hence D

′′

: A
′′

−→ A(3) = (A
′′

)
′

is also a continuous derivation in which
A(3) = (A

′′

)
′

is considered a dual of A
′′

. Since A
′′

is weakly amenable, then D
′′

is
inner. Therefore D is inner by Lemma 4.1. This completes the proof.

Using the same reasoning as in the proof of the previous proposition we have the
next results.

Proposition 5.2. Let A be a Banach algebra with the conditions in the proposition
2.3 for some n ≥ 1. If A(2n) is weakly amenable, then A is weakly amenable.
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Proof. This is a consequence of Lemma 4.2.

Proposition 5.3. Let A be a Banach algebra with the conditions of the proposition
3.3 for some n ≥ 1. If A(2n) is 2-weakly amenable, then A is 2-weakly amenable.

Proof. This is a consequence of Lemma 4.3.

Finally we obtain the following general results.

Corollary 5.1. Let n ≥ 1,m > 2n and suppose that A is a Banach algebra such
that the conditions of the preposition 2.3 hold for n. If A(2n) is m−weakly amenable
and m is odd, then A is weakly amenable.

Proof. A(2n) is weakly amenable by the proposition 1.2, and hence A is weakly
amenable by the proposition 5.2.

Corollary 5.2. Let n ≥ 1,m > 2n and suppose that A be a Banach algebra such
that the conditions of the preposition 3.3 hold for n. If A(2n) is m−weakly amenable
and m is even, then A is 2-weakly amenable.

Proof. A(2n) is 2−weakly amenable by the proposition 1.2, and hence A is 2-weakly
amenable by the proposition 5.3.

Example 5.1. Take a non-reflexive complex Banach space A and a bounded linear map
ϕ : A −→ C. One can define a multiplication on A by

ab =: 〈ϕ, b〉a , (a, b ∈ A).

This makes A a Banach algebra which is called ideally factored algebra associated to ϕ

and sometimes it is denoted by Aϕ, [1]. One can write for a, b ∈ A

ϕ(ab) = ϕ(〈ϕ, b〉a) = 〈ϕ, a〉〈ϕ, b〉 = ϕ(ba),

this shows that ϕ is multiplicative. It is easy to conclude the following equations

a
′

.a = 〈a
′

, a〉ϕ

a.a
′

= 〈ϕ, a〉a
′

a
′′

�b
′′

= a
′′

♦b
′′

= 〈b
′′

, ϕ〉a
′′

a
′′′

.a
′′

= 〈a
′′′

, a
′′

〉ϕ̂

a
′′

.a
′′′

= 〈a
′′

, ϕ〉a
′′′

,

whenever a ∈ A,a
′

∈ A
′

, a
′′

, b
′′

∈ A
′′

and a
′′′

∈ A
′′′

. Now for bounded nets (ai) and (a
′

j)

in A and A
′

, respectively, we have

w
∗ − lim

j
w

∗ − lim
i

âia
′

j = w
∗ − lim

j
w

∗ − lim
i
〈ϕ, ai〉â

′

j

= lim
i
〈ϕ, ai〉w

∗ − lim
j

â
′

j .
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This proves Arens regularity of the map A × A
′

→ A
′

(
(a, a

′

) 7−→ a.a
′

)
. Since A is

not reflexive, there exist bounded nets (ai) and (a
′

j) in A and A
′

, respectively such that

lim
i

lim
j
〈a

′

j , ai〉 6= lim
j

lim
i
〈a

′

j , ai〉, and hence the map A
′

× A → A
′

(
(a

′

, a) 7−→ a
′

.a
)
is not

Arens regular, because

w∗ − lim
j

w
∗ − lim

i
â
′

jai = w∗ − lim
j

w
∗ − lim

i
〈a

′

j , ai〉ϕ

6= w∗ − lim
i

w
∗ − lim

j
〈a

′

j , ai〉ϕ.

By using a similar reasoning we conclude that the map

A
′′

× A
′′′

→ A
′′′

(
(a

′′

, a
′′′

) 7−→ a
′′

.a
′′′

)
is Arens regular, but the map

A
′′′

×A
′′

→ A
′′′

(
(a

′′′

, a
′′

) 7−→ a
′′′

.a
′′

)
is not Arens regular. It is obvious that the algebras

A and A(2n) for all n ≥ 1 are Arens regular. In fact we have (Aϕ)
′′

= (A
′′

)ϕ. Finally, all
the conditions of propositions in section 2 hold , but the conditions of section 3 hold in
commutative case.
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INSERTION OF A CONTRA-CONTINUOUS FUNCTION
BETWEEN TWO COMPARABLE CONTRA-α−CONTINUOUS

(CONTRA-C−CONTINUOUS) FUNCTIONS ∗

Majid Mirmiran and Binesh Naderi

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given
for the insertion of a contra-continuous function between two comparable real-valued
functions on topological spaces on which the kernel of sets is open.
Keywords: Insertion, Strong binary relation, C−open set, Semi-preopen set, α−open
set, Contra-continuous function, Lower cut set.

1. Introduction

The concept of a C−open set in a topological space was introduced by E. Hatir,
T. Noiri and S. Yksel in [12]. The authors define a set S to be a C−open set if
S = U ∩A, where U is open and A is semi-preclosed. A set S is a C−closed set if its
complement (denoted by Sc) is a C−open set or equivalently if S = U ∪ A, where
U is closed and A is semi-preopen. The authors show that a subset of a topological
space is open if and only if it is an α−open set and a C−open set or equivalently
a subset of a topological space is closed if and only if it is an α−closed set and a
C−closed set. This enables them to provide the following decomposition of continu-
ity: a function is continuous if and only if it is α−continuous and C−continuous or
equivalently a function is contra-continuous if and only if it is contra-α−continuous
and contra-C−continuous.
Recall that a subset A of a topological space (X, τ) is called α−open if A is the
difference of an open and a nowhere dense subset of X . A set A is called α−closed

if its complement is α−open or equivalently if A is the union of a closed and a
nowhere dense set. Sets which are dense in some regular closed subspace are called
semi-preopen or β−open. A set is semi-preclosed or β−closed if its complement is
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semi-preopen or β−open.
In [7] it was shown that a set A is β−open if and only if A ⊆ Cl(Int(Cl(A))). A
generalized class of closed sets was considered by Maki in [19]. He investigated the
sets that can be represented as union of closed sets and called them V−sets. Com-
plements of V−sets, i.e., sets that are intersection of open sets are called Λ−sets
[19].
Recall that a real-valued function f defined on a topological space X is called
A−continuous [23] if the preimage of every open subset of R belongs to A, where
A is a collection of subsets of X . Most of the definitions of function used through-
out this paper are consequences of the definition of A−continuity. However, for
unknown concepts the reader may refer to [4, 11]. In the recent literature many
topologists have focused their research in the direction of investigating different
types of generalized continuity.
J. Dontchev in [5] introduced a new class of mappings called contra-continuity.S.
Jafari and T. Noiri in [13, 14] exhibited and studied among others a new weaker
form of this class of mappings called contra-α−continuous. A good number of re-
searchers have also initiated different types of contra-continuous like mappings in
the papers [1, 3, 8, 9, 10, 22].
Hence, a real-valued function f defined on a topological space X is called contra-

continuous (resp. contra-C−continuous , contra-α−continuous) if the preimage of
every open subset of R is closed (resp. C−closed , α−closed) in X [5].
Results of Katětov [15, 16] concerning binary relations and the concept of an in-
definite lower cut set for a real-valued function, which is due to Brooks [2], are
used in order to give a necessary and sufficient conditions for the insertion of a
contra-continuous function between two comparable real-valued functions on such
topological spaces that Λ−sets or kernel of sets are open [19].
If g and f are real-valued functions defined on a space X , we write g ≤ f (resp.
g < f) in case g(x) ≤ f(x) (resp. g(x) < f(x)) for all x in X .
The following definitions are modifications of conditions considered in [17].
A property P , defined relative to a real-valued function on a topological space, is a
cc−property provided that any constant function has property P and provided that
the sum of a function with property P and any contra-continuous function also has
property P . If P1 and P2 are cc−properties, the following terminology is used:(i)
A space X has the weak cc−insertion property for (P1, P2) if and only if for any
functions g and f on X such that g ≤ f, g has property P1 and f has property
P2, then there exists a contra-continuous function h such that g ≤ h ≤ f .(ii) A
space X has the cc−insertion property for (P1, P2) if and only if for any functions g
and f on X such that g < f, g has property P1 and f has property P2, then there
exists a contra-continuous function h such that g < h < f .(iii) A space X has the
strong cc−insertion property for (P1, P2) if and only if for any functions g and f on
X such that g ≤ f, g has property P1 and f has property P2, then there exists a
contra-continuous function h such that g ≤ h ≤ f and if g(x) < f(x) for any x in
X, then g(x) < h(x) < f(x).(iv) A space X has the weakly cc−insertion property

for (P1, P2) if and only if for any functions g and f on X such that g < f, g has
property P1 , f has property P2 and f − g has property P2, then there exists a
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contra-continuous function h such that g < h < f .
In this paper, for a topological space whose Λ−sets or kernel of sets are open, is
given a sufficient condition for the weak cc−insertion property. Also for a space with
the weak cc−insertion property, we give a necessary and sufficient condition for the
space to have the cc−insertion property. Several insertion theorems are obtained
as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for the insertability of a contra-continuous
function, the necessary definitions and terminology are stated.
Definition 2.1. Let A be a subset of a topological space (X, τ). We define the
subsets AΛ and AV as follows:
AΛ = ∩{O : O ⊇ A,O ∈ (X, τ)} and AV = ∪{F : F ⊆ A,F c ∈ (X, τ)}.
In [6, 18, 21], AΛ is called the kernel of A.
The family of all α−open, α−closed, C−open and C−closed will be denoted by
αO(X, τ), αC(X, τ), CO(X, τ) and CC(X, τ), respectively.
We define the subsets α(AΛ), α(AV ), C(AΛ) and C(AV ) as follows:
α(AΛ) = ∩{O : O ⊇ A,O ∈ αO(X, τ)},
α(AV ) = ∪{F : F ⊆ A,F ∈ αC(X, τ)},
C(AΛ) = ∩{O : O ⊇ A,O ∈ CO(X, τ)} and
C(AV ) = ∪{F : F ⊆ A,F ∈ CC(X, τ)}.
α(AΛ) (resp. C(AΛ)) is called the α− kernel (resp. C − kernel) of A.
The following first two definitions are modifications of conditions considered in [15,
16].
Definition 2.2. If ρ is a binary relation in a set S then ρ̄ is defined as follows:
x ρ̄ y if and only if y ρ v implies x ρ v and u ρ x implies u ρ y for any u and v in S.
Definition 2.3. A binary relation ρ in the power set P (X) of a topological space
X is called a strong binary relation in P (X) in case ρ satisfies each of the following
conditions:
1) If Ai ρ Bj for any i ∈ {1, . . . ,m} and for any j ∈ {1, . . . , n}, then there exists
a set C in P (X) such that Ai ρ C and C ρ Bj for any i ∈ {1, . . . ,m} and any
j ∈ {1, . . . , n}.
2) If A ⊆ B, then A ρ̄ B.
3) If A ρ B, then AΛ ⊆ B and A ⊆ BV .
The concept of a lower indefinite cut set for a real-valued function was defined by
Brooks [2] as follows:
Definition 2.4. If f is a real-valued function defined on a space X and if {x ∈ X :
f(x) < ℓ} ⊆ A(f, ℓ) ⊆ {x ∈ X : f(x) ≤ ℓ} for a real number ℓ, then A(f, ℓ) is called
a lower indefinite cut set in the domain of f at the level ℓ.
We now give the following main result:
Theorem 2.1. Let g and f be real-valued functions on the topological space X , in
which kernel sets are open, with g ≤ f . If there exists a strong binary relation ρ on
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the power set of X and if there exist lower indefinite cut sets A(f, t) and A(g, t) in
the domain of f and g at the level t for each rational number t such that if t1 < t2
then A(f, t1) ρ A(g, t2), then there exists a contra-continuous function h defined on
X such that g ≤ h ≤ f .
Proof. Let g and f be real-valued functions defined on the X such that g ≤ f . By
hypothesis there exists a strong binary relation ρ on the power set of X and there
exist lower indefinite cut sets A(f, t) and A(g, t) in the domain of f and g at the
level t for each rational number t such that if t1 < t2 then A(f, t1) ρ A(g, t2).
Define functions F and G mapping the rational numbers Q into the power set of X
by F (t) = A(f, t) and G(t) = A(g, t). If t1 and t2 are any elements of Q with t1 < t2,
then F (t1) ρ̄ F (t2), G(t1) ρ̄ G(t2), and F (t1) ρ G(t2). By Lemmas 1 and 2 of [16] it
follows that there exists a function H mapping Q into the power set of X such that
if t1 and t2 are any rational numbers with t1 < t2, then F (t1) ρ H(t2), H(t1) ρ H(t2)
and H(t1) ρ G(t2).
For any x in X , let h(x) = inf{t ∈ Q : x ∈ H(t)}.
We first verify that g ≤ h ≤ f : If x is in H(t) then x is in G(t′) for any t′ > t;
since x is in G(t′) = A(g, t′) implies that g(x) ≤ t′, it follows that g(x) ≤ t. Hence
g ≤ h. If x is not in H(t), then x is not in F (t′) for any t′ < t; since x is not in
F (t′) = A(f, t′) implies that f(x) > t′, it follows that f(x) ≥ t. Hence h ≤ f .
Also, for any rational numbers t1 and t2 with t1 < t2, we have h−1(t1, t2) =
H(t2)

V \ H(t1)
Λ. Hence h−1(t1, t2) is closed in X , i.e., h is a contra-continuous

function on X . �
The above proof used the technique of theorem 1 in [15].
Theorem 2.2. Let P1 and P2 be cc−property and X be a space that satisfies
the weak cc−insertion property for (P1, P2). Also assume that g and f are func-
tions on X such that g < f, g has property P1 and f has property P2.The space
X has the cc−insertion property for (P1, P2) if and only if there exist lower cut
sets A(f − g, 3−n+1) and there exists a decreasing sequence {Dn} of subsets of X
with empty intersection and such that for each n,X \Dn and A(f − g, 3−n+1) are
completely separated by contra-continuous functions.
Proof. Theorem 2.1 of [20].�

3. Applications

The abbreviations cαc and cCc are used for contra-α−continuous and contra-
C−continuous, respectively.
Before stating the consequences of theorems 2.1, 2.2, we suppose that X is a topo-
logical space whose kernel sets are open.
Corollary 3.1. If for each pair of disjoint α−open (resp. C−open) sets G1, G2 of X
, there exist closed sets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1∩F2 = ∅

then X has the weak cc−insertion property for (cαc, cαc) (resp. (cCc, cCc)).
Proof. Let g and f be real-valued functions defined on X , such that f and g

are cαc (resp. cCc), and g ≤ f .If a binary relation ρ is defined by A ρ B in case
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α(AΛ) ⊆ α(BV ) (resp. C(AΛ) ⊆ C(BV )), then by hypothesis ρ is a strong binary
relation in the power set of X . If t1 and t2 are any elements of Q with t1 < t2, then

A(f, t1) ⊆ {x ∈ X : f(x) ≤ t1} ⊆ {x ∈ X : g(x) < t2} ⊆ A(g, t2);

since {x ∈ X : f(x) ≤ t1} is an α−open (resp. C−open) set and since {x ∈ X :
g(x) < t2} is an α−closed (resp. C−closed) set, it follows that α(A(f, t1)

Λ) ⊆
α(A(g, t2)

V ) (resp. C(A(f, t1)
Λ) ⊆ C(A(g, t2)

V )). Hence t1 < t2 implies that
A(f, t1) ρ A(g, t2). The proof follows from Theorem 2.1. �
Corollary 3.2. If for each pair of disjoint α−open (resp. C−open) sets G1, G2,
there exist closed sets F1 and F2 such that G1 ⊆ F1, G2 ⊆ F2 and F1 ∩ F2 = ∅

then every contra-α−continuous (resp. contra-C−continuous) function is contra-
continuous.
Proof. Let f be a real-valued contra-α−continuous (resp. contra-C−continuous)
function defined on X . Set g = f , then by Corollary 3.1, there exists a contra-
continuous function h such that g = h = f .�
Corollary 3.3. If for each pair of disjoint α−open (resp. C−open) sets G1, G2

of X , there exist closed sets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and
F1 ∩ F2 = ∅ then X has the strong cc−insertion property for (cαc, cαc) (resp.
(cCc, cCc)).
Proof. Let g and f be real-valued functions defined on the X , such that f and
g are cαc (resp. cCc), and g ≤ f . Set h = (f + g)/2, thus g ≤ h ≤ f and if
g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). Also, by Corollary 3.2, since
g and f are contra-continuous functions hence h is a contra-continuous function.�
Corollary 3.4. If for each pair of disjoint subsets G1, G2 of X , such that G1 is
α−open and G2 is C−open, there exist closed subsets F1 and F2 of X such that
G1 ⊆ F1, G2 ⊆ F2 and F1 ∩ F2 = ∅ then X have the weak cc−insertion property
for (cαc, cCc) and (cCc, cαc).
Proof. Let g and f be real-valued functions defined on X , such that g is cαc (resp.
cCc) and f is cCc (resp. cαc), with g ≤ f .If a binary relation ρ is defined by A ρ B

in case C(AΛ) ⊆ α(BV ) (resp. α(AΛ) ⊆ C(BV )), then by hypothesis ρ is a strong
binary relation in the power set of X . If t1 and t2 are any elements of Q with
t1 < t2, then

A(f, t1) ⊆ {x ∈ X : f(x) ≤ t1} ⊆ {x ∈ X : g(x) < t2} ⊆ A(g, t2);

since {x ∈ X : f(x) ≤ t1} is a C−open (resp. α−open) set and since {x ∈ X :
g(x) < t2} is an α−closed (resp. C−closed) set, it follows that C(A(f, t1)

Λ) ⊆
α(A(g, t2)

V ) (resp. α(A(f, t1)
Λ) ⊆ C(A(g, t2)

V )). Hence t1 < t2 implies that
A(f, t1) ρ A(g, t2). The proof follows from Theorem 2.1. �
Before stating consequences of Theorem 2.2, we state and prove the necessary lem-
mas.
Lemma 3.1. The following conditions on the space X are equivalent:
(i) For each pair of disjoint subsets G1, G2 of X , such that G1 is α−open and G2

is C−open, there exist closed subsets F1, F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and
F1 ∩ F2 = ∅.
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(ii) If G is a C−open (resp. α−open) subset of X which is contained in an α−closed
(resp. C−closed) subset F of X , then there exists a closed subset H of X such that
G ⊆ H ⊆ HΛ ⊆ F .
Proof. (i) ⇒ (ii) Suppose that G ⊆ F , where G and F are C−open (resp. α−open)
and α−closed (resp. C−closed) subsets of X , respectively. Hence, F c is an α−open
(resp. C−open) and G ∩ F c = ∅.
By (i) there exists two disjoint closed subsets F1, F2 such that G ⊆ F1 and F c ⊆ F2.
But

F c ⊆ F2 ⇒ F c
2 ⊆ F,

and
F1 ∩ F2 = ∅ ⇒ F1 ⊆ F c

2

hence
G ⊆ F1 ⊆ F c

2 ⊆ F

and since F c
2 is an open subset containing F1, we conclude that FΛ

1 ⊆ F c
2 , i.e.,

G ⊆ F1 ⊆ FΛ
1 ⊆ F.

By setting H = F1, condition (ii) holds.
(ii) ⇒ (i) Suppose that G1, G2 are two disjoint subsets of X , such that G1 is α−open
and G2 is C−open.
This implies that G2 ⊆ Gc

1 and Gc
1 is an α−closed subset of X . Hence by (ii) there

exists a closed set H such that G2 ⊆ H ⊆ HΛ ⊆ Gc
1.

But
H ⊆ HΛ ⇒ H ∩ (HΛ)c = ∅

and
HΛ ⊆ Gc

1 ⇒ G1 ⊆ (HΛ)c.

Furthermore, (HΛ)c is a closed subset of X . Hence G2 ⊆ H,G1 ⊆ (HΛ)c and
H ∩ (HΛ)c = ∅. This means that condition (i) holds.�
Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets
G1, G2 of X , where G1 is α−open and G2 is C−open, can be separated by closed
subsets of X then there exists a contra-continuous function h : X → [0, 1] such that
h(G2) = {0} and h(G1) = {1}.
Proof. Suppose G1 and G2 are two disjoint subsets of X , where G1 is α−open and
G2 is C−open. Since G1 ∩ G2 = ∅, hence G2 ⊆ Gc

1. In particular, since Gc
1 is an

α−closed subset of X containing the C−open subset G2 of X ,by Lemma 3.1, there
exists a closed subset H1/2 such that

G2 ⊆ H1/2 ⊆ HΛ
1/2 ⊆ Gc

1.

Note that H1/2 is also an α−closed subset of X and contains G2, and Gc
1 is an

α−closed subset of X and contains the C−open subset HΛ
1/2

of X . Hence, by
Lemma 3.1, there exists closed subsets H1/4 and H3/4 such that

G2 ⊆ H1/4 ⊆ HΛ
1/4 ⊆ H1/2 ⊆ HΛ

1/2 ⊆ H3/4 ⊆ HΛ
3/4 ⊆ Gc

1.



Insertion of a Contra-Continuous Function 19

By continuing this method for every t ∈ D, where D ⊆ [0, 1] is the set of rational
numbers that their denominators are exponents of 2, we obtain closed subsets Ht

with the property that if t1, t2 ∈ D and t1 < t2, then Ht1 ⊆ Ht2 . We define the
function h on X by h(x) = inf{t : x ∈ Ht} for x 6∈ G1 and h(x) = 1 for x ∈ G1.
Note that for every x ∈ X, 0 ≤ h(x) ≤ 1, i.e., h maps X into [0,1]. Also, we note
that for any t ∈ D,G2 ⊆ Ht; hence h(G2) = {0}. Furthermore, by definition,
h(G1) = {1}. It remains only to prove that h is a contra-continuous function on
X . For every α ∈ R, we have if α ≤ 0 then {x ∈ X : h(x) < α} = ∅ and if
0 < α then {x ∈ X : h(x) < α} = ∪{Ht : t < α}, hence, they are closed sub-
sets of X . Similarly, if α < 0 then {x ∈ X : h(x) > α} = X and if 0 ≤ α then
{x ∈ X : h(x) > α} = ∪{(HΛ

t )
c : t > α} hence, every of them is a closed subset.

Consequently h is a contra-continuous function. �
Lemma 3.3. Suppose that X is a topological space such that every two disjoint
C−open and α−open subsets of X can be separated by closed subsets of X . The
following conditions are equivalent:
(i) Every countable convering of C−closed (resp. α−closed) subsets of X has a re-
finement consisting of α−closed (resp. C−closed) subsets of X such that for every
x ∈ X , there exists a closed subset of X containing x such that it intersects only
finitely many members of the refinement.
(ii) Corresponding to every decreasing sequence {Gn} of C−open (resp. α−open)
subsets of X with empty intersection there exists a decreasing sequence {Fn} of
α−closed (resp. C−closed) subsets of X such that

⋂
∞

n=1
Fn = ∅ and for every

n ∈ N, Gn ⊆ Fn.
Proof. (i) ⇒ (ii) Suppose that {Gn} is a decreasing sequence of C−open (resp.
α−open) subsets of X with empty intersection. Then {Gc

n : n ∈ N} is a countable
covering of C−closed (resp. α−closed) subsets of X . By hypothesis (i) and Lemma
3.1, this covering has a refinement {Vn : n ∈ N} such that every Vn is a closed subset
of X and V Λ

n ⊆ Gc
n. By setting Fn = (V Λ

n )c, we obtain a decreasing sequence of
closed subsets of X with the required properties.
(ii) ⇒ (i) Now if {Hn : n ∈ N} is a countable covering of C−closed (resp. α−closed)
subsets of X , we set for n ∈ N, Gn = (

⋃n
i=1

Hi)
c. Then {Gn} is a decreasing se-

quence of C−open (resp. α−open) subsets of X with empty intersection. By (ii)
there exists a decreasing sequence {Fn} consisting of α−closed (resp. C−closed)
subsets of X such that

⋂
∞

n=1
Fn = ∅ and for every n ∈ N, Gn ⊆ Fn.Now we define

the subsets Wn of X in the following manner:
W1 is a closed subset of X such that F c

1 ⊆ W1 and WΛ
1 ∩G1 = ∅.

W2 is a closed subset of X such that WΛ
1 ∪F c

2 ⊆ W2 and WΛ
2 ∩G2 = ∅, and so on.

(By Lemma 3.1, Wn exists).
Then since {F c

n : n ∈ N} is a covering for X , hence {Wn : n ∈ N} is a covering for
X consisting of closed sets. Moreover, we have
(i) WΛ

n ⊆ Wn+1

(ii) F c
n ⊆ Wn

(iii) Wn ⊆
⋃n

i=1
Hi.

Now setting S1 = W1 and for n ≥ 2, we set Sn = Wn+1 \W
Λ
n−1.

Then since WΛ
n−1 ⊆ Wn and Sn ⊇ Wn+1 \Wn, it follows that {Sn : n ∈ N} consists
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of closed sets and covers X . Furthermore, Si ∩ Sj 6= ∅ if and only if |i − j| ≤ 1.
Finally, consider the following sets:

S1 ∩H1, S1 ∩H2

S2 ∩H1, S2 ∩H2, S2 ∩H3

S3 ∩H1, S3 ∩H2, S3 ∩H3, S3 ∩H4

...

Si ∩H1, Si ∩H2, Si ∩H3, Si ∩H4, · · · , Si ∩Hi+1

...

These sets are closed sets, cover X and refine {Hn : n ∈ N}. In addition, Si ∩ Hj

can intersect at most the sets in its row, immediately above, or immediately below
row.
Hence if x ∈ X and x ∈ Sn ∩Hm, then Sn ∩Hm is a closed set containing x that
intersects at most finitely many of sets Si ∩Hj . Consequently, {Si∩Hj : i ∈ N, j =
1, . . . , i + 1} refines {Hn : n ∈ N} such that its elements are closed sets, and for
every point in X we can find a closed set containing the point that intersects only
finitely many elements of that refinement.�
Corollary 3.5. If every two disjoint C−open and α−open subsets ofX can be sepa-
rated by closed subsets of X and, in addition, every countable covering of C−closed
(resp. α−closed) subsets of X has a refinement that consists of α−closed (resp.
C−closed) subsets of X such that for every point of X we can find a closed subset
containing that point such that it intersects only a finite number of refining mem-
bers then X has the weakly cc−insertion property for (cαc, cCc) (resp. (cCc, cαc)).
Proof. Since every two disjoint C−open and α−open sets can be separated by
closed subsets of X , therefore by Corollary 3.4, X has the weak cc−insertion prop-
erty for (cαc, cCc) and (cCc, cαc). Now suppose that f and g are real-valued func-
tions on X with g < f , such that g is cαc (resp. cCc), f is cCc (resp. cαc) and
f − g is cCc (resp. cαc). For every n ∈ N, set

A(f − g, 3−n+1) = {x ∈ X : (f − g)(x) ≤ 3−n+1}.

Since f − g is cCc (resp. cαc), hence A(f − g, 3−n+1) is a C−open (resp. α−open)
subset of X . Consequently, {A(f − g, 3−n+1)} is a decreasing sequence of C−open
(resp. α−open) subsets of X and furthermore since 0 < f − g, it follows that⋂

∞

n=1
A(f − g, 3−n+1) = ∅. Now by Lemma 3.3, there exists a decreasing sequence

{Dn} of α−closed (resp. C−closed) subsets of X such that A(f − g, 3−n+1) ⊆ Dn

and
⋂

∞

n=1
Dn = ∅. But by Lemma 3.2, the pair A(f − g, 3−n+1) and X \ Dn

of C−open (resp. α−open) and α−open (resp. C−open) subsets of X can be
completely separated by contra-continuous functions. Hence by Theorem 2.2, there
exists a contra-continuous function h defined on X such that g < h < f , i.e., X has
the weakly cc−insertion property for (cαc, cCc) (resp. (cCc, cαc)).�.
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KENMOTSU MANIFOLDS ADMITTING SCHOUTEN-VAN
KAMPEN CONNECTION
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Abstract. The objective of the present paper is to study the Kenmotsu manifold
admitting the Schouten-van Kampen connection. We study the Kenmotsu manifold
admitting the Schouten-van Kampen connection satisfying certain curvature conditions.
Also, we prove the equivalent conditions for the Ricci soliton in a Kenmotsu manifold
to be steady with respect to the Schouten-van Kampen connection.
Keywords: Ricci solitons, Kenmotsu manifolds, Schouten-van Kampen connection,
concircular curvature tensor, projective curvature tensor, conharmonic curvature tensor,
shrinking.

1. Introduction

The Schouten-van Kampen connection has been introduced for studying non-
holomorphic manifolds. It preserves - by parallelism - a pair of complementary
distributions on a differentiable manifold endowed with an affine connection [2] [9]
[17]. Then, Olszak studied the Schouten-van Kampen connection to adapt it to an
almost contact metric structure [14]. He characterized some classes of almost con-
tact metric manifolds with the Schouten-van Kampen connection and established
certain curvature properties with respect to this connection. Recently, Gopal Ghosh
[7] and Yildiz [24] studied the Schouten-van Kampen connection in Sasakian man-
ifolds and f -Kenmotsu manifolds, respectively. Kenmotsu manifolds introduced by
Kenmotsu in 1971[10] have been extensively studied by many authors [20] [15] [16].
In 1982, Hamilton [8] introduced the notion of Ricci flow to find a canonical metric
on a smooth manifold. Since then the Ricci flow has become a powerful tool for the
study of Riemannian manifolds. The Ricci soliton, considered to be a self-similar
solution to the Ricci flow is a Riemannian metric g on a manifold M , together with
a vector field V such that

(LVg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0,(1.1)
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where LV denotes the Lie derivative along V , and S and λ are respectively the
Ricci tensor and a constant. A Ricci soliton is said to be shrinking or steady or
expanding depending on whether λ is negative, zero or positive. A Ricci soliton
is said to be a gradient Ricci soliton if the vector field V is the gradient of some
smooth function f on M . In [18], Sharma started the study of Ricci solitons in
the K-contact geometry. In 2016, the authors in [21] explained the nature of Ricci
solitons in f -Kenmotsu manifolds with a semi-symmetric non-metric connection.
Ramesh Sharma et al. [18] [19], De et al. [4][1], and Nagaraja et al. [12] [11]
[13] extensively studied Ricci solitons in contact metric manifolds in many different
ways.
This paper is structured as follows. After a brief review of Kenmotsu manifolds
in Section 2, in Section 3 we obtain the expressions of the curvature tensor, Ricci
tensor and scalar curvature with respect to the Schouten-van Kampen connection,
study the curvature properties of the Kemotsu manifold admitting the Schouten-van
Kampen connection, and prove the conditions for the Kenmotsu manifold admitting
the Schouten-van Kampen connection to be isomorphic to the hyperbolic space.
In the last section we prove the equivalent conditions for the Ricci soliton in a
Kenmotsu manifold admitting the Schouten-van Kampen connection to be steady.

2. Preliminaries

A (2n+ 1)-dimensional smooth manifold M is said to be an almost contact metric
manifold if it admits an almost contact metric structure (φ, ξ, η, g) consisting of a
tensor field φ of type (1, 1), a vector field ξ, a 1-form η and a Riemannian metric g

compatible with (φ, ξ, η) satisfying

φ2X = −X + η(X)ξ, φξ = 0, g(X, ξ) = η(X), η(ξ) = 1, η ◦ φ = 0,(2.1)

and
g(φX, φY ) = g(X,Y )− η(X)η(Y ).(2.2)

An almost contact metric manifold is said to be a Kenmotsu manifold [3] if

(∇Xφ)Y = −g(X,φY )ξ − η(Y )φX,(2.3)

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold the following relations hold [6].

∇Xξ = X − η(X)ξ,(2.4)

(∇Xη)Y = g(∇Xξ, Y ),(2.5)

R(X,Y )ξ = η(X)Y − η(Y )X,(2.6)

S(X, ξ) = −2nη(X),(2.7)

S(φX, φY ) = S(X,Y ) + 2nη(X)η(Y ),(2.8)

for any vector fields X,Y, Z on M , where R denote the curvature tensor of type
(1, 3) on M .
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3. Kenmotsu manifolds admitting Schouten-van Kampen connection

Throughout this paper we associate ∗ with the quantities with respect to the
Schouten-van Kampen connection. The Schouten-van Kampen connection ∇∗ as-
sociated to the Levi-Civita connection ∇ is given by [14]

∇∗

XY = ∇XY − η(Y )∇Xξ + (∇Xη)(Y )ξ,(3.1)

for any vector fields X , Y on M .
Using (2.4) and (2.5), the above equation yields,

∇∗

X
Y = ∇XY + g(X,Y )ξ − η(Y )X.(3.2)

By taking Y = ξ in (3.2) and using (2.4) we obtain

∇∗

Xξ = 0.(3.3)

We now calculate the Riemann curvature tensor R∗ using (3.2) as follows:

R∗(X,Y )Z = R(X,Y )Z + g(Y, Z)X − g(X,Z)Y.(3.4)

Using (2.6) and taking Z = ξ in (3.4), we get

R∗(X,Y )ξ = 0.(3.5)

On contracting (3.4), we obtain the Ricci tensor S∗ of a Kenmotsu manifold with
respect to the Schouten-van Kampen connection ∇∗ as

S∗(Y, Z) = S(Y, Z) + 2ng(Y, Z).(3.6)

This gives
Q∗Y = QY + 2nY.(3.7)

Contracting with respect to Y and Z in (3.6), we get

r∗ = r + 2n(2n+ 1),(3.8)

where r∗ and r are the scalar curvatures with respect to the Schouten-van Kampen
connection ∇∗ and the Levi-Civita connection ∇, respectively.

From the above discussions we state the following:

Theorem 3.1. The curvature tensor R∗, the Ricci tensor S∗ and the scalar cur-
vature r∗ of a Kenmotsu manifold M with respect to the Schouten-van Kampen
connection ∇∗ are given by (3.4), (3.6) and (3.8), respectively. Further, the curva-
ture tensor R∗ of ∇∗ satisfies
i) R∗(X,Y )Z = −R∗(Y,X)Z,
ii) R∗(X,Y, Z,W ) +R∗(Y,X,Z,W ) = 0,
iii) R∗(X,Y, Z,W ) +R∗(X,Y,W,Z) = 0,
iv)R∗(X,Y )Z +R∗(Y, Z)X +R∗(Z,X)Y = 0,
v) S∗ is symmetric.
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From (3.6), it follows that

Theorem 3.2. A Kenmotsu manifold M admitting the Schouten-van Kampen
connection is Ricci flat with respect to the Schouten-van Kampen connection if and
only if M is an Einstein manifold with respect to Levi-Civita connection.

Now, if R∗(X,Y )Z = 0, then by virtue of (3.4), we get

R(X,Y, Z, U) = g(X,Z)g(Y, U)− g(Y, Z)g(X,U).(3.9)

Thus, we state that

Theorem 3.3. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. The curvature tensor of M with respect to the Schouten-van Kam-
pen connection vanishes if and only if M with respect to the Levi-Civita connection
is isomorphic to the hyperbolic space H2n+1(−1).

An interesting invariant of the concircular transformation is concircular curvature
tensor. The concircular curvature tensor [22] C∗ with respect to the Schouten-van
Kampen connection ∇∗ is defined by

C∗(X,Y )Z = R∗(X,Y )Z −
r∗

2n(2n+ 1)
{g(Y, Z)X − g(X,Z)Y },(3.10)

for all vector fields X , Y , Z on M .
If C∗ vanishes, the conditions in theorem (3.1) are satisfied.

Definition 3.1. A Kenmotsu manifold with respect to the Schouten-van Kampen
connection ∇∗ is said to be ξ- concircularly flat if C∗(X,Y )ξ = 0.

In view of (3.4) and (3.8) in (3.10), we get

C∗(X,Y )Z = R(X,Y )Z + g(Y, Z)X − g(X,Z)Y

−
r + 2n(2n+ 1)

2n(2n+ 1)
{g(Y, Z)X − g(X,Z)Y }.(3.11)

By taking Z = ξ in (3.11) and then using (2.1) and (2.6), we find

C∗(X,Y )ξ =
r + 2n(2n+ 1)

2n(2n+ 1)
R(X,Y )ξ.(3.12)

Thus, from (3.4), (3.8), (3.11) and (3.12), we have the following theorem:

Theorem 3.4. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. In M , the following three conditions are equivalent:
i) M is ξ- concircularly flat,
ii) r = −2n(2n+ 1),
iii) r∗ = 0.
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Definition 3.2. A Kenmotsu manifold is said to be φ-concircularly flat with re-
spect to the Schouten-van Kampen connection ∇∗ if

g(C∗(φX, φY )φZ, φW ) = 0,(3.13)

for any vector fields X,Y, Z on M .

Using (3.10) in (3.13), we have

g(R∗(φX, φY )φZ, φW ) =
r∗

2n(2n+ 1)
{g(φY, φZ)g(φX, φW )

− g(φX, φZ)g(φY, φW )}.(3.14)

Let {e1, e2, e3, .......e2n+1} be a local orthonormal basis of vector fields in M . Then
{φe1, φe2, φe3, .......φe2n+1} is also a local orthonormal basis. If we put X = W = ei
in (3.14) and summing up with respect to i, 1 6 i 6 2n+ 1, we obtain

2n∑

i=1

g(R∗(φei, φY )φZ, φei) =
r∗

2n(2n+ 1)

2n∑

i=1

{g(φY, φZ)g(φei, φei)

− g(φei, φZ)g(φY, φei)}.(3.15)

From (3.15), it follows that

S∗(φY, φZ) =
r∗(2n− 1)

2n(2n+ 1)
g(φY, φZ).(3.16)

Using (2.1), (3.6) and (3.8) in (3.16), we get

S(φY, φZ) + 2ng(φY, φZ) =
(r + 2n(2n+ 1))(2n− 1)

2n(2n+ 1)
g(φY, φZ).(3.17)

By using (2.2) and (2.8) in (3.17), we obtain

S(Y, Z) + 2nη(Y )η(Z) + {2n−
(r + 2n(2n+ 1))(2n− 1)

2n(2n+ 1)
}g(φY, φZ) = 0.(3.18)

Hence by contracting (3.18), we get

r = −2n.(3.19)

By substituting the equation (3.19) in (3.10), we get

C∗(X,Y )Z = R(X,Y )Z +
1

2n+ 1
{g(Y, Z)X − g(X,Z)Y }.(3.20)

This leads to the following:

Theorem 3.5. Let the Kenmotsu manifold M admitting the Schouten-van Kam-
pen connection be φ-concircularly flat. Then M is of constant sectional curvature
− 1

2n+1 if and only if the concircular curvature tensor C∗ vanishes.
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We consider

C∗.S∗ = S∗(C∗(X,Y )Z,U) + S∗(Z,C∗(X,Y )U).(3.21)

By making use of (3.10) and (3.6) in (3.21), we obtain

C∗.S∗ = S(R(X,Y )Z −
r

2n(2n+ 1)
{g(Y, Z)X − g(X,Z)Y }, U)

+ S(Z,R(X,Y )U −
r

2n(2n+ 1)
{g(Y, U)X − g(X,U)Y }).(3.22)

Suppose C∗.S∗ = 0. Then we have

S∗(C∗(X,Y )Z,U) + S∗(Z,C∗(X,Y )U) = 0.(3.23)

Taking U = ξ in (3.23) and using (3.6), it follows that

S∗(Z,C∗(X,Y )ξ) = 0.(3.24)

Making use of (2.1), (2.6) and (3.11) in (3.24), we get

r + 2n(2n+ 1)

2n(2n+ 1)
S∗(Z, η(X)Y − η(Y )X) = 0.(3.25)

Replacing X by ξ in (3.25) and using (2.1) and (3.6), we see that

r + 2n(2n+ 1)

2n(2n+ 1)
{S(Z, Y ) + 2ng(Z, Y )} = 0.(3.26)

Contracting (3.26) with respect to Y and Z, we get

r = −2n(2n+ 1).(3.27)

From (3.22) and (3.27), we obtain

S(Y, Z) = −2ng(Y, Z).(3.28)

Thus M is an Einstein manifold.
Again, by substituting (3.27) in (3.11), we obtain

C∗(X,Y )Z = R(X,Y )Z + {g(Y, Z)X − g(X,Z)Y }.(3.29)

Thus, from the above discussion and using (3.4), (3.8) and (3.12), we state the
following:

Theorem 3.6. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. Then C∗.S∗ = 0 if and only if S(Y, Z) = −2ng(Y, Z).
Further if C∗ = 0 then M is isomorphic to the hyperbolic space H2n+1(−1).
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Theorem 3.7. If in a Kenmotsu manifold M admitting the Schouten-van Kampen
connection, C∗.S∗ = 0 holds, then the following three conditions are equivalent:
i) M is ξ- concircularly flat,
ii) r = −2n(2n+ 1),
iii) r∗ = 0.

The projective curvature tensor [23] P ∗ with respect to the Schouten-van Kampen
connection ∇∗ is defined by

P ∗(X,Y )Z = R∗(X,Y )Z −
1

2n
{S∗(Y, Z)X − S∗(X,Z)Y }.(3.30)

If the projective curvature tensor P ∗ with respect to the Schouten-van Kampen
connection ∇∗ vanishes, then from (3.30), we have

R∗(X,Y )Z =
1

2n
{S∗(Y, Z)X − S∗(X,Z)Y }.(3.31)

Now in view of (3.4) and (3.6), (3.31) takes the form

g(R(X,Y )Z,W ) + g(Y, Z)g(X,W )− g(X,Z)g(Y,W ) =

1

2n
[{S(Y, Z) + 2ng(Y, Z)}g(X,W )− {S(X,Z) + 2ng(X,Z)}g(Y,W )].(3.32)

Now taking W = ξ in (3.32), we obtain

S(Y, Z)η(X)− S(X,Z)η(Y ) = 2n{g(X,Z)η(Y )− g(Y, Z)η(X)}.(3.33)

Again, setting X = ξ in (3.33), we get

S(Y, Z) = −2ng(Y, Z).(3.34)

Contracting the above equation (3.34), we get

r = −2n(2n+ 1).(3.35)

Using (3.34) in (3.31), we have R∗ = 0.
Thus we state the following:

Theorem 3.8. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. In M , the vanishing of the projective curvature tensor with respect
to the Schouten-van Kampen connection leads to the vanishing of the curvature
tensor with respect to the Schouten-van Kampen connection.

By making use of (3.4) and (3.6) in (3.30), we get

P ∗(X,Y )Z = R(X,Y )Z −
1

2n
{S(Y, Z)X − S(X,Z)Y }.(3.36)
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Suppose (P ∗(X,Y ).S∗)(Z,U) = 0 holds in a Kenmotsu manifold M . Then we
have

S∗(P ∗(X,Y )Z,U) + S∗(Z, P ∗(X,Y )U) = 0.(3.37)

Taking X = ξ in the equation (3.37), we get

S∗(P ∗(ξ, Y )Z,U) + S∗(Z, P ∗(ξ, Y )U) = 0.(3.38)

By using (3.36), equation (3.38) turns into

S∗(Y, Z)η(U) + S∗(Y, U)η(Z) = 0.(3.39)

In view of the equation (3.6), (3.39) becomes

S(Y, Z)η(U) + S(Y, U)η(Z) + 2n{g(Y, Z)η(U) + g(Y, U)η(Z)} = 0.(3.40)

In (3.40), taking U = ξ and contracting with respect to Y and Z, we get

S(Y, Z) = −2ng(Y, Z).(3.41)

and
r = −2n(2n+ 1).(3.42)

Again, by substituting (3.42) in (3.30), we obtain

P ∗(X,Y )Z = R(X,Y )Z + {g(Y, Z)X − g(X,Z)Y }.(3.43)

Thus we can state that

Theorem 3.9. In a Kenmotsu manifold M admitting the Schouten-van Kampen
connection, P ∗.S∗ = 0 if and only if S(Y, Z) = −2ng(Y, Z).
Further, if P ∗ = 0 then M is isomorphic to the hyperbolic space H2n+1(−1).

The conharmonic curvature tensor [5] K∗ with respect to the Schouten-van Kampen
connection ∇∗ is defined by

K∗(X,Y )Z = R∗(X,Y )Z −
1

2n− 1
{S∗(Y, Z)X − S∗(X,Z)Y

+ g(Y, Z)Q∗X − g(X,Z)Q∗Y }.(3.44)

If the conharmonic curvature tensor K∗ with respect to the Schouten-van Kampen
connection ∇∗ vanishes, then from (3.44), we have

R∗(X,Y )Z =
1

2n− 1
{S∗(Y, Z)X − S∗(X,Z)Y

+ g(Y, Z)Q∗X − g(X,Z)Q∗Y }.(3.45)
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By using (3.4), (3.6) and (3.7) in (3.45), we get

g(R(X,Y )Z,W ) + g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

=
1

2n− 1
[{S(Y, Z) + 4ng(Y, Z)}g(X,W )

− {S(X,Z) + 4ng(X,Z)}g(Y,W )

+ S(X,W )g(Y, Z)− S(Y,W )g(X,Z)].(3.46)

Taking W = ξ in (3.46), we obtain

S(Y, Z)η(X)− S(X,Z)η(Y )− 2n{g(X,Z)η(Y )− g(Y, Z)η(X)} = 0.(3.47)

Taking X = ξ in (3.47), we get

S(Y, Z) = −2ng(Y, Z).(3.48)

Contracting the equation (3.48), we get

r = −2n(2n+ 1).(3.49)

Using (3.48) in (3.45), we have R∗ = 0.

Thus we state the following :

Theorem 3.10. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. In M , the vanishing of the conharmonic curvature tensor with re-
spect to the Schouten-van Kampen connection leads to the vanishing of the curvature
tensor with respect to the Schouten-van Kampen connection.

4. Ricci solitons in Kenmotsu manifold admitting Schouten-van
Kampen connection

Suppose the Kenmotsu manifold M admits a Ricci soliton with respect to the
Schouten-van Kampen connection ∇∗. Then

(L∗

V g)(X,Y ) + 2S∗(X,Y ) + 2λg(X,Y ) = 0.(4.1)

If the potential vector field V is the structure vector field ξ, then since ξ is a parallel
vector field with respect to the Schouten-van Kampen connection (from (3.3)), the
first term in the equation (4.1) becomes zero, hence M reduces to an Einstein
manifold. In this case, the results in Theorem (3.6) and (3.9) hold.
If V is pointwise collinear with the structure vector field ξ, i.e. V = bξ, where b is
a function on M , then the equation (1.1) implies that

bg(∇∗

X
ξ, Y ) + (Xb)η(Y ) + bg(X,∇∗

Y
ξ) + (Y b)η(X) +

2S∗(X,Y ) + 2λg(X,Y ) = 0.(4.2)
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Using (3.3) and (3.6) in (4.2), it follows that

(Xb)η(Y ) + (Y b)η(X) + 2S(X,Y ) + 2{2n+ λ}g(X,Y ) = 0.(4.3)

By setting Y = ξ in (4.3) and using (2.7), we obtain

(Xb) = −{2λ+ ξb}η(X).(4.4)

Again replacing X by ξ in (4.4), we get

(ξb) = −λ.(4.5)

Substituting this in (4.4), we have

(Xb) = −λη(X).(4.6)

By applying d on (4.6), we get
λdη = 0.(4.7)

Since dη 6= 0 from (4.7), we have
λ = 0.(4.8)

Substituting (4.8) in (4.6), we conclude that b is a constant. Hence it is verified
from (4.3) that

S(X,Y ) = −(2n+ λ)g(X,Y ) + λη(X)η(Y ).(4.9)

This leads to the following:

Theorem 4.1. If a Kenmotsu manifold with respect to the Schouten-van Kampen
connection admits a Ricci soliton (g, V, λ) with V , pointwise collinear with ξ, then
the manifold is an η-Einstein manifold and the Ricci soliton is steady.
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SOME SYMMETRIC PROPERTIES OF KENMOTSU MANIFOLDS

ADMITTING SEMI-SYMMETRIC METRIC CONNECTION

Venkatesha Venkatesh∗, Arasaiah Arasaiah,

Vishnuvardhana Srivaishnava Vasudeva

and Naveen Kumar Rahuthanahalli Thimmegowda

Abstract. The objective of the present paper is to study some symmetric properties
of the Kenmotsu manifold endowed with a semi-symmetric metric connection. Here we
consider pseudo-symmetric, Ricci pseudo-symmetric, projective pseudo-symmetric and
φ-projective semi-symmetric Kenmotsu manifolds with respect to the semi-symmetric
metric connection. Finally, we provide an example of the 3-dimensional Kenmotsu
manifold admitting a semi-symmetric metric connection which verifies our result.
Keywords: Kenmotsu manifold; projective curvature tensor; semi-symmetric metric
connection; η-Einstein manifold.

1. Introduction

In 1932, Hayden [12] introduced the idea of metric connection with a torsion on
a Riemannian manifold. By considering the torsion tensor of a linear connection,
Friedmann and Schouten [11] gave a new connection called semi-symmetric connec-
tion. The torsion tensor with respect to the semi-symmetric connection ∇̄ is given
by

T̄ (X,Y ) = ∇̄XY − ∇̄Y X − [X,Y ].(1.1)

The connection ∇̄ is called a semi-symmetric metric connection [12] if ∇̄g = 0,
otherwise, non-metric connection. A relation between the semi-symmetric metric
connection ∇̄ and the Levi-Civita connection ∇ on (M, g) established by Yano [18]
is given by

∇̄XY = ∇XY + η(Y )X − g(X,Y )ξ.(1.2)

Semi-symmetric manifolds form a subclass of the class of pseudo-symmetric man-
ifolds. The concept of pseudo-symmetric manifold was introduced by Chaki and
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Chaki [8] and Deszcz [10] in two different ways. Here we study the properties of
pseudo-symmetric manifolds with a semi-symmetric metric connection in the Deszcz
sense. An n-dimensional Riemannian manifold M is called pseudo-symmetric in the
sense of Deszcz [10] if the Riemannian curvature tensor R satisfies the following re-
lation

(R(X,Y ) ·R)(U, V )W = LR((X ∧g Y ) ·R)(U, V )W,(1.3)

for all the vector fields X,Y, Z, U, V,W ∈ TM . Where LR is a smooth function on
M and X ∧g Y is an endomorphism defined by

(X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y.(1.4)

The notion of semi-symmetric metric connection has been weakened by many ge-
ometers such as [2, 3, 5, 9, 15, 17] etc., with different structures of manifolds
and submanifolds. In particular, De [1] and Bagewadi et. al. [4] studied semi-
symmetric metric connection on Kenmotsu manifolds with a projective curvature
tensor. Also in [16], Singh et. al. studied the semi-symmetric metric connection in
an ǫ-Kenmotsu manifold.

The projective curvature tensor P̄ with respect to the semi-symmetric metric
connection on a Kenmotsu manifold is defined by [1]

P̄ (X,Y )Z = R̄(X,Y )Z −
1

n− 1
[S̄(Y, Z)X − S̄(X,Y )Z],(1.5)

for X,Y, Z ∈ χ(M). Here S̄ is the Ricci tensor with respect to the semi-symmetric
metric connection.

Further, a relation between the curvature tensor R̄ of the semi-symmetric metric
connection ∇̄ and the curvature tensor R of the Levi-Civita connection ∇ is given
by [18]

R̄(X,Y )Z = R(X,Y )Z − α(Y, Z)X + α(X,Z)Y(1.6)

− g(Y, Z)LX + g(X,Z)LY,

where α is a tensor field of type (0,2) and L is a tensor field of type (1,1) which is
given by

α(Y, Z) = g(LY,Z) = (∇Y η)(Z)− η(Y )η(Z) +
1

2
η(ξ)g(Y, Z),(1.7)

for any vector fields X,Y, Z ∈ χ(M). From (1.6), it follows that

S̄(Y, Z) = S(Y, Z)− (n− 2)α(Y, Z)− ag(Y, Z),(1.8)

where S̄ denotes the Ricci tensor with respect to ∇̄ and a=trace of α.

Motivated by these studies, we investigate the semi-symmetric metric connec-
tion due to Yano [18] on Kenmotsu manifolds. The paper is organized as follows.
After giving preliminaries and basic results of the Kenmotsu manifold in Section
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2, in Section 3 we study pseudo-symmetric Kenmotsu manifolds with respect to
the semi-symmetric metric connection, proving that either LR̄ = −2 or the mani-
fold is η-Einstein. In the next section we prove that in a Ricci pseudo-symmetric
Kenmotsu manifold with respect to the semi-symmetric metric connection, either
LS̄ = −2 or the manifold is η-Einstein. Sections 5 and 6 are devoted to the study
of projective pseudo-symmetric and φ-projective semi-symmetric Kenmotsu mani-
folds with respect to the semi-symmetric metric connection. Finally, we construct
an example of a 3-dimensional Kenmotsu manifold admitting the semi-symmetric
metric connection and verify the results.

2. Preliminaries

Let M be an n-dimensional almost contact Riemannian manifold equipped with
the almost contact metric structure (φ, ξ, η, g), where φ is a (1,1) tensor field, ξ is a
characteristic vector field, η is a 1-form and g is the Riemannian metric satisfying
the following conditions [7];

φ2(X) = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, g(X, ξ) = η(X),(2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.2)

for all vector fields X , Y on M . If an almost contact metric manifold satisfies

(∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX,(2.3)

thenM is called a Kenmotsu manifold [14]. Here∇ denotes the operator of covariant
differentiation with respect to g. From (2.3), it follows that

∇Xξ = X − η(X)ξ,(2.4)

(∇Xη)(Y ) = g(X,Y )− η(X)η(Y ).(2.5)

In a Kenmotsu manifold M , the following relations hold:

η(R(X,Y )Z) = [g(X,Z)η(Y )− g(Y, Z)η(X)],(2.6)

(a) R(ξ,X)Y = [η(Y )X − g(X,Y )ξ], (b) R(X,Y )ξ = [η(X)Y − η(Y )X ],(2.7)

(a) S(X,Y ) = −(n− 1)g(X,Y ), (b) QX = −(n− 1)X,(2.8)

(a) S(X, ξ) = −(n− 1)η(X), (b) S(ξ, ξ) = −(n− 1), (c) Qξ = −(n− 1)ξ,(2.9)

(∇WR)(X,Y )ξ = g(W,X)Y − g(W,Y )X −R(X,Y )W,(2.10)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ).(2.11)

Now by using (1.7), (2.1) and (2.5) in (1.6), we have the following relation

R̄(X,Y )Z = R(X,Y )Z − 3[g(Y, Z)X − g(X,Z)Y ] + 2[η(Y )X

− η(X)Y ]η(Z) + 2[g(Y, Z)η(X)− g(X,Z)η(Y )]ξ.(2.12)

Contracting X in (2.12), we get

S̄(Y, Z) = S(Y, Z)− (3n− 5)g(Y, Z) + 2(n− 2)η(Y )η(Z).(2.13)
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Again contracting Y and Z in (2.13), we get

r̄ = r − (n− 1)(3n− 4),(2.14)

where r̄ and r are the scalar curvatures with respect to the semi-symmetric metric
connection and the Levi-Civita connection respectively.

3. Pseudo-symmetric Kenmotsu manifold with respect to the

semi-symmetric metric connection

Definition:An n-dimensional Kenmotsu manifold M is said to be pseudosym-
metric with respect to semi-symmetric metric connection if the curvature tensor R̄
of ∇̄ satisfies the condition

(R̄(X,Y ) · R̄)(U, V )W = LR̄((X ∧g Y ) · R̄)(U, V )W,(3.1)

where LR̄ is a function on M . From (3.1), we have

R̄(X,Y )(R̄(U, V )W )− R̄(R̄(X,Y )U, V )W − R̄(U, R̄(X,Y )V )W

−R̄(U, V )(R̄(X,Y )W ) = LR̄[(X ∧g Y )(R̄(U, V )W )− R̄((X ∧g Y )U, V )W

−R̄(U, (X ∧g Y )V )W − R̄(U, V )(X ∧g Y )W ].(3.2)

Replacing X by ξ in (3.2), we get

R̄(ξ, Y )(R̄(U, V )W )− R̄(R̄(ξ, Y )U, V )W − R̄(U, R̄(ξ, Y )V )W

−R̄(U, V )(R̄(ξ, Y )W ) = LR̄[(ξ ∧g Y )(R̄(U, V )W )− R̄((ξ ∧g Y )U, V )W

−R̄(U, (ξ ∧g Y )V )W − R̄(U, V )(ξ ∧g Y )W ].(3.3)

Using (1.4) and (2.12) in (3.3) and then taking the inner product with ξ, we obtain

(LR̄ + 2)[−R̄(U, V,W, Y ) + η(R̄(U, V )W )η(Y ) + 2g(Y, U)η(V )η(W )

−2g(Y, U)g(V,W )− η(R̄(Y, V )W )η(U) − 2g(Y, V )η(U)η(W )

+2g(Y, V )g(U,W )− η(R̄(U, Y )W )η(V )− η(R̄(U, V )Y )η(W )] = 0.(3.4)

On plugging U = Y = ei in (3.4) and taking summation over i, we get

(LR̄ + 2)[S(V,W )− (n− 5)g(V,W ) + 2(n− 1)η(V )η(W )] = 0.(3.5)

This implies that either LR̄ = −2 or

S(V,W ) = (n− 5)g(V,W ) + 2(1− n)η(V )η(W ).(3.6)

On contracting (3.6), we get

r = n(n− 7) + 2.(3.7)

Hence we can state the following:
Theorem 3.1. Let M be an n-dimensional pseudo-symmetric Kenmotsu manifold
with respect to semi-symmetric metric connection. Then either LR̄ = −2 or the
manifold is η-Einstein with constant scalar curvature r = n(n− 7)+ 2 with respect
to Levi-Civita connection.
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4. Ricci pseudo-symmetric Kenmotsu manifold with respect to the

semi-symmetric metric connection

Definition:Ann-dimensional Kenmotsu manifoldM is said to be Ricci pseudo-
symmetric with respect to semi-symmetric metric connection, if

(R̄(X,Y ) · S̄)(Z,U) = LS̄Q(g, S̄)(Z,U ;X,Y ),(4.1)

holds true on M , where LS̄ is some function and Q(g, S) is the Tachibana tensor
on M . From (4.1), it follows that

S̄(R̄(X,Y )Z,U) + S̄(Z, R̄(X,Y )U)(4.2)

= LS̄[S̄((X ∧g Y )Z,U) + S̄(Z, (X ∧g Y )U)].

Putting Y = U = ξ in (4.2), we have

S̄(R̄(X, ξ)Z, ξ) + S̄(Z, R̄(X, ξ)ξ) = LS̄ [S̄((X ∧ ξ)Z, ξ) + S̄(Z, (X ∧ ξ)ξ)].(4.3)

Using (1.4), (2.12), (2.13) and (2.7) in (4.3), we can get

(LS̄ + 2)[S(X,Z)− (n− 3)g(X,Z) + 2(n− 2)η(X)η(Z)] = 0.(4.4)

This implies that either LS̄ = −2 or

S(X,Z) = (n− 3)g(X,Z) + 2(2− n)η(X)η(Z).(4.5)

On contracting (4.5) over X and Z, we get

r = (n− 1)(n− 4).(4.6)

Thus we can state the following theorem:
Theorem 4.1. If a Kenmotsu manifold M is Ricci pseudo-symmetric with respect
to semi-symmetric metric connection, then either LS̄ = −2 or the manifold is η-
Einstein with constant scalar curvature r = (n−1)(n−4) with respect to Levi-Civita
connection.

5. Projective pseudo-symmetric Kenmotsu manifold with respect to

the semi-symmetric metric connection

Definition:An n-dimensional Kenmotsu manifold M is said to be projective
pseudo-symmetric with respect to semi-symmetric metric connection if

(R̄(X,Y ) · P̄ )(U, V )W = LP̄ ((X ∧g Y ) · P̄ )(U, V )W,(5.1)

holds on M . Putting Y = W = ξ in (5.1), we get

(R̄(X, ξ) · P̄ )(U, V )ξ = LP̄ ((X ∧g ξ) · P̄ )(U, V )ξ.(5.2)
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Now right hand side of (5.2) can be written as

LP̄ ((X ∧g ξ) · P̄ )(U, V )ξ = LP̄ [((X ∧g ξ)P̄ )(U, V )ξ − P̄ ((X ∧g ξ)U, V )ξ

− P̄ (U, (X ∧g ξ)V )ξ − P̄ (U, V )(X ∧g ξ)ξ].(5.3)

By virtue of (1.4), (1.5), (2.12), (2.13) and (2.7) in (5.3), we obtain

LP̄ ((X ∧g ξ) · P̄ )(U, V )ξ = −LP̄ · P̄ (U, V )X.(5.4)

Next by considering left hand side of (5.2), we have

(R̄(X, ξ) · P̄ )(U, V )ξ = R̄(X, ξ)P̄ (U, V )ξ − P̄ (R̄(X, ξ)U, V )ξ

− P̄ (U, R̄(X, ξ)V )ξ − P̄ (U, V )R̄(X, ξ)ξ.(5.5)

Again using (1.5), (2.12), (2.13) and (2.7) in (5.5), we get

(R̄(X, ξ) · P̄ )(U, V )ξ = 2P̄ (U, V )X.(5.6)

Substituting (5.4) and (5.6) in (5.2), we obtain

(LP̄ + 2)P̄ (U, V )X = 0.(5.7)

This leads us to the following:
Theorem 5.1. If an n-dimensional Kenmotsu manifold is projective pseudo-symmetric
with respect to the semi-symmetric metric connection, then either LP̄ = −2 or the
manifold is projectively flat.
Also, in a Kenmotsu manifold, Bagewadi, Prakasha and Venkatesha [4] proved the
following:
Lemma 5.1.[4] If the projective curvature tensor of a Kenmotsu manifold M admit-
ting the semi-symmetric metric connection vanishes, then M reduces to an Einstein
manifold with the constant scalar curvature −n(n− 1).
Hence from Theorem 5.1. and Lemma 5.1., we conclude that:
Corollary 5.1. A projective pseudo-symmetric Kenmotsu manifold admitting the
semi-symmetric metric connection is an Einstein manifold with the constant scalar
curvature with respect to the Levi-Civita connection provided LP̄ 6= −2.

6. φ-projective semi-symmetric Kenmotsu manifold with respect to

the semi-symmetric metric connection

Definition:An n-dimensional Kenmotsu manifoldM is said to be φ-projectively
semi-symmetric with respect to the semi-symmetric metric connection if P̄ (X,Y ) ·
φ = 0.

Let us consider an n-dimensional Kenmotsu manifold M which is φ-projective
semi-symmetric. Then we have

P̄ (X,Y )φZ − φP̄ (X,Y )Z = 0,(6.1)
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for any vector fields X,Y and Z on M .
By virtue of (1.5) in (6.1) gives

R̄(X,Y )φZ − φR̄(X,Y )Z +
1

n− 1
[S̄(Y, φZ)X

−S̄(X,φZ)Y + S̄(Y, Z)φX − S̄(X,Z)φY ] = 0.(6.2)

On plugging Y = ξ in (6.2) and then using (2.12), (2.13) and (2.7), we obtain

2g(X,φZ)ξ −
1

n− 1
S̄(X,φZ)ξ = 0.(6.3)

Now taking the inner product of the above equation with ξ, we get

2g(X,φZ)−
1

n− 1
S̄(X,φZ) = 0.(6.4)

Replacing Z by φZ in (6.4) and then by virtue of (2.1) and (2.13), we obtain

S(X,Z) = Ag(X,Z) +Bη(X)η(Z),(6.5)

where A = 5n− 7 and B = −2(3n− 5).
Hence we can state the following:
Theorem 6.1. An n-dimensional φ-projective semi-symmetric Kenmotsu manifold
with respect to the semi-symmetric metric connection is η-Einstein with respect to
the Levi-Civita connection.

7. Example

Consider a 3−dimensional manifold M =
{
(x, y, z) ∈ R

3 : z 6= 0
}
, where (x, y, z)

are the standard coordinates in R
3. We choose the vector fields

E1 = −e−z
∂

∂x
, E2 = e−z

∂

∂y
, E3 =

∂

∂z
,

which are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g = e2z(dx ⊗ dx+ dy ⊗ dy) + η ⊗ η,(7.1)

where η is the 1−form defined by η (X) = g(X,E3), for any vector field X on M .
Then {E1, E2, E3} is an orthonormal basis of M . We define a (1, 1) tensor field φ

as

φ

(
X

∂

∂x
+ Y

∂

∂y

)
+ Z

∂

∂z
=

(
Y

∂

∂x
−X

∂

∂y

)
.(7.2)

Thus, we have

φ (E1) = E2, φ (E2) = −E1 and φ (E3) = 0.(7.3)
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The linearity property of φ and g yields that

η (E3) = 1, φ2X = −X + η (X)E3,

g (φX, φY ) = g (X,Y )− η (X) η (Y ) ,

for any vector fields X , Y on M.

Moreover, we get

[Ei, ξ] = Ei, [Ei, Ej ] = 0, i, j = 1, 2

Using Koszul’s formula, we obtain

∇Ei
Ei = −ξ, ∇Ei

ξ = Ei, i = 1, 2.

and others are zero. Thus for E3 = ξ, M (φ, ξ, η, g) is a Kenmotsu manifold. Now,
the non-zero terms of the semi-symmetric metric connection on M become

∇̄Ei
Ei = −2ξ, ∇̄Ei

ξ = 2Ei i = 1, 2.(7.4)

With the help of the above results it can be easily verified that

R(E1, E2)E3 = 0, R(E2, E3)E3 = −E2, R(E1, E3)E3 = −E1,

R(E1, E2)E2 = −E1, R(E2, E3)E2 = E3, R(E1, E3)E2 = 0,

R(E1, E2)E1 = E2, R(E2, E3)E1 = 0, R(E1, E3)E1 = E3.

and

R̄(E1, E2)E3 = 0, R̄(E2, E3)E3 = −2E2, R̄(E1, E3)E3 = −2E1,

R̄(E1, E2)E2 = −4E1, R̄(E2, E3)E2 = 2E3, R̄(E1, E3)E2 = 0,

R̄(E1, E2)E1 = 4E2, R̄(E2, E3)E1 = 0, R̄(E1, E3)E1 = 2E3.(7.5)

In view of (1.1), one can obtain the torsion tensor T̄ with respect to the semi-
symmetric metric connection as

T̄ (Ei, Ei) = 0 for i = 1, 2, 3;

T̄ (E1, E2) = 0, T̄ (E1, E3) = E1, T̄ (E2, E3) = E2.

Since E1, E2, E3 forms a basis, the vector fields X,Y, Z ∈ χ(M) can be written as



X

Y

Z


 =




a1 b1 c1
a2 b2 c2
a3 b3 c3







E1

E2

E3


 ,(7.6)

where ai, bi, ci ∈ R
+ (the set of all positive real numbers), i = 1, 2, 3. Using the

expressions of the curvature tensors, we find values of the Riemannian curvature
and Ricci curvature with respect to the semi-symmetric metric connection as;

R̄(X,Y )Z = [−4{a1b2 − b1a2}b3 + 2{c1a2 − a1c2}c3]E1

+ [−4{b1a2 − a1b2}a3 + 2{c1b2 − b1c2}c3]E2

+ [−2{c1a2 − a1c2}a3 − 2{c1b2 − b1c2}b3]E3,(7.7)

S̄(E1, E1) = S̄(E2, E2) = −6, S̄(E3, E3) = −4.(7.8)
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In view of the expression of the endomorphism (Ei ∧g Ej)Ew = g(Ej , Ew)Ei −
g(Ei, Ew)Ej for 1 ≤ i, j, w ≤ 3 and equations (7.5) and (7.8), one can easily verify
that

S̄(R̄(Ei, E3)Ej , E3) + S̄(Ej , R̄(Ei, E3)E3) = −2[S̄((Ei ∧g E3)Ej , E3)

+ S̄(Ej , (Ei ∧g E3)E3)],(7.9)

in view of the above equation Theorem 4.1. is verified.
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η-RICCI SOLITONS IN (ε, δ)-TRANS-SASAKIAN MANIFOLDS

Mohd Danish Siddiqi

Abstract. The objective of the present paper is to study (ε, δ)-trans-Sasakian manifolds
admitting η-Ricci solitons. It is shown that a symmetric second order covariant tensor
in an (ε, δ)-trans-Sasakian manifold is a constant multiple of the metric tensor. Also,
an example of an η-Ricci soliton in a 3-diemsional (ε, δ)-trans-Sasakian manifold is
provided in the region where (ε, δ)-Trans Sasakian manifold is expanding.
Keywords: Sasakian manifolds; Ricci soliton; Tensor.

1. Introduction

In 1985, J. A. Oubina [22] introduced a new class of almost contact metric man-
ifolds known as trans-Sasakian manifolds. An almost contact metric structure on
a manifold M is called a trans-Sasakian structure if the product manifold M × R

belongs to the class W4, where the classification of almost Hermition manifolds
appears as a class W4 of Hermitian manifolds which are closely related to locally
conformal Kähler manifolds studied by Gray and Hervella [14]. The class C5 ⊕ C6

[22] coincides with the class of trans-Sasakian structure of type (α, β). This class
consists of both Sasakian and Kenmotsu structures. If α = 1, β = 0 then the class
turn into Sasakian and when α = 0, β = 1 then it turn into Kenmotsu. The above
manifolds are studied by many authors like D. E. Blair and J. C. Marrero [1], K.
Kenmotsu [17], C. S. Bagewadi and Venkatesha [8], U. C. De and M. M. Tripathi
[12].

The differential geometry of manifolds with indefinite metric plays an interest-
ing role in physics. Manifolds with indefinite metric have been studied by several
authors. The concept of (ǫ)-Sasakian manifolds was initiated by A. Bejancu and K.
L. Duggal [2] and further investigation was taken up by X. Xufeng and C. Xiaoli
[30]. U. C. De and A. Sarkar [11] studied (ε)-Kenmotsu manifolds with indefinite
metric. S. S. Shukla and D. D. Singh [25] extended with indefinite metric which
is a natural generalization of both (ε)-Sasakian and (ε)-Kenmotsu manifolds. The
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authors H. G. Nagaraja et al. [20] studied (ε, δ)-trans-Sasakian manifolds which are
extensions of (ε)-trans-Sasakian manifolds. M. D. Siddiqi et al. also studied some
properties of (ε, δ)-trans-Sasakian manifolds in [26].

In 1982, R. S. Hamilton [15] stated that Ricci solitons move under the Ricci flow
simply by diffeomorphisms of the initial metric, that is, they are stationary points
of the Ricci flow which is given by

∂g

∂t
= −2Ric(g).(1.1)

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

LV g + 2S + 2λ = 0,(1.2)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on M

and λ is a real scalar. The Ricci soliton is said to be shrinking, steady or expanding
depending on whether λ < 0, λ = 0 and λ > 0, respectively.

In 1925, Levy [18] obtained necessary and sufficient conditions for the existence of
such tensors. later, R. Sharma [24] initiated a study of Ricci solitons in contact
Riemannian geometry . After that, Tripathi [27], Nagaraja et al. [21] and others
like C. S. Bagewadi et al. ([7], [16]) extensively studied Ricci solitons in almost (ǫ)-
contact metric manifolds. In 2009, J. T. Cho and M. Kimura [10] introduced the
notion of η-Ricci soliton and gave a classification of real hypersurfaces in non-flat
complex space forms admitting η-Ricci solitons. Later η-Ricci solitons in (ε)-almost
paracontact metric manifolds were studied by A. M. Blaga et. al. in [5]. Moreover,
η-Ricci solitons have been studied by various authors for different structures (see
[3], [4], [23], [9], [28]). Recently, K. Venu et al. [29] studied the η-Ricci solitons in
trans-Sasakian manifolds. Motivated by these studies in the present paper we inves-
tigate η-Ricci solitons in 3-dimensional (ε, δ)-trans-Sasakian manifolds and derive
the expression for the scalar curvature.

1.1. Preliminaries

Let M be an almost contact metric manifold equipped with the almost contact
metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field ξ, a
1-form η and a Riemannian metric g satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0,(1.3)

g(φX, φY ) = g(X,Y )− εη(X)η(Y ), η(X) = εg(X, ξ), g(ξ, ξ) = ε,(1.4)

for all X,Y vector fields on M , where ε is 1 or -1 according as ξ is space-like or
time-like. In particular, if the metric g is positive definite, then the (ε)-almost
contact metric manifold is the usual almost contact metric manifold [25].

An (ε)-almost contact metric metric manifold is called an (ε)-trans Sasakian
manifold [25] if

(∇Xφ)Y = α(g(X,Y )ξ − εη(Y )X) + β(g(φX, Y )ξ − εη(Y )φX)(1.5)
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holds for some smooth functions α and β on M . According to the characteristic
vector field ξ we have two classes of (ε)-trans-Sasakian manifolds. When ε = −1
and index of g is odd, then M is a time-like trans-Sasakian manifold and when ε = 1
and index of g is even, then M is a space-like trans-Sasakian manifold. Further,
M is a usual trans-Sasakian manifold for ε = 1 and the index of g is 0 and M is a
Lorentzian trans-Sasakian manifold for ε = −1 and the index of g is 1. An ε-almost
contact metric manifold is said to be a (ε, δ)-trans-Sasakian manifold if it satisfies

(∇Xφ)Y = α(g(X,Y )ξ − εη(Y )X) + β(g(φX, Y )ξ − δη(Y )φX)(1.6)

holds for some smooth functions α and β on M , where ε is 1 or −1 according as ξ
is space-like or time-like and δ is alike ε.
From (1.6), we have

∇Xξ = −εαφX − δβφ2X,(1.7)

and

(∇Xη)Y = δβ[εg(X,Y )− η(X)η(Y )]− αg(φX, Y ).(1.8)

In (ε, δ)-trans-Sasakian manifold M , we have the following relations [7]:

R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ](1.9)

+2εδαβ[η(Y )φX − η(X)φY ]

+ε[(Y α)φX − (Xα)φY ]

+δ[(Y β)φ2X − (Xβ)φ2Y ]

+2αβ(δ − ε)g(φX, Y )ξ,

S(X, ξ) = [((n− 1)(εα2 − δβ2)− (ξβ)]η(X)(1.10)

−ε((φX)α)− (n− 2)ε(Xβ)),

Qξ = ((n− 1)(εα2 − δβ2)− (ξβ))ξ + εφ(gradα) − ε(n− 2)(gradβ),(1.11)

where R is the curvature tensor, S is the Ricci tensor and Q is the Ricci operator
given by S(X,Y ) = g(QX, Y ).

Further in a (ε, δ)-trans-Sasakian manifold, we have

εφ(gradα) = ε(n− 2)(gradβ),(1.12)

and

ε(ξα) + 2εδαβ = 0.(1.13)
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Using (1.9) and (1.12), for constants α and β , we have

R(ξ,X)Y = (α2 − β2)[εg(X,Y )ξ − η(Y )X ],(1.14)

R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ],(1.15)

η(R(X,Y )Z) = (α2 − β2)[g(Y, Z)η(X)− g(X,Z)η(Y )],(1.16)

S(X, ξ) = [((n− 1)(εα2 − δβ2)− (ξβ)]η(X),(1.17)

Qξ = [(n− 1)(εα2 − δβ2)− (ξβ)]ξ.(1.18)

An important consequence of (1.7) is that ξ is a geodesic vector field

∇ξξ = 0.(1.19)

For an arbitrary vector field X , we have that

dη(ξ,X) = 0.(1.20)

The ξ-sectional curvature Kξ of M is the sectional curvature of the plane spanned
by ξ and a unit vector field X . From (1.15), we have

Kξ = g(R(ξ,X), ξ,X) = (α2 − β2)− δ(ξβ).(1.21)

It follows from (1.21) that ξ-sectional curvature does not depend on X .

1.2. η-Ricci solitons on (M,φ, ξ, η, g)

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel
with respect to the Levi-Civita connection ∇, that is, ∇h = 0. Applying the Ricci
commutation identity [20]

∇2h(X,Y ;Z,W )−∇2h(X,Y ;W,Z) = 0,(1.22)

we obtain the relation

h(R(X,Y )Z,W ) + h(Z,R(X,Y )W ) = 0.(1.23)

Replacing Z = W = ξ in (1.23) and using (1.9) and the symmetry of h, we have

2(α2 − β2)[η(Y )h(X, ξ)− η(X)h(Y, ξ)](1.24)

+2ε[(Y α)h(φX, ξ) − (Xα)h(φY, ξ)] + 2δ[(Y β)h(φ2X, ξ)− (Xβ)h(φ2Y, ξ)]

+4εδαβ[η(Y )h(φX, ξ)− η(X)h(φY, ξ)] + 4αβ(δ − ε)g(φX, Y )h(ξ, ξ) = 0.

Putting X = ξ in (1.24) and by virtue of (1.3), we obtain

−2[ε(ξα) + 2εδαβ]h(φY, ξ)(1.25)
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+2[(α2 − β2)− δ(ξβ)][η(Y )h(ξ, ξ)− h(Y, ξ)] = 0.

By using (1.13) in (1.25), we have

[(α2 − β2)− δ(ξβ)][η(Y )h(ξ, ξ)− h(Y, ξ)] = 0.(1.26)

Suppose (α2 − β2)− δ(ξβ) 6= 0; it results in

h(Y, ξ) = η(Y )h(ξ, ξ).(1.27)

Now, we can call a regular (ε, δ)-trans-Sasakian manifold if (α2−β2)−δ(ξβ) 6= 0,
where regularity, means the non-vanishing of the Ricci curvature with respect to
the generator of the (ε, δ)-trans-Sasakian manifold.

Differentiating (1.27) covariantly with respect to X , we have

(∇Xh)(Y, ξ) + h(∇XY, ξ) + h(Y,∇Xξ)(1.28)

= [εg(∇XY, ξ) + εg(Y,∇Xξ)]h(ξ, ξ)

+η(Y )[(∇Xh)(Y, ξ) + 2h(∇Xξ, ξ)].

By using the parallel condition ∇h = 0, η(∇Xξ) = 0 and by virtue of (1.27) in
(1.28), we get

h(Y,∇Xξ) = εg(Y,∇Xξ)h(ξ, ξ).

Now using (1.7) in the above equation, we get

−εαh(Y, φX) + δβh(Y,X) = −αg(Y, φX)h(ξ, ξ) + εδβg(Y,X)h(ξ, ξ).(1.29)

Replacing X = φX in (1.29) and after simplification, we get

h(X,Y ) = εg(X,Y )h(ξ, ξ),(1.30)

which together with the standard fact that the parallelism of h implies that h(ξ, ξ)
is a constant, via (1.27). Now by considering the above equations, we can give the
conclusion:

Theorem 1.1. Let (M,φ, ξ, η, g) be a (ε, δ)-trans-Sasakian manifold with a non-

vanishing ξ-sectional curvature and endowed with a tensor field h ∈ ΓT 0
2 (M) which

is symmetric and φ-skew-symmetric. If h is parallel with respect to ∇, then it is a

constant multiple of the metric tensor g.

Let (M,φ, ξ, η, g) be an (ε)-almost contact metric manifold. Consider the equation
[10]

Lξg + 2S + 2λg + 2µη ⊗ η = 0,(1.31)
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where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci
curvature tensor field of the metric g, and λ and µ are real constants. Writing Lξg

in terms of the Levi-Civita connection ∇, we obtain:

2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Xξ)− 2λg(X,Y )− 2µη(X)η(Y ),(1.32)

for any X,Y ∈ χ(M).

Definition 1.2. The data (g, ξ, λ, µ) which satisfy the equation (3.10) is said to
be η- Ricci soliton on M [10]; in particular, if µ = 0 then (g, ξ, λ) is the Ricci
soliton [10] and it is called shrinking, steady or expanding following λ < 0, λ = 0
or λ > 0, respectively [10].

Now, from (1.7) , the equation (1.31) becomes:

S(X,Y ) = −(λ+ δβ)g(X,Y ) + (εδβ − µ)η(X)η(Y ).(1.33)

The above equations yields

S(X, ξ) = −[(λ+ µ) + (1− ε)δβ]η(X)(1.34)

QX = −(λ+ βδ)X + (εδβ − µ)ξ(1.35)

Qξ = −[(λ+ µ) + (1− ε)δβ]ξ(1.36)

r = −λn− (n− 1)εδβ − µ,(1.37)

where r is the scalar curvature. Off the two natural situations regrading the vector
field V : V ∈ Spanξ and V⊥ξ, we investigate only the case V = ξ.

Our interest is in the expression for Lξg + 2S + 2µη ⊗ η. A direct computation
gives

Lξg(X,Y ) = 2δβ[g(X,Y )− εη(X)η(Y )].(1.38)

In a 3-dimensional (ε, δ)-trans-Sasakian manifold the Riemannian curvature tensor
is given by

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y(1.39)

−
r

2
[g(Y, Z)X − g(X,Z)Y ].

Putting Z = ξ in (1.39) and using (1.9) and (1.10) for 3-dimensional (ε, δ)-trans-
Sasakian manifold, we get

(α2 − β2)[η(Y )X − η(X)Y ] + 2εδαβ[η(Y )φX − η(X)φY ](1.40)

+ε[(Y α)φX − (Xα)φY ] + δ[(Y β)φ2X − (Xβ)φ2Y ]
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+2(δ − ε)αβg(φX, Y )

= ε[(εα2 − δβ2)− (ξβ)]η(Y )X − η(X)Y ]

+εη(Y )QX − εη(X)QY − ε[((φY )α)X + (Y β)X ] + ε[((φX)α)Y + (Xβ)Y ].

Again, putting Y = ξ in (1.40) and using (1.3) and (1.13), we obtain

QX =
[r
2
− 2(εα2 − δβ2) + ε(α2 − β2)

]
X.(1.41)

+
[
4(εα2 − δβ2)−

r

2
− (α2 − β2)

]
η(X)ξ

From (1.41), we have

S(X,Y ) =
[r
2
− 2(εα2 − δβ2) + ε(α2 − β2)

]
g(X,Y )(1.42)

+
[
4(εα2 − δβ2)−

r

2
− (α2 − β2)

]
εη(X)η(Y ).

Equation (1.42) shows that a 3-dimensional (ε, δ)-trans-Sasakian manifold is η-
Einstein.
Next, we consider the equation

h(X,Y ) = (Lξg)(X,Y ) + 2S(X,Y ) + 2µη(X)η(Y ).(1.43)

By Using (1.48) and (1.42) in (1.43), we have

h(X,Y ) =
[
r − 4(εα2 − δβ2) + 2ε(α2 − β2) + 2δβ

]
g(X,Y )(1.44)

+
[
8(εα2 − δβ2)− 2ε(α2 − β2)− 2δβ − r

]
εη(X)η(Y ) + 2µη(X)η(Y ).

Putting X = Y = ξ in (1.5), we get

h(ξ, ξ) = 2[2ε(εα2 − δβ2)− 2µ].(1.45)

Now, (1.30) becomes

h(X,Y ) = 2[2ε(εα2 − δβ2)− 2µ]εg(X,Y ).(1.46)

From (1.43) and (1.46), it follows that (g, ξ, µ) is an η-Ricci soliton.
Therefore, we can state as:

Theorem 1.2. Let (M,φ, ξ, η, g) be a 3-dimensional (ε, δ)-trans-Sasakian mani-

fold. Then (g, ξ, µ) yields an η-Ricci soliton on M .
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Let V be pointwise collinear with ξ, i.e., V = bξ, where b is a function on the
3-dimensional (ε, δ)-trans-Sasakian manifold. Then

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0

or

bg((∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X)

+2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

Using (1.7), we obtain

bg(−εαφX − δβ(−X + η(X)ξ, Y ) + (Xb)η(Y ) + bg(−εαφY − δβ(−Y + η(Y )ξ,X)

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

which yields
2bδβg(X,Y )− 2bδβη(X)η(Y ) + (Xb)η(Y )(1.47)

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

Replacing Y by ξ in (1.47), we obtain

(Xb) + (ξb)η(X) + 2[2(εα2 − δβ2)− (ξβ) + λ+ µ]η(X) = 0.(1.48)

Again putting X = ξ in (1.48), we obtain

ξb = −2(εα2 − δβ2) + (ξβ)− λ− µ.

Plugging this in (1.48), we get

(Xb) + 2[2(εα2 − δβ2)− (ξβ) + λ+ µ]η(X) = 0,

or
db = −

{
λ+ µ+ (ξβ) + 2(εα2 − δβ2)

}
η = 0.(1.49)

Applying d on (1.49), we get
{
λ+ µ+ (ξβ) + 2(εα2 − δβ2)

}
dη. Since dη 6= 0 we

have
λ+ µ+ (ξβ) + 2(εα2 − δβ2) = 0.(1.50)

Equation (1.50) in (1.49) yields b as a constant. Therefore from (1.47), it follows
that

S(X,Y ) = −(λ+ δβ)g(X,Y ) + (εδbβ − µ)η(X)η(Y ),

which implies that M is of constant scalar curvature for the constant δβ. This leads
to the following:
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Theorem 1.3. If in a 3-dimensional (ε, δ)-trans-Sasakian manifold the metric g

is an η-Ricci soliton and V is pointwise collinear with ξ, then V is a constant

multiple of ξ and g is of constant scalar curvature provided δβ is a constant.

Tanking X = Y = ξ in (1.30) and (1.42) and comparing, we get

λ = −2(ǫα2 − δβ2) + (ξβ) + µ = −2Kξ − µ.(1.51)

From (1.37) and (1.51), we obtain

r = 6(ǫα2 − δβ2) + 3(ξβ)− 2εδβ + 2µ.(1.52)

Since λ is a constant, it follows from (1.51) that Kξ is a constant.

Theorem 1.4. Let (g, ξ, µ) be an η-Ricci soliton in the 3-dimensional (ε, δ)-trans
Sasaakian manifold (M,φ, ξ, η, g). Then the scalar λ+ µ = −2Kξ, r = 6Kξ + 2µ+
3(ξβ)− 2εδβ.

Remark 1.1. For µ = 0, (1.51) reduces to λ = −2Kξ , so the Ricci soliton in a 3-
dimensional (ε, δ)-trans-Sasakian manifold is shrinking.

2. Example of η-Ricci solitons on (ε, δ)-Trans-Sasakian manifolds

Example 2.1. Consider the three dimensional manifold M =
{
(x, y, z) ∈ R

3z 6= 0
}
,

where (x, y, z) are the cartesian coordinates in R
3 and let the vector fields

e1 =
ex

z2
∂

∂x
, e2 =

ey

z2
∂

∂y
, e3 =

−(ǫ+ δ)

2

∂

∂z
,

where e1, e2, e3 are linearly independent at each point of M . Let g be the Rieman-
nian metric defined by
g(e1, e1) = g(e2, e2) = g(e3, e3) = ε, g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,
where ǫ = ±1.

Let η be the 1-form defined by η(X) = εg(X, ξ), for any vector field X on M ,
let φ be the (1,1)-tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0.
Then by using the linearity of φ and g, we have φ2X = −X + η(X)ξ, with ξ = e3.
Further g(φX, φY ) = g(X,Y ) − εη(X)η(Y ), for any vector fields X and Y on M .
Hence for e3 = ξ, the structure defines an (ε)-almost contact structure in R

3.

Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])

− g(Y, [X,Z]) + g(Z, [X,Y ]),
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which is known as Koszul’s formula.

∇e1e3 = − (ε+δ)
z

e1, ∇e2e3 = − (ε+δ)
z

e2, ∇e1e2 = 0,
using the above relation, for any vector X on M , we have ∇Xξ = −εαφX −
βδφ2X , where α = 1

z
and β = − 1

z
. Hence (φ, ξ, η, g) structure defines the (ε, δ)-

tran-Sasakian structure in R
3.

Here ∇ is the Levi-Civita connection with respect to the metric g , so we have

[e1, e2] = 0, [e1, e3] = − (ε+δ)
z

e1, [e2, e3] = − (ε+δ)
z

e2.
Thus we have

∇e1e3 = −
(ε+ δ)

z
e1 + e2,∇e1e2 = 0

∇e2e1 = 0, ∇e2e2 = −
(ε+ δ)

z
e2, ∇e2e3 = −

(ε+ δ)

z
e2e1

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −
(ε+ δ)

z
e1 + e2.

The manifold M satisfies (1.7) with α = 1
z
and β = − 1

z
. Hence M is a (ε, δ)-trans-

Sasakian manifolds. Then the non-vanishing components of the curvature tensor
fields are computed as follows:

R(e1, e3)e3 = (ε+δ)
z2 e1, R(e3, e1)e3 = − (ε+δ)

z2 e1, R(e1, e2)e2 = (ε+δ)
z2 e1

R(e2, e3)e3 = (ε+δ)
z2 e1, R(e3, e2)e3 = − (ε+δ)

z2 e1, R(e2, e1)e1 = − (ε+δ)
z2 e1.

From the above expression of the curvature tensor we can also obtain

S(e1, e1) = S(e2, e2) = S(e3, e3) =
(ε2 + δε)

z2

since g(e1, e3) = g(e1, e2) = 0.
Therefore, we have

S(ei, ei) = −
(ε+ δ)

z2
g(ei, ei),

for i = 1, 2, 3 , and α = 1
z
, β = − 1

z
. Hence M is also an Einstein manifold. In this

case, from (1.32), we have

2δβ[g(ei, ei − εη(ei)η(ei)] + 2S(ei, ei) + 2λg(ei, ei) + 2µη(ei)η(ei) = 0.(2.1)

Now, from (2.1), we get λ = ε[δ(1+z)−ε]
z2 (i.e, λ > 0) and µ = − ε[ε2−ε−δ(1+ε+εz)]

z2 ,
the data (g, ξ, λ, µ) is an η-Ricci soliton on (M,φ, ξ, η, g) i. e., expanding.
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Ser. Math. Inform. Vol. 34, No 1 (2019), 57–72

https://doi.org/10.22190/FUMI1901057S

DETERMINING SOLUTIONS OF FUZZY CELLULAR NEURAL
NETWORKS WITH FLUCTUATING DELAYS

Ivan P. Stanimirović

Abstract. This paper deals with the problem of nonperiodic arrangements for fuzzy
cell neural systems with fluctuating delays. By utilizing compression mapping and Kras-
noselski’s settled point hypothesis and developing some appropriate Lyapunov function-
als, adequate conditions are set up for the presence and worldwide exponential solidness
of solutions of FCNNs with fluctuating delays. In addition, illustrative examples are
set up to exhibit a model.
Keywords. Cellular neural networks; fuzzy; fluctuating delays; nonperiodic solutions.

1. Introduction

Celluar neural nets (CNNs), initially presented in [1], have pulled in much consid-
eration lately. This is generally on the grounds that they have the extensive variety
of promising applications in the fields of related memory, parallel figuring, design
acknowledgment, flag handling and streamlining. CNNs are portrayed by essential
circuit units called cells. Every unit forms a few information flags and delivers a
yield flag which is gotten by different units associated with it including itself.

In the execution of a flag or impact going through neural systems, time delays
do exist and influence dynamical behavior of a working neural network. As of
late there have been a few outcomes about dynamical practices of deferred neural
systems including worldwide exponential steadiness of balance focuses, intermittent
and relatively occasional arrangements [2, 3].

Other than defer impacts, it has been seen that numerous transformative pro-
cedures, including those identified with neural systems, may display incautious im-
pacts. In these developmental procedures, the arrangements of framework are not
consistent but rather present hops which can cause shakiness of dynamical frame-
works. Thus, numerous neural systems with motivations have been contemplated
broadly, and a lot of writing are engaged on the issue of the presence and steadiness
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of a balance point [4]. The presence and dependability of periodic solution of neural
network with impulses are researched extensively by many authors [5, 6].

In [7], another compose cell neural systems display called fuzzy cell neural sys-
tems (FCNNs) is introduced. FCNNs joined fuzzy task with cell neural systems.

In any case, it is important that Takagi-Sugeno (T-S) fuzzy neural systems are
not quite the same as FCNNs. T-S fuzzy neural systems depend on an arrange-
ment of fuzzy guidelines to depict nonlinear framework. As of late analysts have
discovered that FCNNs are helpful in picture preparing, and many fascinating out-
comes have been introduced on steadiness of FCNNs. For instance, in [8], applying
straight network imbalance (LMI) approach, contemplated presence, uniqueness
and worldwide asymptotic steadiness of fuzzy cell neural systems with asymptotic
relentlessness of cushioned cell neural frameworks with spillage delay under impru-
dent annoyances. The authors in [9] acquired the outcomes of asymptotic steadiness
for fuzzy cell neural systems with time-shifting postponements. In [10], the steadi-
ness of fuzzy cell neural systems is examined with time-changing delay in spillage
term without accepting the boundedness of initiation function. Other related works
readers can refer to [11].

However, in applied sciences, the existence of nonperiodic arrangements assumes
a key job in portraying the conduct of nonlinear differential conditions. For instance,
hostile to intermittent trigonometric polynomials are vital for the investigation of
addition issues, against occasional wavelets and simple voltage transmission are
frequently against intermittent process, in this way it is profitable to consider non-
periodic solutions. Meanwhile, anti-periodic solution, as a special case of periodic
solution, has an important research value in dynamic behavior of the neural net-
works. In recent years, the problem of nonperiodic solution of CNNs, Hopfield neural
nets and recurrent neural nets has been studied by many scholars (see [12, 13, 14]
and references therein). For example, in [12], the author studied the presence and
exponential security of the counter occasional arrangements of intermittent neural
systems with time-differing and persistent dispersed deferrals. In [13], applying im-
balance procedure and dependent on Lyapunov practical hypothesis, the authors
examined the presence and worldwide exponential security of against intermittent
answer for defer CNNs with hasty impacts. In any case, to the best of our insight,
there are not very many outcomes on the issues of against occasional answers for
fuzzy cell neural systems (FCNNs) with fluctuating delays and hasty impacts.

It is reasonable to proceed the examination of the presence and stability of non-
periodic arrangements for FCNNs with period-varying delays and impulsive effects.
Here, we are concerned with the next model:
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(1.1)





x′

i(t) = −ai(t)xi(t) +
∑n

j=1 dij(t)fj(xj(t))

+
∧n

j=1 aij(t)gj(xj(t− tij(t)))

+
∨n

j=1 bij(t)gj(xj(t− tij(t)))

+Ei(t)] , t ≥ 0, t 6= tk, k ∈ N+,

∆(xi(tk)) = xi(t
+
k )− xi(t

−

k ) = Iik(tk, xi(tk)),

xi(t) = ̺i(t), t ∈ [−t, 0], i = 1, 2, · · · , n.

where n is the amount of elements in the net. xi(t) is the activations of the i-
th neuron at the time t. ai(t), dij(t), aij(t), bij(t), Ei(t), fj(t), gj(t), tij(t) are con-
tinuous functions on R. ai(t) > 0 represents the amplification function. dij(t)
denotes the synaptic connection weight of the unit j on the unit i at time t.
Thus, aij(t) and bij(t) are elements of fuzzy feedback MIN and MAX template,
correspondingly.

∧
and

∨
represent the fuzzy AND and OR operation, corre-

spondingly. Ei(t) denotes the i-th component of an external input source intro-
duced from outside the network to the ith cell. tij(t) is time-varying delay sat-
isfying 0 ≤ tij(t) ≤ t, t is a positive constant. fj(·) and gj(·) are the activa-
tion functions. ∆xi(tk) = xi(t

+
k ) − xi(t

−

k ), xi(t
+
k ) = limh→0+ xi(tk + h), xi(t

−

k ) =
limh→0− xi(tk+h), (i = 1, 2, · · · , n, k = 1, 2, · · · ) . {tk} is a sequence of real numbers
such that t1 < t2 < · · · and limk→+∞ tk = +∞.

The primary motivation behind this paper is to think about the presence and
worldwide exponential solidness of hostile to occasional arrangements of (1).

The framework of this paper is as per the following. In Sect. 2, we present a
few definitions and lemmas. In Sect. 3, we set up new adequate conditions for the
presence of the counter occasional arrangements of framework (1). In Faction 4, by
building reasonable Lyapunov practical, we infer adequate conditions for the world-
wide exponential strength of hostile to intermittent arrangements of framework (1).
A numerical model is given to demonstrate the adequacy of our outcomes in Sect.
5. At last a general end is attracted Sect. 6.

2. Preliminaries

Let us present the following:

a−i = min
t∈[0,ω]

|ai(t)|, a
+ = max

16i6n
max
t∈[0,ω]

|ai(t)|,

dij = max
t∈[0,ω]

|dij(t)|, d = max
16i6n

max
t∈[0,ω]

|dij(t)|,



60 I.P. Stanimirović

aij = max
t∈[0,ω]

|aij(t)|, a = max
16i6n

max
t∈[0,ω]

|aij(t)|,

bij = max
t∈[0,ω]

|bij(t)|, b = max
16i6n

max
t∈[0,ω]

|bij(t)|,

E = max
16i6n

max
t∈[0,ω]

|Ei(t)|, χi = e
∫

ω

0
ai(φ)dφ.

Here, the next assumptions are made

(A1) For i, j = 1, 2, · · · , n, k = 1, 2, · · · , there exist ω > 0 such that for Ω ∈ R

ai(t+ ω) = ai(t), tij(t+ ω) = tij(t),

aij(t+ ω)gj(−Ω) = −aij(t)gj(Ω),

bij(t+ ω)gj(−Ω) = −bij(t)gj(Ω),

dij(t+ ω)fj(−Ω) = −dij(t)fj(Ω),

Ei(t+ ω) = −Ei(t), Iik(t+ ω,Ω) = −Iik(t,−Ω).

(A2) fj(·), gj(·) ∈ C(R × R,R), and the nonnegative values Mf ,Mg,mj, nj(j =
1, 2, · · · , n) exist such that, for u,Ω ∈ R,

fj(0) = 0, |fj(t, u)| 6 Mf , |fj(u)− fj(Ω)| 6 mj |u− Ω|,

gj(0) = 0, |gj(t, u)| 6 Mg, |gj(u)− gj(Ω)| 6 nj|u− Ω|.

(A3) For i, j = 1, 2, · · · , n, k = 1, 2, · · · , there exists a positive integer q such that

Ii(k+q) = Iik, tk+q = tk + ω.

(A4) For i, j = 1, 2, · · · , n, k = 1, 2, · · · , there exist cik > 0 such that

|Iik(t, u)− Iik(t,Ω)| 6 cik|u− Ω|, ∀t ∈ [0, ω], u,Ω ∈ R.

Remark 2.1 In assumption (A2), the activating functions fj , gj, j = 1, 2, · · · , n,
are typically assumed to be bounded and Lipchtiz continuous and need not to be
differential.

Consider x(t) = (x1(t), x2(t), · · · , xn(t))
T ∈ Rn, whereat T is the transposition-

ing. The starting assumptions based on (1) are determined by:

x(t) = ϕ(t), t ∈ [−t, 0],

where ϕ(t) = (ϕ1(t), ϕ2(t), · · · , ϕn(t))
T ∈ Rn, ϕi(i = 1, 2, · · · , n) are continuous

with norm

‖ϕ‖ = sup
t∈[−t,0]

(

n∑

i=1

|ϕi(t)|
2)

1

2 .
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Definition 2.1 A resolution x(t) of (1) is an ω nonperiodic solution, if

x(t+ ω) = −x(t), t 6= tk.

x(tk + ω)+ = −x(t+k ), k = 1, 2, · · · ,

and the smallest positive number ω is called ω anti-periodic of function x(t).

Define PC(Rn) = {x(t) = (x1(t), x2(t), · · · , xn(t))
T : R → Rn, x|(tk,tk+1] ∈

C((tk, tk+1], R
n), x(t+k ), x(tk) exist, and x(t−k ) = x(tk), k = 1, 2, · · · }. Set X = {x :

x ∈ PC(Rn), x(t + ω) = −x(t), t ∈ R}. It is easy to see X is a Banach space with

norm ‖x‖ = supt∈[−t,0](
∑n

i=1 |xi(t)|
2)

1

2 .

Next, It is similar to [13], we have the following lemma.

Lemma 2.1. Let x(t) = (x1(t), x2(t), · · · , xn(t))
T be an ω anti-periodic solution

of system (1). For i = 1, 2, · · · , n, we have

xi(t) =

∫ t+ω

t

Hi(t, s)




n∑

j=1

dij(s)fj(xj(s))

+

n∧

j=1

aij(s)gj(xj(s− tij(s))) + Ei(s)

+

n∨

j=1

bij(s)gj(xj(s− tij(s)))


 ds

+
∑

tk∈[t,t+ω]

Hi(t, tk)Iik(tk, xi(tk)),(2.1)

where, for i = 1, 2, · · · , n,

(2.2) Hi(t, s) = −
e
∫

s

t
ai(φ)dφ

e
∫

ω

0
ai(φ)dφ + 1

, s ∈ [t, t+ ω].

Lemma 2.2. [15] Let Ω be a closed convex and nonempty subset of a Banach space
X. Let Π,Σ be the operators such that
(i) Πx+Σy ∈ Ω whenever x, y ∈ Ω ;
(ii) Π is compact and continuous;
(iii) Σ is a contraction mapping.
Then there exists z ∈ Ω such that z = Πz +Σz.

Lemma 2.3. [13] Let p, q, t, ck, k = 1, 2, · · · , be constants and q ≥ 0, t > 0, ck > 0,
and assume that x(t) is piece continuous nonnegative function. Suppose Ω is a closed
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and nonempty subset of a Banach space X. Give Π,Σ a chance to be the adminis-
trators such that

(I) Πx+Σy ∈ Ω at whatever point x, y ∈ Ω ;

(ii) Π is minimal and continuous;

(iii) Σ is a compression mapping.

At that point there exists z ∈ Ω with the end goal that z = Πz +Σz.

Lemma 2.4. [13] Let p, q, t, ck, k = 1, 2, · · · , be constants and q ≥ 0, t > 0, ck > 0,
and accept that x(t) is piece consistent nonnegative capacity fulfilling

(2.3)





D+x(t) 6 px(t) + qx̄(t), t > t0, t 6= tk,

x(t+k ) 6 ck(x(tk)), k = 1, 2, · · · ,

x(t) = ϕ(t), t ∈ [t0 − t, t0].

If there exist c such that for k = 1, 2, · · · ,

(2.4) ln ck 6 c(tk − tk−1).

and

(2.5) p+ cq + c < 0.

Then

(2.6) x(t) 6 c sup
t∈[t0−t,t0]

|ϕ(t)|e−λ(t−t0),

where x̄(t) = sups∈[t−t,t] x(s),

c = sup
16k<+∞

{
ec(tk−tk−1),

1

ec(tk−tk−1)

}
,

λ is a sole nonnegative resolution of λ+ p+ cqeλt + c = 0.

Lemma 2.5. [7] Let u and Ω be two states of system (1), then we have
∣∣∣∣∣∣

n∧

j=1

aij(t)gj(u) −
n∧

j=1

aij(t)gj(Ω)

∣∣∣∣∣∣
6 q

n∑

j=1

|aij(t)||gj(u)− gj(Ω)|,

and ∣∣∣∣∣∣

n∨

j=1

bij(t)gj(u) −
n∨

j=1

bij(t)gj(Ω)

∣∣∣∣∣∣
6

n∑

j=1

|bij(t)||gj(u)− gj(Ω)|.
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3. Existence and stability of a non-periodic solution

Here, we derive some sufficient conditions of existence of anti periodic resolution of
(1).

Define the operator

(3.1)





(Πx)(t) = ((Π1x)(t), (Π2x)(t), · · · , (Πnx)(t))
T ,

(Σx)(t) = ((Σ1x)(t), (Σ2x)(t), · · · , (Σnx)(t))
T .

where

(Πix)(t) =

∫ t+ω

t

Hi(t, s)




n∑

j=1

dij(s)fj(xj(s))

+

n∧

j=1

aij(s)gj(xj(s− tij(s)))

+

n∨

j=1

bij(s)gj(xj(s− tij(s)))

+Ei(s)] ds(3.2)

(3.3) (Σix)(t) =
∑

tk∈[t,t+ω]

Hi(t, tk)Iik(tk, xi(tk)), i = 1, 2, · · · , n.

where Hi(t, s), i = 1, 2, . . . , n, are defined by (4), it is easy to get, for i = 1, 2, · · · , n,

1

1 + χi

6 |Hi(t, s)| 6
χi

χi + 1
, s ∈ [t, t+ ω].

where χi = e
∫

ω

0
ai(φ)dφ.

Theorem 3.1. Suppose that (A1)−(A4) is valid, if the next assumption is satisfied

(A5):

ω

[
n∑

i=1

(Υi)
2

] 1

2

+ ω

[
n∑

i=1

(Υ′

i)
2

] 1

2

+

q∑

k=1

[
n∑

i=1

(
χicik

χi + 1

)2
] 1

2

< 1,(3.4)

where

Υi =
χi

χi + 1




n∑

j=1

(dijmj)
2




1

2

,
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Υ′

i =
χi

χi + 1




n∑

j=1

((aij + bij)nj)
2




1

2

,

then (1) has a unique ω nonperiodic solution.

Theorem 3.2. Assume that (A1)-(A4) hold, if the following assumption is satis-
fied
(A6)

(3.5)

q∑

k=1

[
n∑

i=1

(
χicik

χi + 1

)2
] 1

2

< 1,

it is valid that (1.1) possesses more than ω nonperiodic resolutions.

Proof. We define the operator Π,Σ as (8). Choosing

ρ >

(nωdMf + nω(a+ b)Mg + ωE + qI)

[∑n
i=1

(
χi

χi+1

)2] 1

2

1−
∑q

k=1

[∑n
i=1

(
χicik
χi+1

)2] 1

2

> 0(3.6)

For x, y ∈ Bρ = {x ∈ X : ‖x‖ 6 ρ}, we get

‖(Πx)(t) + (Σy)(t)‖

= sup
t∈[0,ω]





n∑

i=1

∣∣∣∣∣∣

∫ t+ω

t

Hi(t, s)




n∑

j=1

dij(s)fj(xj(s)) +

n∧

j=1

aij(s)gj(xj(s− tij(s)))

+

n∨

j=1

bij(s)gj(xj(s− tij(s))) + Ei(s)


 ds

+
∑

tk∈[t,t+ω]

Hi(t, tk)Iik(tk, yi(tk))

∣∣∣∣∣∣

2




1

2
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= sup
t∈[0,ω]

{
n∑

i=1

∣∣∣∣
∫ t+ω

t

Hi(t, s)

×




n∑

j=1

dij(s)fj(xj(s))−

n∑

j=1

dij(s)fj(0)

+

n∧

j=1

aij(s)gj(xj(s− tij(s)))−

n∧

j=1

aij(s)gj(0)

+
n∨

j=1

bij(s)gj(xj(s− tij(s))) −
n∨

j=1

bij(s)gj(0) + Ei(s)


 ds

+
∑

tk∈[t,t+ω]

Hi(t, tk)Iik(tk, yi(tk))

∣∣∣∣∣∣

2




1

2

6




n∑

i=1


 χi

χi + 1

∫ ω

0

n∑

j=1

dij |fj(xj(s))|ds|




2



1

2

+




n∑

i=1


 χi

χi + 1

∫ ω

0

n∑

j=1

(aij + bij)

× |gj(xj(s− tij(s)))|ds|)
2
] 1

2

+ ωE

[
n∑

i=1

(
χi

χi + 1

)2
] 1

2

+




n∑

i=1

(
χi

χi + 1

q∑

k=1

|Iik(tk, yi(tk))− Iik(tk, 0)|

)2



1

2

+




n∑

i=1

(
χi

χi + 1

q∑

k=1

|Iik(tk, 0)|

)2



1

2

6





q∑

k=1

[
n∑

i=1

(
χicik

χi + 1

)2
] 1

2



 ρ

+(nωdMf + nω(a+ b)Mg + ωE + qI)

×

[
n∑

i=1

(
χi

χi + 1

)2
] 1

2

6 ρ

Therefore, Πx + Σy ∈ Bρ. Since fj(·), gj(·), j = 1, 2, · · · , n, are continuous. Thus
the operator Π is continuous. For x ∈ Bρ, we have

(3.7) ‖Πx‖ 6 (nωdMf + nω(a+ b)Mg + ωE)

[
n∑

i=1

(
χi

χi + 1

)2
] 1

2
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i.e. Π is uniformly surrounded on Bρ. Then, let us show the accuracy of Π. For
t1, t2 ∈ [0, ω], it is valid that

‖(Πx)(t1)− (Πx)(t2)‖

6




n∑

i=1

∣∣∣∣∣∣

∫ ω

0

|Hi(t1, s)−Hi(t2, s)|




n∑

j=1

dij(s)fj(xj(s))

+

n∧

j=1

aij(s)gj(xj(s− tij(s)))

+

n∨

j=1

aij(s)gj(xj(s− tij(s))) + Ei(s)


 ds

∣∣∣∣∣∣

2



1

2

6

n∑

i=1

1

χi + 1

∫ ω

0

∣∣∣e
∫

s

t1
ai(φ)dφ − e

∫
s

t2
ai(φ)dφ

∣∣∣

×




n∑

j=1

dijMf +

n∧

j=1

aijMg +

n∨

j=1

bijMg + E


 ds

6 |t1 − t2|




n∑

j=1

dijMf +

n∧

j=1

aijMg

+

n∨

j=1

bijMg + E


ωa+

n∑

i=1

χi

χi + 1

6 |t1 − t2|[ndMf + n(a+ b)Mg + E]ωa+
n∑

i=1

χi

χi + 1

Consequently, by methods for Arzela-Ascoli hypothesis, Π is reduced on Bρ. By pre-
sumption (A6), plainly Σ is constriction mapping. Utilizing Lemma 2.2, framework
(1) has in any event ω against occasional arrangement.

Assume that x∗(t) = (x∗

1(t), , · · · , x
∗

n(t))
T is an ω-occasional arrangement of

framework (1). In this area, we will develop some appropriate Lyapunov practi-
cal to demonstrate the worldwide exponential security of this enemy of occasional
arrangement.

Theorem 3.3. Suppose that assumptions (A1) − (A5) hold. If the following as-
sumptions are satisfied
(A7) there exist c, cik ≥ 0, i = 1, 2, · · · , n, k = 1, 2, · · · , such that

(3.8) |u+ Iik(t, u)− Ω− Iik(t,Ω)| 6 cik|u− Ω|, t ∈ [0, ω], u,Ω ∈ R,

and for k = 1, 2, · · · ,

(3.9) 2 ln ck 6 c(tk − tk−1).
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(A8) there exist ci > 0 and δij , ηij , ϑij , ξij ∈ R, i = 1, 2, · · · , n such that

(3.10) −Θ1 + cΘ2 + c = 0

where

Θ1 = min
16i6n



2a−i −

n∑

j=1

(dij)
2δijm

2ηij

j

−
n∑

j=1

cj

ci
(dji)

2(1−δij)m
2(1−ηij)
j

−
n∑

j=1

(aij + bij)
2ϑijn

2ξij
j



 .

Θ2 = max
16i6n





n∑

j=1

cj

ci
(aji + bji)

2(1−ϑij)m
2(1−ξij)
j



 ,

ck = max
16i6n

{cik},

c = max
16k<+∞

{
ec(tk−tk−1),

1

ec(tk−tk−1)

}

then ω anti periodic solution of system (1) is globally exponentially stable with con-
vergence rate λ/2, and λ is an unique positive solution of λ−Θ1 + cΘ2e

λt + c = 0.

Proof. Suppose x∗(t) = (x∗

1(t), x
∗

2(t), · · · , x
∗

n(t))
T is an ω nonperiodic arrangement

of (1). x(t) = (x1(t), x2(t), · · · , xn(t))
T is an arrangement of (1). Set y(t) =

x(t)− x∗(t). Then, for k = 1, 2, · · · , i = 1, 2, · · · , n,

(3.11)





y′i(t) = −ai(t)(xi(t)− x∗

i (t))

+
∑n

j=1 dij(t)[fj(xj(t))− fj(x
∗

j (t))]

+
∧n

j=1 aij(t)gj(xj(t− tij(t)))

−
∧n

j=1 aij(t)gj(x
∗

j (t− tij(t)))

+
∨n

j=1 bij(t)gj(xj(t− tij(t)))

−
∨n

j=1 bij(t)gj(x
∗

j (t− tij(t))), t ≥ 0, t 6= tk

yi(t
+
k ) = xi(tk)− x∗

i (tk) + Iik(tk, xi(tk))

−Iik(tk, x
∗

i (tk)).



68 I.P. Stanimirović

Considering the following function

(3.12) Ω(t) =

n∑

i=1

ci|yi(t)|
2.

Computing the above right derivative of Ω(t), for t 6= tk,

D+Ω(t)

=
n∑

i=1

2ciD
+|yi(t)|

6

n∑

i=1

−2ciai(t)|yi(t)||yi(t)|

+

n∑

i=1

2ci

n∑

j=1

|dij(t)||yi(t)||fj(xj(t))− fj(x
∗

j (t))|

+
n∑

i=1

2ci

n∑

j=1

(|aij(t)|+ |bij(t)|)|yi(t)|

×|gj(xj(t− tij(t))) − gj(x
∗

j (t− tij(t)))|

6

n∑

i=1

−2cia
−

i |yi(t)|
2 +

n∑

i=1

2ci

n∑

j=1

dij |yi(t)|mj |yj(t)|

+
n∑

i=1

2ci

n∑

j=1

(aij + bij)|yi(t)|nj |yj(t− tij(t))|(3.13)

Using inequality ab 6 1
2a

2 + 1
2b

2, we have

n∑

j=1

dij |yi(t)|mj |yj(t)|

=

n∑

j=1

[(dij)
δijm

ηij

j |yi(t)|][(dij)
1−δijm

1−ηij

j |yj(t)|]

6

n∑

j=1

[
1

2
(dij)

2δijm
2ηij

j |yi(t)|
2

+
1

2
(dij)

2(1−δij)m
2(1−ηij)
j |yj(t)|

2

]
(3.14)
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and

n∑

j=1

(aij + bij)|yi(t)|nj |yj(t− tij(t))|

6

n∑

j=1

[
1

2
(aij + bij)

2ϑijn
2ξij
j |yi(t)|

2

+
1

2
(aij + bij)

2(1−ϑij)m
2(1−ξij)
j

× |yj(t− tij(t))|
2
]

(3.15)

Substituting (21) and (22) into (20), we have, for t 6= tk,

D+Ω(t)

6

n∑

i=1

ci



−2a−i |yi(t)|+

n∑

j=1

[
(dij)

2δijm
2ηij

j |yi(t)|
2

+(dij)
2(1−δij)m

2(1−ηij)
j |yj(t)|

2
]

+

n∑

j=1

[
(aij + bij)

2ϑijn
2ξij
j |yi(t)|

2

+(aij + bij)
2(1−ϑij)m

2(1−ξij)
j |yj(t− tij(t))|

2
]}

=
n∑

i=1

ci






−2a−i +

n∑

j=1

(dij)
2δijm

2ηij

j

+
n∑

j=1

cj

ci
(dji)

2(1−δij)m
2(1−ηij)
j

+
n∑

j=1

(aij + bij)
2ϑijn

2ξij
j


 |yi(t)|

2

+
n∑

j=1

cj

ci
(aji + bji)

2(1−ϑij)m
2(1−ξij)
j

× |yj(t− tij(t))|
2
}

6 −Θ1Ω(t) + Θ2Ω(t)(3.16)

where Ω(t) = supt−t6η6t Ω(η). From (A6), we have

(3.17) Ω(t+k ) =

n∑

i=1

ci|yi(t
+
k )|

2 6

n∑

i=1

cic
2
ik|yi(tk)|

2 < c2kΩ(tk).
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From Lemma 2.3, there is c > 1 satisfying

(3.18) Ω(t) 6 c( sup
−t6t60

Ω(t))e−λt

Thus

(3.19) ‖x(t)− x∗(t)‖ 6

(
cmax16i6n(ci)

min16i6n(ci)

) 1

2

‖ϕ− ϕ∗‖e−λt/2.

The validity of the theorem is completed.

The global exponential stability of FCNNs is important dynamical behavior. Time
delays and impulsive effects often cause system instability or oscillatory behaviour.
It is clear that the results obtained are related with the time delay and impulses for
justifying global exponentially stability of ω anti periodic solution of system (1).

4. A numerical example

In this segment, a precedent is given to demonstrate adequacy of results acquired.

Example 5.1 Consider the accompanying FCNNs with time-changing deferral
and hasty impacts.

(4.1)





x′

i(t) = −ai(t)xi(t) +
∑2

j=1 dij(t)fj(xj(t))

+
∧2

j=1 aij(t)gj(xj(t− tij(t)))

+
∨2

j=1 bij(t)gj(xj(t− tij(t)))

+Ei(t), t 6=
kπ
2 , k = 1, 2, · · · ,

∆xi(tk)) = − 2
3xi(tk), t = tk = kπ

2 , i = 1, 2,

where a1(t) = a2(t) =
1
8 , fj(x) = gj(x) = arctanx(j = 1, 2).

(dij(t))2×2 =

(
1/4 1/8
1/6 1/3

)
,

(aij(t))2×2 =

(
1/8 1/6
1/6 1/8

)
,

(bij(t))2×2 =

(
1/16 1/4
1/4 1/16

)
,

(Ei(t))2×1 =

(
1/4 sin t
1/3 cos t

)
.
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impulsive functions I1k(t, x) = I2k(t, x) = − 2
3x, impulsive points tk = kπ

2 , t11(t) =
t21(t) = | sin(2πt)|, t12(t) = t22(t) = | cos(2πt)|, then, we can easily check that
u = Ω = π

2 , c1k = c2k = 2
3 , c1k = c2k = 1

3 , ck = 1
3 , c = 1, c1 = c2 = e

π
8 , Taking

δij = ηij = ϑij = ξij =
1
2 (i = 1, 2), 2 ln ck

tk−tk−1

6 −1.39 = c.

It is easy to conclude that assumptions (A6) and (A8) hold true. Numeri-
cal arrangement x(t) = (x1(t), x2(t))

T of frameworks (27) for introductory esteem
ϕ(s) = (0.5,−0.4)T ,s ∈ [−2, 0].

5. Conclusion

In this paper, the presence and internationally exponential solidness of the counter
intermittent answer for fuzzy cell neural systems with time-differing delays are con-
sidered. Some adequate conditions set up here are effortlessly confirmed what’s
more, these conditions are related with parameters of the framework (1). The ac-
quired criteria can be connected to plan all around exponential stable of hostile to
occasional ceaseless fuzzy cell neural systems.
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GENERALIZED FUGLEDE-PUTNAM THEOREM AND
m-QUASI-CLASS A(k) OPERATORS

Mohammad H.M. Rashid

Abstract. For a bounded linear operator T acting on an complex infinite dimensional
Hilbert space H, we say that T is an m-quasi-class A(k) operator for k > 0 and m is a

positive integer (abbreviation T ∈ Q(A(k),m)) if T ∗m
(
(T ∗|T |2kT )

1

k+1 − |T |2
)
Tm ≥ 0.

The famous Fuglede-Putnam theorem asserts that: the operator equation AX = XB

implies A∗X = XB∗ when A and B are normal operators. In this paper, we prove that
if T ∈ Q(A(k),m) and S∗ is an operator of class A(k) for k > 0. Then TX = XS,
where X ∈ B(H) is an injective with a dense range which implies XT ∗ = S∗X.
Keywords. Bounded linear operator; Hilbert space; Fuglede-Putnam theorem; Normal
operator.

1. Introduction

Let H be an infinite dimensional complex Hilbert and B(H) denotes the algebra
of all bounded linear operators acting on H. Throughout this paper, the range and
the null space of an operator T will be denoted by ran(T ) and ker(T ), respectively.
Let M and M⊥ be the norm closure and the orthogonal complement of the sub-
space M of H. The classical Fuglede-Putnam theorem [12, Problem 152] asserts
that if T ∈ B(H) and S ∈ B(H) are normal operators such that TX = XS for some
operator X ∈ B(H), then T ∗X = XS∗. The references [16, 17, 18, 19, 20, 21] are
among the various extensions of this celebrated theorem for non-normal operators.

Every operator T can be decomposed into T = U |T | with a partial isometry U ,
where |T | is the square root of T ∗T . If U is determined uniquely by the kernel con-
dition ker(U) = ker(|T |), then this decomposition is called the polar decomposition,
which is one of the most important results in operator theory ( [7], [12], [14] and
[31]). In this paper, T = U |T | denotes the polar decomposition satisfying the kernel
condition ker(U) = ker(|T |).

Recall that an operator T ∈ B(H) is positive, T ≥ 0, if 〈Tx, x〉 ≥ 0 for all x ∈ H.
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An operator T ∈ B(H) is said to be hyponormal if T ∗T ≥ TT ∗. Hyponormal opera-
tors have been studied by many authors and it is known that hyponormal operators
have many interesting properties similar to those of normal operators ( [1, 4, 5, 8, 9]
and [13] ). An operator T is said to be p-hyponormal if(T ∗T )p ≥ (TT ∗)p for
p ∈ (0, 1] and an operator T is said to be log-hyponormal if T is invertible and
log |T | ≥ log |T ∗|. p-hyponormal and log-hyponormal operators are defined as ex-
tension of hyponormal operator.

An operator T ∈ B(H) is said to be paranormal if it satisfies the following norm
inequality

‖T 2‖‖x‖ ≥ ‖Tx‖
2

for all x ∈ H. Ando [3] proved that every log-hyponormal operator is paranormal.
It was originally introduced as an intermediate class between hyponormal and nor-
maloid operators.

In order to discuss the relations between paranormal and p-hyponormal and log-
hyponormal operators, Furuta el al. [9] introduced a class A defined by |T 2| ≥ |T |2

and they showed that class A is a subclass of paranormal and contains p-hyponormal
and log-hyponormal operators. Class A operators have been studied by many re-
searchers, for example [9, 10]. Fujii et al. [10] introduced a new class A(t, s) of
operators: For t > 0 and s > 0, the operator T belongs to class A(s, t) if it satisfies
the operator inequality

(
|T ∗|t|T |2s|T ∗|t

) t
t+s ≥ |T ∗|2t.

Furuta el al. [9] introduced class A(k) for k > 0 as a class of operators including
p-hyponormal and log-hyponormal operators, where A(1) coincides with class A

operator. We say that an operator T is class A(k), k > 0 (Abbreviation, T ∈ A(k)

) if (T ∗|T 2k|T )
1

k+1 ≥ |T |2. The inclusion relations among these classes are known
as follows:

{hyponormal operators} ⊂ {p− hyponormal operators for 0 < p ≤ 1}

⊂ {class A(s, t) operators for s, t ∈ [0, 1]}

⊂ {class A operators}

⊂ {paranormal operators}.

and

{hyponormal operators} ⊂ {p− hyponormal operators for 0 < p ≤ 1}

⊂ {class A operators}

⊂ {class A(k) for k ≥ 1}.

2. Spectral properties of k-quasi class A(m) operators

Throughout this article we would like to present some known results as propositions
which will be used in the sequel. Firstly, we begin with the following definition.
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Definition 2.1. We say that an operator T ∈ B(H) is of m-quasi class A(k)
(abbreviate Q(Ak,m) ), if

T ∗m(T ∗|T |2kT )1/(k+1)Tm ≥ Tm∗|T |2Tm,

where m is a positive integers and k > 0. If m = 1, then T is called a quasi-class
A(k) and if k = m = 1, then Q(Ak,m) coincides with quasi-class A operator.

Lemma 2.1. [6, Hansen’s Inequality] If A,B ∈ B(H) satisfying A ≥ 0 and ‖B‖ ≤
1, then

(B∗AB)α ≥ B∗AαB ∀α ∈ (0, 1].

Proposition 2.1. [23, Lemma 2.2]Let T ∈ Q(Ak,m) and Tm not have a dense

range. Then

T =

(
T1 T2

0 T3

)
on H = ran(Tm)⊕ ker(T ∗m),

where T1 = T |
ran(Tm) is the restriction of T to ran(Tm), and T1 ∈ A(k) and T3 is

nilpotent of nilpotency m. Moreover, σ(T ) = σ(T1) ∪ {0}.

Proposition 2.2. [23, Theorem 2.3] Let T ∈ B(H) be a Q(Ak,m) operator and

M be its invariant subspace. Then the restriction T |M of T to M is also Q(Ak,m)
operator.

Proposition 2.3. [23, Theorem 2.4] Let T ∈ Q(Ak,m). Then the following as-

sertions holds:

(a) If M is an invariant subspace of T and T |M is an injective normal operator,

then M reduces T .

(b) If (T − λ)x = 0, then (T − λ)∗x = 0 for all λ 6= 0.

A complex number λ is said to be in the point spectrum σp(T ) of T if there is a
nonzero x ∈ H such that (T −λ)x = 0. If, in addition, (T ∗− λ̄)x = 0, then λ is said
to be in the joint point spectrum σjp(T ) of T . Clearly, σp(T ) ⊆ σjp(T ). In general,
σp(T ) 6= σjp(T ).

In [33], Xia showed that if T is a semi-hyponormal operator, then σp(T ) =
σjp(T ); Tanahashi extended this result to log-hyponormal operators in [27]. Aluthge
[2] showed that if T is w-hyponormal, then nonzero points of σp(T ) and σjp(T ) are
identical; Uchiyama extended this result to class A operators in [28]. In the follow-
ing, we will point out that if T is a quasi-∗-class (A, k) operator for a positive integer
k, then nonzero points of σjp(T ) and σp(T ) are also identical and the eigenspaces
corresponding to distinct eigenvalues of T are mutually orthogonal.

Corollary 2.1. If T ∈ Q(Ak,m), then σjp(T ) \ {0} = σp(T ) \ {0}.
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Corollary 2.2. If T ∈ Q(Ak,m) and α, β ∈ σp(T ) \ {0} with α 6= β. Then

ker(T − α) ⊥ ker(T − β).

Proof. Let x ∈ ker(T − α) and y ∈ ker(T − β). Then Tx = αx and Ty = βy.
Therefore

α〈x, y〉 = 〈αx, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, βy〉 = β〈x, y〉.

Hence α〈x, y〉 = β〈x, y〉 and so (α − β)〈x, y〉 = 0. But α 6= β, hence 〈x, y〉 = 0.
Consequently, ker(T − α) ⊥ ker(T − β).

Theorem 2.1. Let T ∈ B(H). If T ∈ Q(Ak,m) with a dense range, then T is a

class A(k) operator for k > 0.

Proof. Since T has a dense range, ran(Tm) = H. Then there exists a sequence
{xn} ⊂ H such that lim

n→∞

Tmxn = y. Since T ∈ Q(Ak,m), we have

〈T ∗m(T ∗|T |2kT )
1

k+1Tmxn, xn〉 ≥ 〈T ∗m|T |2Tmxn, xn〉

〈T ∗m(T ∗|T |2kT )
1

k+1Tmxn, xn〉 ≥ 〈T ∗m|T |2Tmxn, xn〉

〈(T ∗|T |2kT )
1

k+1Tmxn, T
mxn〉 ≥ 〈|T |2Tmxn, T

mxn〉 ∀n ∈ N

By the continuity of the inner product, we have

〈((T ∗|T |2kT )
1

k+1 − |T |2)y, y〉 ≥ 0,

for all y ∈ H. Therefore T is a class A(k) operator for k > 0.

Corollary 2.3. Let T ∈ B(H). If T ∈ Q(Ak,m) and not class A(k), then T is

not invertible.

3. Generalized Fuglede-Putnam Theorem

For T ∈ B(H) and S ∈ B(H), we say that the FP-theorem holds for the pair (T, S)
if TX = XS implies T ∗X = XS∗, ran(X) reduces T , and ker(X)⊥ reduces S, the
restrictions T |

ran(X) and S|ker(X)⊥ are unitary equivalent normal operators for all

X ∈ B(H). The following result is very useful in the sequel.

Proposition 3.1. [26] Let T ∈ B(H) and S ∈ B(H). Then the following asser-

tions are equivalent.

1. If TX = XS, where X ∈ B(H), then T ∗X = XS∗,

2. If TX = XS, where X ∈ B(H), then ran(X) reduces T , ker(X)⊥ reduces S,

the restrictions T |
ran(X)

and S|ker(S)⊥ are normal.
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The numerical range of an operator T , denoted by W (T ), is the set defined by

W (T ) = {〈Tx, x〉 : ‖x‖ = 1}.

In general, the condition S−1TS = T ∗ and 0 /∈ W (T ) do not imply that T is
normal. If T = SB, where S is positive and invertible, B is self-adjoint, and S

and B do not commute, then S−1TS = T ∗ and 0 /∈ W (S), but T is not normal.
Therefore the following question arises naturally.
Question: Which operator T satisfying the condition S−1TS = T ∗ and 0 /∈ W (S)
is normal?

In 1966, Sheth [24] showed that if T is a hyponormal operator and S−1TS = T ∗

for any operator S, where 0 /∈ W (S), then T is self-adjoint. We extend the result
of Sheth to the class A(k), k > 0 operators as follows.

Theorem 3.1. Let T ∈ B(K). If T or T ∗ belongs to class A(k) for every k > 0
and S is an operator for which 0 /∈ W (S) and ST = T ∗S, then T is self-adjoint.

To prove Theorem 3.1 we need the following Lemmas.

Lemma 3.1. [30] If T ∈ B(H) is any operator such that S−1TS = T ∗, where

0 /∈ W (S), then σ(T ) ⊆ R.

Lemma 3.2. Let T ∈ B(H) and let T belongs to the class A(s, t) for some s > 0
and t > 0, we have

(a) If T̃s,t is normal, then T is normal [29].

(b) If m2(σ(T )) = 0, where m2 means the planer Lebsegue measure, then T is

normal [22].

Proof. [Proof of Theorem 3.1] Suppose that T or T ∗ is a class A(k), k > 0 operator.
Since σ(T ) ⊆ W (S), S is invertible and hence ST = T ∗S becomes S−1T ∗S = T =
(T ∗)∗. Apply Lemma 3.1 to T ∗ to get σ(T ∗) ⊆ R. Then σ(T ) = σ(T ∗) = σ(T ∗) ⊆
R. Thus m2(σ(T )) = m2(σ(T

∗))) = 0 for the planer Lebesgue measure m2. It
follows from Lemma 3.2 that T or T ∗ is normal. Since σ(T ) = σ(T ∗) ⊆ R.
Therefore, T is self-adjoint.

We can extend the result of Theorem 3.1 to the class of Q(Ak,m) as follows:

Theorem 3.2. Let T ∈ B(H). If T ∈ Q(Ak,m) and S is an arbitrary operator for

which 0 /∈ W (S) and ST = T ∗S, then T is a direct sum of self-adjoint and nilpotent

operator.

Proof. Since T is m-quasi-class A(k). then by Proposition 2.1, T has the following
matrix representation:

T =

(
T1 T2

0 T3

)
on H = ran(Tm)⊕ ker(T ∗m),
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where T1 = T |
ran(Tm) is the restriction of T to ran(Tm), and T1 is a class A(k)

and T3 is nilpotent of nilpotency m. Since S−1TS = T ∗ and 0 /∈ W (S), we have
σ(T ) ⊆ R by Lemma 3.1. Therefore σ(T1) ⊆ R because σ(T ) = σ(T1) ∪ {0} and
hence T1 is self-adjoint by Theorem 3.1 because T1 belongs to class A(k). Now let
Q be the orthogonal projection of H onto ran(Tm). Since T ∈ Q(Ak,m) we have

(
|T1|

2 0
0 0

)
= Q|T |2Q ≤ Q(T ∗|T |2kT )1/(k+1)Q

≤
(
QT ∗|T |2kT )Q

)1/(k+1)

≤
(
QT ∗(QT ∗TQ)kT )Q

)1/(k+1)
=

(
(T ∗

1 |T1|
2kT1)

1

k+1 0
0 0

)

by Lemma 2.1. Therefore,

Q(T ∗|T |2kT )1/(k+1)Q =

(
|T1|

2 0
0 0

)
= Q|T |2Q.

Since S is normal, we can write (T ∗|T |2kT )1/(k+1) =

(
|T1|

2 C

C∗ D

)
. Since

(
|T1|

2(k+1) 0
0 0

)
= Q(T ∗|T |2kT )Q = Q((T ∗|T |2kT )k+1)1/(k+1)Q,

we can easily show that C = 0. Therefore,

(T ∗|T |2kT )1/(k+1) =

(
|T1|

2 0
0 D

)

and hence

T ∗|T |2kT =

(
|T1|

2(k+1) 0
0 Dk+1

)
= T ∗(T ∗T )kT.

This implies that D = (T ∗

3 |T3|
2kT3)

1/(k+1), and by the matrix representation of T
we also have

T ∗T =

(
T1T

∗

1 T ∗

1 T2

T ∗

2 T1 + T ∗

3 T3 T ∗

2 T2

)
.

Therefore T ∗

2 T2 = 0 and hence T2 = 0, which completes the proof.

The following corollary is an extension of the result of Theorem 3.1 to the class of
quasi-class A(k) operators.

Corollary 3.1. If T is a quasi-class A(k) operator and S is an arbitrary operator

for which 0 /∈ W (S) and ST = T ∗S, then T is self-adjoint.

Proof. If T is a quasi-classA(k) operator, T has the following matrix representation:

T =

(
T1 T2

0 0

)
onH = ran(T )⊕ ker(T ∗),
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where T1 is a class A(k) on ran(T ) and σ(T ) = σ(T1)∪ {0}. Since T1 is self-adjoint
and T2 = 0 by Theorem 3.2, T is also self-adjoint.

In 1976, Stampfli and Wadhwa [25] showed that if T ∗ ∈ B(H) is hyponormal, S ∈
B(H) is dominant, X ∈ B(H) is injective and has a dense range, and if XT = SX ,
then T and S are normal. on the other hand, in 1981, Gupta and Ramanujan [11]
showed that if T ∈ B(H) is k-quasihyponormal operator and S ∈ B(H) is normal
operator for which TY = Y S where Y ∈ B(H) is injective with dense range, then T

is normal operator unitarily equivalent to S. In the following theorem , we extend
the result of Gupta and Ramanujan to the class Q(Ak,m) operators. We need the
following Lemmas.

Lemma 3.3. [15] Let T, S be normal operators. If there exist injective operators
X and Y such that XT = SX and Y S = TY , then T and S are unitarily equivalent.

Lemma 3.4. Let T = U |T | be the polar decomposition of T which belong to class

A(p, p) for p > 0. Then T̃p,p = |T |pU |T |p is semi-hyponormal and
˜̃
T p,p is hyponor-

mal.

Theorem 3.3. Let T ∈ B(H) be class A(k) and N ∈ B(H) be a normal operator.

If X ∈ B(H) has dense range and satisfies TX = XN , then T is also a normal

operator.

Proof. Since TX = XN and X has dense range, we have Xran(N) = ran(T ). If
we denote the restriction of X to ran(N) by X1, then X1 : ran(N) → ran(T ) has
dense range and for every x ∈ ran(N)

X1Nx = XNx = TXx = TX1x

so that X1N = TX1. Since T is of class A(k) then T belongs to class A(p, p), where

p = max{1, k}. Hence it follows from Lemma 3.4 that T̃p,p is semi-hyponormal and

hence there is a quasiaffinity Y such that T̃p,pY = Y T . Thus we have

T̃p,pY X1 = Y TX1 = Y X1N

since Y X1 has dense range, T̃p,p is normal, and so T is normal by Lemma 3.2.

Theorem 3.4. Let T ∗ ∈ B(H) be of class A(k) for k > 0 and let S ∈ B(H) be of

class A(k) for k > 0. If XT = SX, where X : H → H is an injective bounded linear

operator with dense range, then T is a normal operator unitarily equivalent to S.

Proof. Since T ∗ and S are class A(k), then T ∗ and S are class A(p, p), where
p = max{1, k}. Now, decompose S and T ∗ into their normal and pure parts by

S = W ⊕ J and T ∗ = L∗ ⊕ Q∗. Let X1 =
˜̃
X = |J̃p,p|

1

2 |J̃p,p|
1

2X |Q̃∗

p,p|
1

2 |Q̃∗

p,p|
1

2 .
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Since XQ = JX, X1
˜̃
Qp,p = ˜̃

Jp,pX1, where
˜̃
Qp,p , ˜̃

Jp,p are hyponormal operators
by Lemma 3.4 and X1 is quasi-affinity. Now by Fuglede-Putnam Theorem for

hyponormal operators, X1
˜̃
Qp,p = ˜̃

J∗
p,pX1 and ran(X1) reduces

˜̃
Jp,p and (kerX1)

⊥

reduces ˜̃
Qp,p and ˜̃

Jp,p|ran(X1)
and ˜̃

Qp,p|(kerX1)⊥ are unitarily equivalent normal

operators. Since X1 is quasiaffinity, then ran(X1) = H and (kerX1)
⊥ = {0} and

˜̃
Qp,p and ˜̃

Jp,p are unitarily equivalent normal operators. In particular, ˜̃
Qp,p and

˜̃
Jp,p are normal operators and by Lemmas 3.3, 3.3, the result follows.

Theorem 3.5. If T ∗ ∈ B(H) is of class A(k) for k > 0, S ∈ B(H) is of class A(k)
for k > 0 and XT = SX for X ∈ B(H) is quasiaffinity, then XT ∗ = S∗X

Proof. Since by assumption XT = SX , we can see that (ker(X))⊥and ran(X) are
invariant subspaces of T ∗ and S , respectively. Then T ∗|(kerX)⊥ is of class A(k) and

S|
ran(X)

is also of classA(k). Now consider the decompositionH = (kerX)⊥⊕kerX

and H = ran(X)⊕ (ran(X))⊥. Then we have the following matrix representation:

T =

[
T1 T2

0 T3

]
, S =

[
S1 S2

0 S3

]
, X =

[
X1 0
0 0

]
,

where T ∗

1 is of class A(k), S1 is of class A(k) and X1 is injective with dense range.
Therefore, we have X1T1x = XTx = SXx = S1X1x for x ∈ (kerX)⊥. That is,
X1T1 = S1X1 and T1 and S1 are normal by Theorem 3.4. By Fuglede-Putnam
theorem we have X1T

∗

1 = S∗

1X1. Therefore, (kerX)⊥ and (ran(X)) reduces T ∗ and
S, respectively. Hence, we obtain the XT ∗ = S∗X .

Theorem 3.6. Let T ∈ Q(Ak,m) and let S∗ be an operator of class A(k) for

k > 0. If TX = XS, where X ∈ B(H) is an injective with dense range. Then

XT ∗ = S∗X.

Proof. Let T1 = T |
ran(Tm) and S1 = S|

ran(Sm). Then we have the following matrix
representation:

T =

(
T1 T2

0 T3

)
, S =

(
S1 0
0 0

)
,(3.1)

where T1 is class A(k), Tm
3 = 0 and S∗

1 = 0. Notice that TmX = XSm for all

positive integer m. Thus X(ran(Sm)) = ran(Tm). If we denote the restriction of
X to ran(Sm) by N then N : ran(Sm) → ran(Sm) is an injective and has a dense
range. Since NS1x = XSx = TXx = T1Nx for all x ∈ ran(Sm), it follows that
NS1 = T1N. On the other hand, since T1 and S∗

1 are belong to class A(k), it follows
from Theorem 3.5 that T1 is a normal operator unitarily equivalent to S1. Now
let E be the orthogonal projection of H onto ran(Tm). Since T ∈ Q(Ak,m) and
T1 is a normal operator, from the argument of the proof of Theorem 3.2 we have
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T2 = 0 and hence ran(Tm) reduces T . Since X∗(ker(Tm∗

)) ⊆ ker(Sm∗

) = ker(S∗),
we have that for each x ∈ ker(Tm∗

),

X∗T ∗

3 x = X∗T ∗x = S∗X∗x = 0.(3.2)

But since X has a dense range, X∗ is an injective and hence T ∗

3 x = 0 for every
x ∈ ker(T k∗

). Thus T3 = 0, so that T = T1⊕0. Therefore, the proof is achieved.

Theorem 3.7. If T ∗ ∈ B(H) is of class A(k) for k > 0, S ∈ B(H) is injective

m-quasi-class A(k), and if XT = SX for X ∈ B(H), then XT ∗ = S∗X.

Proof. Since by assumption XT = SX , we can see that (kerX)⊥ and ranX are
invariant subspace of T ∗ and S, respectively. Therefore, by Lemma 2.2 we have that
T ∗|(kerX)⊥ is class A(k) and S|

ran(X) ∈ Q(Ak,m). Now consider the decomposition

H = (kerX)⊥ ⊕ kerX . Then we have the matrix representations:

T =

[
T1 0
T2 T3

]
, S =

[
S1 S2

0 S3

]
, X =

[
X1 0
0 0

]
(3.3)

where T ∗

1 is of classA(k) and S1 is injectivem-quasi-classA(k) andX1 is an injective
with dense range. Therefore, we have

X1T1x = XTx = SXx = S1X1x for x ∈ (kerX)⊥.(3.4)

that is, X1T1 = S1X1 and hence, T1 and S1 are normal by Theorem 3.6 and
X1T

∗

1 = S∗

1X1 by the Fuglede-Putnam Theorem. Therefore, it follows from Lemma
2.3 that (kerX)⊥ and ran(X) reduces T ∗ and S , respectively. Hence, we obtain
the XT ∗ = S∗X .

Let T ∈ B(H) be compact, and let s1(T ) ≥ s2(T ) ≥ · · · ≥ 0 denote the singular

values of T , i.e., the eigenvalues of |T | = (T ∗T )
1

2 arranged in their decreasing order.
The operator T is said to belong to the Schatten p-class Cp if

‖T ‖p =




∞∑

j=1

(sj(T ))
p




1

p

= (tr|T |p)
1

p < ∞, 1 ≤ p < ∞,

where tr(.) denote the trace functional. Hence C1(H) is the trace class, C2(H) is the
Hilbert-Schmidt class, and C∞ is the class of compact operator with ‖T ‖

∞
= s1(T )

denoting the usual norm.
For each pairs of operators A and B in B(H), an operator τ in (

¯
B2(H)) is defined

by
τX = AXB.

Evidently ‖τ‖ ≤ ‖A‖‖B‖. And the adjoint of τ is given by the formula τ∗X =

A∗XB∗. In particular, if A and B are both positive, then τ is positive and τ
1

2 =
A

1

2XB
1

2 , as one sees from the calculation

〈τX,X〉 = tr(AXBX∗) = tr(A
1

2XBX∗A
1

2 )

= tr
(
(A

1

2XB
1

2 )(A
1

2XB
1

2 )∗
)
≥ 0.
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Since |τ |2X = |A|2X |B∗|2 and |τ∗|2X = |A∗|2X |B|2, we have

|τ |
1

2n = |A|
1

2n X |B∗|
1

2n

and
|τ∗|

1

2n = |A∗|
1

2n X |B|
1

2n

for each integer n ≥ 1.
Now, we need the following lemma.

Lemma 3.5. Let A and B be operators in B(H). If A and B∗ are m-quasi-class

A(k) for k > 0. Then the operator τ : C2(H) → C2(H) defined by τX = AXB is

m-quasi-class A(k) for k > 0.

Proof. For X ∈ C2(H), we have

τ∗m
((

τ∗|τ |2kτ
) 1

k+1 − |τ |2
)
τmX

= A∗m
[
(A∗|A|2kA)

1

k+1 − |A|2
]
AmXBm

(
B|B∗|2kB∗

) 1

k+1 B∗m

+ A∗m|A|2AmXBm
(
(B|B∗|2kB∗)

1

k+1 − |B∗|2
)
B∗m

Since A and B∗ are m-quasi-class A(k) operators, we have

τ∗m
((

τ∗|τ |2kτ
) 1

k+1 − |τ |2
)
τm ≥ 0.

Theorem 3.8. Let A be m-quasi-class A(k) operator for k > 0 and B∗ be an

invertible class A(k) operator for k > 0. If AX = XB for X ∈ C2(H), then

A∗X = XB∗.

Proof. Let τ be defined on C2(H) by τX = AXB−1. Since B∗ is an invertible class
A(k) operator, then it follows that B∗ is also a class A(k) operator for k > 0. Since
A is an m-quasi-class A(k) operator and (B−1)∗ = (B∗)−1 is an m-quasi-class A(k)
operator, we have that τ is an m-quasi-class A(k) operator on B2(H) by Lemma
3.5. Moreover, we have τX = AXB−1 = X because of AX = XB. Hence X is an
eigenvector of τ. By Proposition 2.3 part (b), we have τ∗X = A∗X(B−1)∗ = X,

that is, A∗X = XB∗. So, the proof is achieved.
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ON DERIVATIONS SATISFYING CERTAIN IDENTITIES ON
RINGS AND ALGEBRAS

Gurninder S. Sandhu, Deepak Kumar, Didem K. Camci and Neşet Aydin

Abstract. The present paper deals with the commutativity of an associative ring R

and a unital Banach Algebra A via derivations. Precisely, the study of multiplicative
(generalized)-derivations F and G of semiprime (prime) ring R satisfying the identities
G(xy)± [F (x), y]± [x, y] ∈ Z(R) and G(xy)± [x,F (y)]± [x, y] ∈ Z(R) has been carried
out. Moreover, we prove that a unital prime Banach algebra A admitting continuous
linear generalized derivations F and G is commutative if for any integer n > 1 either
G((xy)n) + [F (xn), yn] + [xn, yn] ∈ Z(A) or G((xy)n)− [F (xn), yn]− [xn, yn] ∈ Z(A).
Keywords. Banach algebra; Associative ring; Generalized derivations.

1. Multiplicative (generalized)-derivations on rings

All throughout this paper Z(R) stands for the center of an associative ring R.
Recall that if aRb = (0) (resp. aRa = (0)) implies either a = 0 or b = 0 (resp.
a = 0) then R is called a prime (resp. semi-prime) ring for all a, b ∈ R. For a
positive integer n, a ring R is called n-torsion free if nx = 0 implies x = 0 for all
x ∈ R. The symbol [x, y]n = [[x, y]n−1, y] represents the nth commutator where
[x, y]1 = [x, y] = xy − yx. A mapping δ : R → R satisfying δ(a + b) = δ(a) + δ(b)
and δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ R is called a derivation of R. The notion of
derivations has been generalized in many ways for instance local derivations, skew
derivations, (θ, φ)-derivations, Lie derivations, Jordan derivations, multiplicative
derivations etc. A set AR(S) ={a ∈ R : as = sa = 0 for all s ∈ S} is called
the annihilator of a non-empty subset S of R. By a left centralizer, we mean an
additive mapping H : R → R such that H(xy) = H(x)y for all x, y ∈ R. A mapping
f : R → R is called centralizing (resp. commuting) on R if [f(a), a] ∈ Z(R) (resp.
[f(a), a] = 0) for all a ∈ R. There has been a significant interest in the study of
centralizing and commuting mappings in associative rings (for example, see [5], [6]
, [19] and references therein ).
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Let us turn to the earlier investigation of multiplicative derivation and its gener-
alizations. A map δ : R → R is called a multiplicative derivation of R if it satisfies
the Leibniz rule on R i.e.; δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R. Of course these
mappings are not necessarily additive. The idea of such mappings was introduced
by Daif [8] inspired by the work of Martindale [18]. Further Goldmann and Šemrl
[12] provided a complete study of these maps. The following example shows the
existence of multiplicative derivation; let R = C[0, 1] be the ring of all continuous
real (or complex) valued functions and a map δ : R → R defined as:

δ(h)(u) =

{
h(u)log|h(u)| if h(u) 6= 0
0 if h(u) = 0

}

It is easy to verify that the map δ is not additive but it satisfies the Leibnitz’s rule.
Further, Daif and Tammam-El-Sayiad [10] amplified this notion of multiplicative
derivation to multiplicative generalized derivation as; A mapping D : R → R is said
to be a multiplicative generalized derivation if it is uniquely determined by a deriva-
tion δ : R → R such that D(ab) = D(a)b + aδ(b) for all a, b ∈ R. Recently, Dhara
and Ali [11] made a slight generalization in the definition of multiplicative gener-
alized derivation and hence introduced the notion of multiplicative (generalized)-
derivation. Accordingly, a mapping F : R → R (not necessarily additive) is called
multiplicative (generalized)-derivation associated with a map f : R → R (not nec-
essarily additive nor a derivation) if F (ab) = F (a)b + af(b) for all a, b ∈ R. Very
recently, Camci and Aydin [7] proved that if F is a multiplicative (generalized)-
derivation of a semiprime ring associated with a map f , then f is a multiplicative
derivation. For our convenience, we denote a multiplicative (generalized)-derivation
as (F, f) throughout this paper. The multiplicative (generalized)-derivation looks
more appropriate than multiplicative generalized derivation as it covers both the
concept of multiplicative derivation and multiplicative left multiplier.

During the last two decades, the commutativity of associative rings with deriva-
tions have become one of the focus point of several authors and a significant work
has been done in this direction (for the references one can see [3], [5], [9], [14], [17],
[19], [20], [4] and references therein). In [14], Hongan proved that if d is a derivation
of a prime ring R such that d([x, y]) ± [x, y] ∈ Z(R) for all x, y ∈ I, where I is a
nonzero ideal of R, then R is commutative. Further, Qadri et al. [20] extended this
result by proving it for generalized derivations of prime rings. In [4], Ashraf et al.
explored the commutativity of prime rings that admit generalized derivations sat-
isfying several differential identities on appropriate subsets. Precisely, they proved
the following: Let R be a prime ring and I be a nonzero ideal of R. If R admits a
generalized derivation F associated with a nonzero derivation d satisfying any one of
the identities: (i) F (xy)xy ∈ Z(R); (ii) F (xy)+xy ∈ Z(R); (iii) F (xy)yx ∈ Z(R);
(iv) F (xy) + yx ∈ Z(R) for all x, y ∈ I, then R is commutative. Very recently, Ti-
wari et al. [23] discussed the commutativity of prime rings by studying the following
conditions: (i) G(xy)±F (x)F (y)±xy ∈ Z(R); (ii) G(xy)±F (y)F (x)±xy ∈ Z(R);
(iii) G(xy) ± F (x)F (y) ± yx ∈ Z(R); (iv) G(xy) ± F (y)F (x) ± yx ∈ Z(R); (v)
G(xy) ± F (y)F (x) ± [x, y] ∈ Z(R) for all x, y ∈ I, where I is a nonzero ideal of R
and F,G are the generalized derivation of R.
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Clearly, a generalized derivation is a multiplicative (generalized)- derivation but
the converse is not true. Thus, it would be a fact of interest to think about the
results of generalized derivations for multiplicative (generalized)-derivations. In this
direction, the initial results are due to Dhara and Ali [11], where they extended the
theorems of Ashraf et al. [4] to the class of multiplicative (generalized)-derivations
of semiprime rings. Moreover, Khan [15] studied the following differential identities:
(i) d(x) ◦ F (y)± (x ◦ y) = 0; (ii) d(x) ◦ F (y)± [x, y] = 0; (iii) d(x) ◦ F (y) = 0; (iv)
[d(x), F (y)] ± [x, y] = 0; (v) [d(x), F (y)] ± (x ◦ y) = 0; (vi) [d(x), F (y)] = 0 for all
x, y in an appropriate subset of a semiprime ring R and (F, d) the multiplicative
(generalized)-derivation of R. For a good cross section of this subject, we refer the
reader to [1], [16], [7], [21] and references therein. In this paper, our aim is to
explore the nature of multiplicative derivations acting on a semiprime rings. More
specifically, we investigate the following differential identities:

(i) G(xy)± [F (x), y]± [x, y] ∈ Z(R);

(ii) G(xy)± [x, F (y)]± [x, y] ∈ Z(R),

where (F, d) and (G, g) are the multiplicative (generalized)-derivations of a semiprime
ring R.

1.1. Preliminaries

To achieve our objectives, we make utilization of the following commutator identi-
ties: [x, yz] = y[x, z] + [x, y]z, [xy, z] = x[y, z] + [x, z]y. We also use the following
well known results:

Lemma 1.1. [[17] Theorem 2. (ii)] Let R be a prime ring and I be a nonzero
ideal of R. If there exist a derivation d of R such that x[[d(x), x], x] = 0 for all
x ∈ I, then either d = 0 or R is commutative.

Lemma 1.2. [[6] Theorem 4.] Let R be a prime ring and I a nonzero left ideal
of R. If R admits a nonzero derivation d such that [d(x), x] ∈ Z(R) for all x ∈ I,
then R is commutative.

1.2. Main Results

Theorem 1.1. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R such that G(xy)+[F (x), y]±[x, y] ∈
Z(R) holds for all x, y ∈ I, then [g(z), z] = 0 and z[f(z), z]2 = 0 for all z ∈ I.

Proof. By our hypothesis

G(xy) + [F (x), y]± [x, y] ∈ Z(R) for all x, y ∈ I.(1.1)
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On replacing y by yz in (1.1), we get (G(xy) + [F (x), y] ± [x, y])z + xyg(z) +
y[F (x), z] ± y[x, z] ∈ Z(R) for any x, y, z ∈ I. On commuting with z and using
given hypothesis we obtain

[xyg(z), z] + [y[F (x), z], z]± [y[x, z], z] = 0 for all x, y, z ∈ I.(1.2)

Put zy in the place of y in (1.2) and we find

[xzyg(z), z] + z[y[F (x), z], z]± z[y[x, z], z] = 0 for all x, y, z ∈ I.(1.3)

Left multiply (1.2) by z and subtract from (1.3) to obtain

[[x, z]yg(z), z] = 0 for all x, y, z ∈ I.(1.4)

Replacing x by xt in (1.4) and we get

[x[t, z]yg(z), z] + [[x, z]tyg(z), z] = 0 for all x, y, z, t ∈ I.(1.5)

Put y = ty in (1.4) and subtract from (1.5), we get 0 = [x[t, z]yg(z), z] = x[[t, z]y
g(z), z] + [x, z][t, z]yg(z) for any x, y, z, t ∈ I. Using (1.4), we obtain

[x, z][t, z]yg(z) = 0 for all x, y, z, t ∈ I.(1.6)

Substituting tk for t in (1.6) in order to get

[x, z]t[k, z]yg(z) + [x, z][t, z]kyg(z) = 0 for all x, y, z, t, k ∈ I.(1.7)

Replace y by ky in (1.6) and subtract from (1.7), we obtain

[x, z]t[k, z]yg(z) = 0 for all x, y, z, t, k ∈ I.(1.8)

Put x = xg(z) in (1.8) and we have

x[g(z), z]t[k, z]yg(z) + [x, z]g(z)t[k, z]yg(z) = 0 for all x, y, z, t, k ∈ I.(1.9)

Replace t by g(z)t in (1.8) and subtract from (1.9) to get

x[g(z), z]t[k, z]yg(z) = 0 for all x, y, z, t, k ∈ I.(1.10)

Putting kg(z) for k in (1.10) and we find

x[g(z), z]tk[g(z), z]yg(z) + x[g(z), z]t[k, z]g(z)yg(z) = 0 for all x, y, z, t, k ∈ I.(1.11)

Replace y by g(z)y in (1.10) and subtract from (1.11), we have

x[g(z), z]tk[g(z), z]yg(z) = 0 for all x, y, z, t, k ∈ I.(1.12)

Substitute k = g(z)zk in (1.12) and we obtain

x[g(z), z]tg(z)zk[g(z), z]yg(z) = 0 for all x, y, z, t, k ∈ I.(1.13)
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Replacing t by tzg(z) in (1.12) to get

x[g(z), z]tzg(z)k[g(z), z]yg(z) = 0 for all x, y, z, t, k ∈ I.(1.14)

Subtract (1.13) and (1.14), we get x[g(z), z]t[g(z), z]k[g(z), z]yg(z) = 0 for all
x, y, z, t, k ∈ I. It implies that x[g(z), z]t[g(z), z]k[g(z), z]y[g(z), z] = 0 for all
x, y, z, t, k ∈ I. In particular, (I[g(z), z])4 = (0) for all z ∈ I. Since R is semiprime
ring, so we must have I[g(z), z] = (0) for all w ∈ I. Therefore, semiprimeness of I
yields that [g(z), z] = 0 for all z ∈ I.

Now, substitute y = yz in (1.2), we get

[xyzg(z), z] + [yz[F (x), z], z]± [yz[x, z], z] = 0 for all x, y, z ∈ I.(1.15)

Right multiply (1.2) by z and subtract from (1.15) and using the fact that [g(z), z] =
0, we get

[y[[F (x), z], z], z]± [y[[x, z], z], z] = 0 for all x, y, z ∈ I.(1.16)

Replace x by xz in (1.16) in order to obtain

[y[[F (x), z], z], z]z + [y[[xf(z), z], z], z]± [y[[x, z], z], z]z = 0,(1.17)

for all x, y, z ∈ I. Right multiply (1.16) by z and subtract from (1.17), we get

[y[[xf(z), z], z], z] = 0 for all x, y, z ∈ I.(1.18)

Replace y by [xf(z), z]y in (1.18) and we find [xf(z), z][y[[xf(z), z], z], z]+ [[xf(z),
z], z]y[[xf(z), z], z] = 0 for any x, y, z ∈ I. Using (1.18), we get [[xf(z), z], z]y[[x
f(z), z], z] = 0 for all x, y, z ∈ I. That is, (I[[xf(z), z], z])2 = 0 but R is a semi-prime
ring so we must have I[[xf(z), z], z] = for each x, z ∈ I. Semi-primeness of I implies
that [[xf(z), z], z] = 0 for all x, z ∈ I. In particular, we obtain z[f(z), z]2 = 0 for
all z ∈ I, as desired.

In Theorem 1.1, substitute G = −G and g = −g we get the following theorem:

Theorem 1.2. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R such that G(xy)−[F (x), y]±[x, y] ∈
Z(R) holds for all x, y ∈ I, then [g(z), z] = 0 and z[f(z), z]2 = 0 for all z ∈ I.

Corollary 1.1. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g) are
multiplicative generalized derivations of R such that G(xy)±[F (x), y]±[x, y] ∈ Z(R)
holds for all x, y ∈ I, then either f = 0 = g or R is commutative.

Proof. Observe that in Theorem 1.1 and 1.2, if R is prime and f, g are derivations of
R, by Lemma 1.1 and Lemma 1.2 the equations z[[f(z), z], z] = 0 and [g(z), z] = 0
for all z ∈ I respectively implies that either f = 0 = g or R is commutative.

In Corollary 1.1, substitute G∓ Id for G we get the following result:
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Corollary 1.2. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g) are
multiplicative generalized derivations of R such that G(xy)± [F (x), y]± yx ∈ Z(R)
holds for all x, y ∈ I, then either f = 0 = g or R is commutative.

In Corollary 1.2, substitute F ± Id for F we get the following result:

Corollary 1.3. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g) are
multiplicative generalized derivations of R such that G(xy)± [F (x), y]± xy ∈ Z(R)
holds for all x, y ∈ I, then either f = 0 = g or R is commutative.

Theorem 1.3. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R such that G(xy)+[x, F (y)]±[x, y] ∈
Z(R) holds for all x, y ∈ I, then [g(z), z] = −[f(z), z] for all z ∈ I.

Proof. Let us assume that

G(xy) + [x, F (y)]± [x, y] ∈ Z(R) for all x, y ∈ I.(1.19)

Put y = yz in (1.19) and we find (G(xy)+ [x, F (y)]± [x, y])z+xyg(z)+F (y)[x, z]+
[x, yf(z)] ± y[x, z] ∈ Z(R) for all x, y, z ∈ I. On commuting with z and using our
hypothesis, we obtain

[xyg(z), z] + [F (y)[x, z], z] + [[x, yf(z)], z]± [y[x, z], z] = 0,(1.20)

for all x, y, z ∈ I. Replacing x by xz in (1.20), we get

[xzyg(z), z] + [F (y)[x, z], z]z + [[x, yf(z)], z]z + [x[z, yf(z)], z]± [y[x, z], z]z = 0,(1.21)

for all x, y, z ∈ I. Right multiply (1.20) by z and subtract from (1.21), we find
[x[z, yg(z)], z] + [x[z, yf(z)], z] = 0 where x, y, z ∈ I. That is

[x[z, y(g(z) + f(z))], z] = 0 for all x, y, z ∈ I.(1.22)

On substituting ry in the place of y, where r ∈ R in (1.22), we get

[xr[z, y(g(z) + f(z))], z] + [x[z, r]y(g(z) + f(z)), z] = 0,(1.23)

for all x, y, z ∈ I, r ∈ R. Replacing x by xr in (1.22) and subtract from (1.23), we
get

[x[z, r]y(g(z) + f(z)), z] = 0 for all x, y, z ∈ I, r ∈ R.(1.24)

Put sx in the place of x, where s ∈ R in (1.24) in order to find s[x[z, r]y(g(z) +
f(z)), z] + [s, z]x[z, r]y(g(z) + f(z)) = 0 for all x, y, z ∈ I and r, s ∈ R. Eq. (1.24)
reduces it to

[s, z]x[r, z]y(g(z) + f(z)) = 0 for all x, y, z ∈ I, r, s ∈ R.(1.25)

Replace y by yz in (1.25), we get

[s, z]x[r, z]yz(g(z) + f(z)) = 0 for all x, y, z ∈ I, r, s ∈ R.(1.26)
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Right multiply (1.25) by z and subtract from (1.26), we get [s, z]x[r, z]y[(g(z) +
f(z)), z] = 0 for each x, y, z ∈ I and r, s ∈ R. In particular, we have (I[(g(z) +
f(z)), z])3 = (0) for all z ∈ I. Since R is semiprime ring, so we must have I[(g(z)+
f(z)), z] = (0) for all z ∈ I. Therefore, [(g(z) + f(z)), z] ∈ I ∩ AR(I) = (0) for any
z ∈ I. Hence [g(z), z] = −[f(z), z] for all z ∈ I, as desired.

In Theorem 1.3, substitute G = −G and g = −g we get the following theorem:

Theorem 1.4. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R such that G(xy)−[x, F (y)]±[x, y] ∈
Z(R) holds for all x, y ∈ I, then [g(z), z] = [f(z), z] for all z ∈ I.

Corollary 1.4. Let R be a prime ring. If (F, f) and (G, g) are multiplicative
generalized derivations of R such that G(xy) − [x, F (y)] ± [x, y] ∈ Z(R) holds for
all x, y ∈ R then either g = f or R is commutative.

Proof. From Theorem 1.4 we have, [(−g+f)(z), z] = 0 for all z ∈ R. We know that
sum of two derivations is a derivation so Posner’s second theorem [19] yields that
either g = f or R is commutative.

Corollary 1.5. Let R be a prime ring with a nonzero ideal I. Suppose that (F, f)
and (G, g) are multiplicative generalized derivations of R. If G(xy)−[x, F (y)]±yx ∈
Z(R) holds for all x, y ∈ I then either f = g or R is commutative.

Proof. It is easy to check that if G is a multiplicative (generalized)-derivation on
R associated with a map g, then (G ∓ Id) is also a multiplicative (generalized)-
derivation on R associated with map g. On replacing G by (G∓Id) in Theorem 1.4,
we obtain that [(−g+ f)(z), z] = 0 for the situation G(xy)− [F (x), y]∓ yx ∈ Z(R)
for all x, y ∈ I. If we assume that F and G are multiplicative generalized derivations
associated with non-zero derivations f and g respectively same conclusion i.e.; (−g+
f) is commuting on I holds. Hence, Lemma 1.2 implies that either f = g or R is
commutative.

In Corollary 1.5, substitute F ± Id for F we get the following results:

Corollary 1.6. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g) are
multiplicative generalized derivations of R such that G(xy)− [x, F (y)]± xy ∈ Z(R)
holds for all x, y ∈ I, then either f = g or R is commutative.

Theorem 1.5. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R and H is a left centralizer of R such
that G(xy) + [F (x), y]±H(xy) ∈ Z(R) holds for all x, y ∈ I, then [g(z), z] = 0 and
z[f(z), z]2 = 0 for all z ∈ I.
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Proof. By the hypothesis, we have

G(xy) + [F (x), y]±H(xy) ∈ Z(R) for all x, y ∈ I.(1.27)

Taking yz instead of y with z ∈ I in (1.27), we get (G(xy) + [F (x), y]±H(xy))z +
xyg(z) + y[F (x), z] ∈ Z(R) for all x, y, z ∈ I. On commuting with z and using the
hypothesis, we get

[xyg(z), z] + [y[F (x), z], z] = 0 for all x, y, z ∈ I.(1.28)

Replacing y by zy in (1.28), so we have

[xzyg(z), z] + z[y[F (x), z], z] = 0 for all x, y, z ∈ I.(1.29)

Left multiply (1.28) by z and subtract from (1.29), we obtain

[[x, z]yg(z), z] = 0 for all x, y, z ∈ I.(1.30)

So, same equation with the (1.4) was obtained. Similar proof shows that [g(z), z] =
0, for all z ∈ I. If we replace y by yz in (1.28), we get

[xyzg(z), z] + [yz[F (x), z], z] = 0 for all x, y, z ∈ I.(1.31)

Right multiply (1.28) by z and subtract from (1.31) and using the [g(z), z] = 0, we
get

[y[[F (x), z], z], z] = 0 for all x, y, z ∈ I.(1.32)

Replace x by xz and using (1.32), we have

[[y[[xf(z), z], z], z] = 0 for all x, y, z ∈ I.(1.33)

So, same equation with the (1.18) has obtained. Similar operations applied after
this shows that z[[f(z), z], z] = 0 for all z ∈ I.

In Theorem 1.5, substitute G = −G and g = −g we get the following theorem.

Theorem 1.6. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R and H is a left centralizer of R such
that G(xy)− [F (x), y]±H(xy) ∈ Z(R) holds for all x, y ∈ I, then [g(z), z] = 0 and
z[f(z), z]2 = 0 for all z ∈ I.

Corollary 1.7. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g)
are multiplicative generalized derivations of R such that G(xy)± [F (x), y]±H(xy) ∈
Z(R) holds for all x, y ∈ I, then either f = 0 = g or R is commutative.

By using the similar technique, we obtain the following results. For the sake of
brevity, we omit the proofs here.
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Theorem 1.7. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations and H is a left centralizer of R such that
G(xy) + [x, F (y)] ±H(xy) ∈ Z(R) holds for all x, y ∈ I, then [g(z), z] = −[f(z), z]
for all z ∈ I.

In Theorem 1.7, substitute G = −G and g = −g we get the following theorem.

Theorem 1.8. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations and H is a left centralizer of R such that
G(xy) − [x, F (y)] ± H(xy) ∈ Z(R) holds for all x, y ∈ I, then [g(z), z] = [f(z), z]
for all z ∈ I.

Corollary 1.8. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g)
are multiplicative generalized derivations of R such that G(xy)− [x, F (y)]±H(xy) ∈
Z(R) holds for all x, y ∈ I, then either f = g or R is commutative.

2. Generalized derivations on Banach algebras

In order to extend the scope of this work, we discuss the commutativity of unital
prime Banach algebras with derivations which is directly motivated by the work of
Yood [24] and Ali [2]. Since we have already proved that (as in Corollary 1.1 and 1.4)
if constraints G(xy)+ [F (x), y]+ [x, y] ∈ Z(R) and G(xy)− [x, F (y)]− [x, y] ∈ Z(R)
hold on a prime ring R where F and G are generalized derivations associated with
non-zero non-equal derivations f and g respectively, then R is commutative. For
an integer n > 1, it is natural to consider the constraints: 1. either G((xy)n) +
[F (xn), yn] + [xn, yn] ∈ Z(R) or G((xy)n) + [yn, F (xn)] + [yn, xn] ∈ Z(R) and 2.
G((xy)n)+[xn, F (yn)]+[xn, yn] ∈ Z(R) or G((xy)n)+[xn, F (yn)]+[xn, yn] ∈ Z(R)
on Banach Algebra.

2.1. Preliminaries

Lemma 2.1. [[24]]Let A is a Banach algebra and M be a closed linear subspace
of A. If p(t) = a1t+ a2t

2 + ...+ ant
n be a polynomial in real variable t over A such

that p(t) ∈ M , then each ai ∈ M .

Lemma 2.2. [Open problem 1, [22]] Let A be a unital prime Banach algebra
with non-trivial center Z(A). If d : A → A be a derivation of A, then d(e) ∈ Z(A).

Proof. Let 0 6= c ∈ Z(A). It is easy to check that d(c) ∈ Z(A). That means for
all a ∈ A, 0 = [d(c), a] = [d(ce), a] = [d(c)e, a] + [cd(e), a] = c[d(e), a]. Therefore,
cA[d(e), b] = (0) for all b ∈ A. Since c 6= 0, we get d(e) ∈ Z(A).

Lemma 2.3. [Theorem 2, [19]] A prime ring R admitting a non-zero centraliz-
ing derivation is commutative.
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Lemma 2.4. Let A be a unital prime algebra and F : A → A be a generalized
derivation associated with a derivation f such that [F (x), x] ∈ Z(A) for all x ∈ A,
F (e) ∈ Z(A) and f(F (e)) 6= 0. Then A is commutative.

Proof. By hypothesis, for each x ∈ A, [F (x), x] ∈ Z(A). Linearizing this relation
in order to obtain [F (x), y] + [F (y), x] ∈ Z(A). Replace x by xF (e) we obtain
([F (x), y] + [F (y), x])F (e) + [x, y]f(F (e)) ∈ Z(A). As Z(A) is a linear subspace of
A, we left with [x, y]f(F (e)) ∈ Z(A). Since f(F (e)) 6= 0, we have [x, y] ∈ Z(A).
That means, 0 = [[y, x], z] = [Iy(x), z] for all x, y, z ∈ A, where Iy is an inner
derivation of A. Hence, Lemma 2.3 completes the proof.

2.2. Main Results

Theorem 2.1. Let F,G : A → A are continuous linear generalized derivations
of a unital prime Banach Algebra A associated with non-zero continuous linear
derivations f, g : A → A respectively such that F (e) ∈ Z(A) and f(F (e)) 6= 0.
Suppose that G((xy)n) + [F (xn), yn] + [xn, yn] ∈ Z(A) or G((xy)n)− [F (xn), yn]−
[xn, yn] ∈ Z(A) for all x ∈ P1 and y ∈ P2, where P1, P2 are open sets in A and
n = n(x, y) > 1 is an integer. Then A is commutative.

Proof. Firstly, we set φ1(x, y, n)=G((xy)n) + [F (xn), yn] + [xn, yn] and φ2(x, y,
n)=G((xy)n) + [yn, F (xn)] + [yn, xn]. By our hypothesis, φ1(x, y, n) ∈ Z(A) and
φ2(x, y, n) ∈ Z(A) for all x ∈ P1 and y ∈ P2. For an arbitrary fixed element x ∈ P1,
we construct a set En = {y ∈ A : φ1(x, y, n) /∈ Z(A), φ2(x, y, n) /∈ Z(A)}. We claim
that En is open. For this, we choose a sequence < sk > in Ec

n that converges to
s and prove that s ∈ Ec

n. By our assumption, sk ∈ Ec
n i.e. φ1(x, sk, n) ∈ Z(A) or

φ2(x, sk, n) ∈ Z(A). On making k arbitrarily large, the continuity of G implies that
φ1(x, s, n) ∈ Z(A) or φ2(x, s, n) ∈ Z(A). That means, s ∈ Ec

n. Hence, En is open.
By the Baire Category theorem; if every En is dense, then so is their intersection,
which contradicts the existence of P2. Therefore, there must exist a positive integer
m = m(x) > 1 such that Em is not dense. Let P3 be a nonzero open set in Ec

m

such that φ1(x, y,m) ∈ Z(A) or φ2(x, y,m) ∈ Z(A) for all y ∈ P3. Take q0 ∈ P3

and w ∈ A for sufficiently small real t, q0 + tw ∈ P3. Therefore, we have

φ1(x, q0 + tw,m) ∈ Z(A)(2.1)

or

φ2(x, q0 + tw,m) ∈ Z(A)(2.2)

One of these relations must hold for infinitely many real t. If (2.1) holds, the
corresponding binomial expansion is a polynomial in t. In the light Lemma 2.1,
each coefficient of the polynomial must be in Z(A). On taking the coefficients of
tm, we get φ1(x,w,m) ∈ Z(A). Similarly, if (2.2) holds, φ2(x,w,m) ∈ Z(A). That
means, for given x ∈ P1 there exist an integer m = m(x) > 1 such that for each
w ∈ A either φ1(x,w,m) ∈ Z(A) or φ2(x,w,m) ∈ Z(A).



On Derivations Satisfying Certain identities on Rings and Algebras 95

Next, let y ∈ A be an arbitrary element. Now we want to show that there exists
an integer r > 1 depending on y such that for each u ∈ A, either φ1(u, y, r) ∈ Z(A)
or φ2(u, y, r) ∈ Z(A). Fix y ∈ A and for each integer p(y) > 1, we consider a
set Vp = {v ∈ A : φ1(v, y, p) /∈ Z(A), φ2(v, y, p) /∈ Z(A)}. It is easy to see that
Vp is open. The application of the Baire category theorem forces that there exists
an integer r = r(y) > 1 such that Vr is not dense in A. Let P4 be a non-empty
open subset of V c

r such that either φ1(x, y, r) ∈ Z(A) or φ2(x, y, r) ∈ Z(A) for all
x ∈ P4. Take x0 ∈ P4 and u ∈ A then x0 + tu ∈ P4 for all sufficiently small real
t and either φ1(x0 + tu, y, r) ∈ Z(A) or φ2(x0 + tu, y, r) ∈ Z(A) for all u ∈ A and
x0 ∈ P4. Applying the same argument, we obtain that either φ1(u, y, r) ∈ Z(A) or
φ2(u, y, r) ∈ Z(A) for all u ∈ A.

Now, we construct a set Tj = {y ∈ A : φ1(w, y, j) ∈ Z(A) or φ2(w, y, j) ∈
Z(A) for all w ∈ A}. By our above arguments it is clear that ∪Tj = A and each
Tj is closed i.e.; each T c

j is open. Again by the Baire category theorem, if each
T c
j is dense, then their intersection is also dense, which is again a contradiction to

the existence of P2. Thus there must exist an integer l > 1 such that Tl contains
a non-empty open set P5 and either φ1(w, y0, l) ∈ Z(A) or φ1(w, y0, l) ∈ Z(A) for
all y0 ∈ P5. If y0 ∈ P5 and z ∈ A then y0 + tz ∈ P5 for all sufficiently small
real t. Therefore, either φ1(w, y0 + tz, l) ∈ Z(A) or φ2(w, y0 + tz, l) ∈ Z(A) for all
w, z ∈ A and y0 ∈ P5. By repeating the same argument as earlier, we get either
φ1(w, z, l) ∈ Z(A) or φ2(w, z, l) ∈ Z(A) for all w, z ∈ A and an integer l > 1.

As we assumed A a prime Banach algebra with unity and from what that just
has been shown, we obtain either φ1(e+ tx, y, n) ∈ Z(A) or φ2(e+ tx, y, n) ∈ Z(A)
for all x, y ∈ A. Explicitly, we have either G(((e+ tx)y)n)+[F ((e+ tx)n), yn]+[(e+
tx)n, yn] ∈ Z(A) or G(((e+ tx)y)n) + [yn, F ((e+ tx)n)] + [yn, (e+ tx)n] ∈ Z(A) for
all x, y ∈ A. The expansions of these expressions are the polynomials in t. Using
Lemma 2.1 and taking the coefficients of t, we get either G(nxyn) + [F (nx), yn] +
[nx, yn] ∈ Z(A) or G(nxyn) + [yn, F (nx)] + [yn, nx] ∈ Z(A) for all x, y ∈ A. Note

that nxyn = xyn+
∑n−1

i=1 yixyn−i = xyn+Q where Q =
∑n−1

i=1 yixyn−i. Therefore,
we have either

G(xyn +Q) + n[F (x), yn] + n[x, yn] ∈ Z(A)(2.3)

or
G(xyn +Q) + n[yn, F (x)] + n[yn, x] ∈ Z(A)(2.4)

for all x, y ∈ A. Taking y(e + tx) in the place of (e + tx)y and note that nynx =
ynx+Q, we find either

G(ynx+Q) + n[F (yn), x] + n[yn, x] ∈ Z(A)(2.5)

or
G(ynx+Q) + n[x, F (yn)] + n[x, yn] ∈ Z(A)(2.6)

for all x, y ∈ A. Thus one of the pair of equations (2.3)-(2.5),(2.3)-(2.6),(??)-(2.5)
and (2.4)-(2.6) must hold on A. On subtracting these pairs we get either

G[x, yn] + n[(F − id)(x), (F + id)(y
n)] + 2n[x, yn] ∈ Z(A)(2.7)
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or
G[x, yn]− n[(F − id)(x), (F + id)(y

n)]− 2n[x, yn] ∈ Z(A)(2.8)

or
G[x, yn]± n[(F − id)(x), (F − id)(y

n)] ∈ Z(A)(2.9)

holds for all x, y ∈ A where id is the identity map. Firstly, we consider G[x, yn] +
n[(F − id)(x), (F + id)(y

n)]+2n[x, yn] ∈ Z(A) for all x, y ∈ A. Replacing y by e+ ty

in this relation. Using Lemma 2.1 and collecting the coefficients of t, we find that
G[x, y] +n[(F − id)(x), (F + id)(y)] + 2n[x, y] ∈ Z(A) where x, y varies over A. It is
easy to check that F − id and F + id are continuous linear generalized derivations
associated with nonzero continuous linear derivations f . Set F−id = H and F+id =
K . For each x, y ∈ A, we have G[x, y]+n[H(x),K(y)]+2n[x, y] ∈ Z(A). Substitute
yF (e) for y in the last expression, we get (G[x, y]+n[H(x),K(y)]+ 2n[x, y])F (e)+
[x, y]g(F (e)) + n[H(x), y]f(F (e)) ∈ Z(A) where x, y ∈ A. Since Z(A) is a linear
subspace of A, last relation reduces to [x, y]g(F (e))+n[H(x), y]f(F (e)) ∈ Z(A) for
all x, y ∈ A. In particular, put x = y , we have with n[H(x), x]f(F (e)) ∈ Z(A)
where x, y ∈ A. Since 0 6= f(F (e)) ∈ Z(A), we have n[H(x), x] ∈ Z(A). That is,
for each x ∈ A, [H(x), x] ∈ Z(A). By Lemma 2.4, A is commutative.

In the same way, we can prove the same conclusion for the equation (2.8) and
(2.9).

Theorem 2.2. Let F,G : A → A are continuous linear generalized derivations of
a unital prime Banach Algebra A associated with nonzero continuous linear deriva-
tions f, g : A → A respectively such that F (e) ∈ Z(A) and f(F (e)) 6= 0. Suppose
that G((xy)n)+ [xn, F (yn)]+ [xn, yn] ∈ Z(A) or G((xy)n)− [xn, F (yn)]− [xn, yn] ∈
Z(A) for all x ∈ P1 and y ∈ P2, where P1, P2 are open sets in A and n = n(x, y) > 1
is an integer. Then A is commutative.

Proof. By following the same argument with some necessary variations as in The-
orem 2.1, we find either

G[x, yn] + n[(F + id)(x), (F + id)(y
n)] + 2n[x, yn] ∈ Z(A)(2.10)

or
G[x, yn]− n[(F + id)(x), (F + id)(y

n)]− 2n[x, yn] ∈ Z(A)(2.11)

or
G[x, yn] + n[(F − id)(x), (F − id)(y

n)] ∈ Z(A)(2.12)

for all x, y ∈ A and an integer n > 1. Again from Theorem 2.1 we can get the
desired outcomes.

Theorem 2.3. Let F,G : A → A are continuous linear generalized derivations of
a unital prime Banach Algebra A associated with nonzero continuous linear deriva-
tions f, g : A → A respectively such that F (e) ∈ Z(A) and f(F (e)) 6= 0. Suppose
that G((xy)n) + [F (xn), F (yn)] + [xn, yn] ∈ Z(A) or G((xy)n) − [F (xn), F (yn)] −
[xn, yn] ∈ Z(A) for all x ∈ P1 and y ∈ P2, where P1, P2 are open sets in A and
n = n(x, y) > 1 is an integer. Then A is commutative.
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Proof. By following the same argument with some necessary variations as in The-
orem 2.1, we find either

G[x, yn] + 2n[F (x), F (yn)] + 2n[x, yn] ∈ Z(A)(2.13)

or
G[x, yn]− 2n[F (x), F (yn)]− 2n[x, yn] ∈ Z(A)(2.14)

or
G[x, yn] ∈ Z(A)(2.15)

for all x, y ∈ A and an integer n > 1. Let us consider for each x, y ∈ A, G[x, yn] ∈
Z(A). This situation is the same as in [Eq. (15), [22]], hence the conclusion follows.
For the remaining identities, by applying the same procedure as in Theorem 2.1,
we can get the required results.
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TENSOR PRODUCT OF THE POWER GRAPHS
OF SOME FINITE RINGS ∗

Masoumeh Soleimani, Mohammad Hassan Naderi and Ali Rreza Ashrafi

Abstract. Suppose R is a ring. The multiplicative power graph P(R) of R is the graph
whose vertices are elements of R, where two distinct vertices x and y are adjacent if
and only if there exists a positive integer n such that xn = y or yn = x. In this paper,
the tensor product of the power graphs of some finite rings are studied.
Keywords: Power graph; bipartite graph; finite rings; tensor product.

1. Introduction

All graphs considered here are assumed to be undirected and simple and the
vertex and edge set of such a graph G will be denoted by V (G) and E(G), respec-
tively. An edge connecting two vertices x and y in G is denoted by xy. We first
state some definitions and notations that will be kept throughout the paper.

Given a semigroup S, the undirected power graph P(S) has a vertex set S and
two distinct vertices x and y are adjacent if and only if xn = y or yn = x, for a
positive integer n [4]. The directed version of this graph was introduced by Kelarev
and Quinn in an innovating work [11]. These authors continued their work on this
graph in papers [8, 9, 10]. We also recommend that the authors should be consulted
for the survey article [1] and references therein for more information on this topic.
In [14], the authors proved a number of results that relate the structure of the
group to the structure of its power graph. Among other things, they presented
a counterexample to a conjecture of Charkabarty, Ghosh and Sen. In [3], it was
proved that the only finite group whose automorphism group is the same as that of
its power graph is the Klein group of order 4.

Mary Flagg [6], in her interesting paper studied the power graph of rings. Since
a ring R has two binary operations “+” and “×”, there will be two different power
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graphs P+(R) and P×(R) that can be associated to R. The power graphs P+(R)
and P×(R) are called the additive and multiplicative power graphs of R, respec-
tively.

Recall that a graph is said to be connected if for each pair of distinct vertices x
and y, there is a finite sequence of distinct vertices x = x1, · · · , xn = y such that
each pair (xi, xi+1) is an edge. A graph without edges is called totally disconnected.
For distinct vertices x and y, let d(x, y) be the shortest length of a path connecting
x and y and let d(x, y) = ∞ if no such path exists. The diameter of G is defined
as diam(G) = max{d(x, y) | x, y ∈ V (G)}.

For a graph G, the degree of a vertex x in G is the number of edges of G incident
with x, denoted by deg(x). A regular graph is a graph that every vertex has the
same degree. The graph G is called bipartite with vertex bipartition {V1, V2} if the
set of all vertices of G is V1∪V2, V1∩V2 = Ø, and each edge of G joins a vertex from
V1 to a vertex of V2. A complete bipartite graph is a bipartite graph containing all
edges joining the vertices of V1 and V2. A complete bipartite graph on vertex sets
of sizes m and n is denoted by Km,n. If m = 1 then the resulting graph K1,n is
called a star graph.

Suppose G and H are two graphs. We say that G is a subgraph of H , when
V (G) ⊆ V (H) and E(G) ⊆ E(H). A cycle inG is a subgraph that by deleting one of
its edge the resulting subgraph is a path. The girth ofG, written gr(G), is the length
of the shortest cycle in G and gr(G) = ∞ if G has no cycle. A connected component

of an undirected graph is a subgraph in which any two vertices are connected to
each other by at least one path and the number of connected components of G is
denoted by C(G).

The tensor product of graphs G and H is denoted by G⊗H , whose vertex set is
V (G)× V (H) and for which vertices (g, h) and (g′, h′) are adjacent precisely when
gg′ ∈ E(G) and hh′ ∈ E(H), see [7] for details.

Suppose p is a prime. Fine [5], classified all rings of order p2 as follows:

Ap = 〈a : p2a = 0, a2 = a〉 ∼= Zp2 ,

Bp = 〈a : p2a = 0, a2 = pa〉,

Cp = 〈a : p2 = 0, a2 = 0〉,

Dp = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = ba = 0〉 = Zp ⊕ Zp,

Ep = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b〉,

Fp = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = b, ba = a〉,

Gp = 〈a, b : pa = pb = 0, a2 = 0, b2 = 0, ab = ba = a〉,

Hp = 〈a, b : pa = pb = 0, a2 = 0, b2 = b, ab = ba = 0〉,

Ip = 〈a, b : pa = pb = 0, a2 = b, ab = 0〉,

Jp = 〈a, b : pa = pb = 0, a2 = b2 = 0〉,

Kp =

{
〈a, b : 2a = 2b = 0, a2 = a, b2 = a+ b, ab = b, ba = b〉 p = 2
〈a, b : pa = pb = 0, a2 = a, b2 = ja, ab = ba = b〉 p 6= 2

where j is not a square in Zp.
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Throughout this paper the cardinality of a set A will be denoted by |A| and
Kn and U(Zp2) stand for the complete graph on n vertices and the group of mul-
tiplicative units of Zp2 , respectively. Our other notations are standard and can be
obtained from the books [2, 12, 13].

2. The Number of Components

By [3, Theorem 1], the additive power graph of a ring determines the addi-
tive structure of the ring and so we will focus on the multiplicative power graph
P(R) = P×(R). In this section we investigate the number of components of the
tensor products of two rings R and S. Note that the tensor product of graphs are
commutative so in this paper we will avoid the repeated cases. If x ∈ R, y ∈ S,
A ⊆ R and B ⊆ S then we define:

(x,B) = {(x, b) | b ∈ S},

(A, y) = {(a, y) | a ∈ A}.

Let p be a prime and R be a ring of order p. Then as an additive group, R ∼= Zp.
This implies that there are two rings of order p, the ring Zp and the zero ring on
the additive group, denoted by Np.

Theorem 2.1. Suppose p, q are primes, Rp and Rq denote arbitrary rings of order
p and q, respectively, and Γ = P(Rp)⊗ P(Rq). Then one of the following statements
is hold:

(1) The graph Γ has two components, one of them is isomorphic to a complete
bipartite graph K(p−1),(q−1) and another one is the star graph K1,(p−1)(q−1).

(2) Γ has one or two components and p+ q − 1 isolated vertices.

(3) Γ has a bipartite component and q isolated vertices.

(4) Γ has two components of the form K1,(q−1) and q isolated vertices.

(5) The graph Γ is totally disconnected.

Proof . Since there are two non-isomorphic rings of a prime order, it is enough to
consider the graphs P(Zp)⊗P(Zq), P(Zp)⊗P(Nq) and P(Np)⊗P(Nq). Our main
proof will consider three separate cases as follows:

1. If Γ = P(Zp) ⊗ P(Zq), then for p = 2 and any prime q the graph P(Z2) ⊗
P(Zq) is totally disconnected, since P(Z2) is totally disconnected. If p, q 6= 2
except the case that p = q = 3, then V (P(Zp) ⊗ P(Zq)) has a subset A =
{(0, 0), (0, v), (u, 0) | u ∈ V (P(Zp)), v ∈ V (P(Zq))} of size | A |= p+ q − 1 as
its isolated vertices. We claim that all other vertices form a component. For
every vertex (x, y) ∈ V (P(Zp)⊗P(Zq))−A, we have the following two cases:
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(a) x, y 6= 1. Then it is clear that (x, y) and (1, 1) are adjacent.

(b) x = 1 and y 6= 1 or vice versa. In this case, a vertex (x′, y′) ∈ V (P(Zp)⊗
P(Zq)) − A exists such that (x, y) is adjacent with (x′, y′) and the last
one is adjacent to (1, 1). Note that if p = q = 3, then P(Zp)⊗P(Zq) has
exactly five isolated vertices and two components isomorphic to K2.

2. If Γ = P(Zp)⊗P(Nq), then it is clear that P(Z2)⊗P(Nq) is a totally discon-
nected graph. Let p 6= 2. Then P(Zp)⊗P(Nq) have q isolated vertices and a
bipartite connected component such that one part contains all vertices of the
form (V (P(Zp)) − {0}, 0) and another part contains all vertices of the form
(V (P(Zp)) − {0}, V (P(Nq)) − {0}). Note that if p = q = 3 then we obtain
three isolated vertices and two star K1,q−1 as components.

3. If Γ = P(Np)⊗P(Nq), then in this case the component corresponding to the
vertex (0, 0) is a star graph K1,(p−1)(q−1), since the vertex 0 is adjacent to all
other vertices in P(Np). It is now straightforward to verify that the second
component is K(p−1),(q−1).

This completes the proof. �

There are 11 non-isomorphic rings of order p2 and the power graph of these rings
have already described by Flagg in [6]. By [6, Corollary 3.1] and [6, Corollary 3.2],
P(Ap) ∼= P(Gp), P(Bp) ∼= P(Ip), P(Cp) ∼= P(Jp) and P(Ep) ∼= P(Fp). Accordingly,
it is sufficient to consider the rings Ap, Bp, Cp, Dp, Ep, Hp and Kp in order to
investigate the tensor product of the power graphs of two rings of order p2.

Theorem 2.2. Let Rq be a ring of order q2. Then

C(P(Ap)⊗ P(Rq)) ∈ {2, 3, 5, 6, 8, 9, 11, 12, 16, p2+ 2, p2 + 4}.

Proof . Our main proof will consider seven cases as follows:

1. Rq
∼= Aq. We claim that the tensor product graph has five components with

the following vertex sets:

M1 = {(0, 0), (npa,mqa) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

M2 = {(npa, 0), (0,mqa) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

M3 = {(npa,ma) | m ∈ U(Zq2), n ∈ N},

M4 = {(ma, nqa) | m ∈ U(Zp2), n ∈ N},

M5 = {(m1a,m2a) | m1 ∈ U(Zp2), m2 ∈ U(Zq2)}.

To prove our claim, we first notice that Mi ∩ Mj = ∅, 1 ≤ i 6= j ≤ 5.
Since in P(Ap) we have (npa)2 = 0 and also all of the vertices of U(Zp2) are
just connected to some vertices in U(Zp2), it is clear that Mi for 1 ≤ i ≤ 5
composes a component. Note that if p = q = 2, one can easily check that
each of sets M1 and M2 composes a component and other sets are split into
two components. Also if p = 2 and q ≥ 3, then M4 split into two components
and each of the other sets makes a component.
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2. Rq
∼= Bq. In this case, we have two components with the following vertex

sets:

M1 = {(u, v) | u ∈ U(Zp2), v ∈ V (P(Bq))},

M2 = {(u, v) | u ∈ V (P(Ap))− U(Zp2), v ∈ V (P(Bq))}.

It is clear that M1 ∩M2 = ∅. Since vertices in U(Zp2) are in a component of
P(Ap), the graph P(Bq) is a connected graph, every vertex u ∈ V (P(Ap))−
U(Zp2) has the form npa, where a is a generator of Ap and n ∈ N. Moreover,
there is an edge 0(npa) in P(Ap), where 1 ≤ n ≤ p− 1. Thus each of M1 and
M2 makes a component.

3. Rq
∼= Cq. We claim that P(Ap)⊗ P(Cq) has three connected components as

follows:

(a) K1,|A|(q2−1), where A = {npa | 1 ≤ n ≤ p− 1} in which a is a generator
of Ap.

(b) A complete bipartite graph in which one part is containing all vertices
of the form (0, ka′), where 1 ≤ k ≤ q2 − 1 and a′ is a generator of Cq.
Another part will be the set of all (npa, 0), 1 ≤ n ≤ p− 1.

(c) A bipartite graph in which one part is

{(u, 0) | u ∈ P(Ap), u 6= npa, 0 ≤ n ≤ p− 1}

and another part is

{(u, ka′) | u ∈ P(Ap), u 6= npa, 0 ≤ n ≤ p− 1 , 1 ≤ k ≤ q2 − 1}.

To prove our claim we note that (npa)2 = 0 in P(Ap) and in P(Cq) the
vertex 0 is connected to all other vertices of the form ka′, for all 1 ≤ k ≤
q2 − 1. Thus, the graph has the edges (npa, ka′)(0, 0) and (0, ka′)(npa, 0),
where 1 ≤ n ≤ p− 1. In P(Ap) all vertices that are not multiple of p are in
one connected component that completes the assertion. The only exception in
this case occurs when p = q = 2. This special case has the same components
and the presented component of (c) is split into two components.

4. Rq
∼= Dq. Suppose {a

′, b′} is a generating set for Dq. It is clear that P(Ap)⊗
P(Dq) has p2 isolated vertices, since the vertex 0 of P(Dq) is an isolated
vertex. Consider the set of vertices {(ka, ia′) | 0 ≤ k ≤ p2 − 1, 1 ≤ i ≤ q − 1}.
Then (0, ia′) is adjacent with (npa, ja′) for all 1 ≤ n ≤ p−1 and 1 ≤ j ≤ q−1.
So, these vertices compose a component except for some values of p and q

presenting at the end of this case, the rest vertices of this set make another
component corresponding to (a, a). The set {(ka, ia′+jb′) | 0 ≤ k ≤ p2−1, 1 ≤
i, j ≤ q − 1} of vertices is partitioned into two sets {(ma, ia′ + jb′) | m ∈
U(Zp2), 1 ≤ i, j ≤ q−1} and {(npa, ia′+jb′) | 0 ≤ n ≤ p−1, 1 ≤ i, j ≤ q−1}
and each of them composes a component. One can easily check that the set
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{(ka, ib′) | 0 ≤ k ≤ p2 − 1, 1 ≤ i ≤ q − 1} also makes a component. Note that
there are several exception in this case such that all of them have the same
isolated vertices but some differences exist. Now we mention these exceptions.
If p = q = 2 then the tensor product graph is a totally disconnected graph,
and also if p = 2 and q = 3 then the second set mentioned above is broken
up to four star graph K1,3, also each of two other sets is partitioned into four
components isomorphic to K2.

5. Rq
∼= Eq. Suppose {a′, b′} is a generating set for Dq. In this case, the tensor

product graph has eleven components as follows:

(a) Consider the set {(npa, ia′+ jb′) | 1 ≤ n ≤ p−1, 1 ≤ i, j ≤ q−1, i+ j =
q}. Since 0 is adjacent with npa in P(Ap), 1 ≤ n ≤ p − 1, and there
are the edges (ia′ + jb′)0 in P(Eq), 1 ≤ i, j ≤ q − 1; i + j = q, this
set of vertices only connected to the vertex (0, 0). Hence we get a star
K1,|A||B|, where A = {npa | 1 ≤ n ≤ p− 1} is a subset of V (P(Ap)) and
B = {ia′ + jb′ | 1 ≤ i, j ≤ q − 1, i+ j = q} is a subset of V (P(Eq)).

(b) It is easy to check that the vertex set {(npa, ia′) | 1 ≤ i ≤ q − 1, n ∈ N}
makes a component.

(c) In Eq the element b′ has the same property as a′, so we obtain a compo-
nent from {(npa, ib′) | 1 ≤ i ≤ q − 1, n ∈ N}.

(d) The set {(0, ia′ + jb′), (npa, 0) | 1 ≤ n ≤ p− 1, 1 ≤ i, j ≤ q− 1, i+ j = q}
forms a component.

(e) The set {(npa, ia′ + ib′) | 1 ≤ i ≤ q − 1, n ∈ N} composes a component.
Since in P(Ap) the vertex 0 is adjacent with npa, where 1 ≤ n ≤ p − 1
and on the other hand for every vertex ia′ + ib′ in P(Eq), 1 ≤ i ≤ q− 1,
we have (ia′ + ib′)2 = 2i2a′ +2i2b′. According to the presentation of the
ring Eq, if 1 ≤ i ≤ q− 1, then 1 ≤ 2i2 ≤ q− 1 and so we can set i′ = 2i2.
Thus in P(Eq) we have the edges (ia′ + ib′)(i′a′ + i′b′); 1 ≤ i, i′ ≤ q − 1.

(f) The set {(ma, 0), (ma, ia′+ jb′) | m ∈ U(Zp2), 1 ≤ i, j ≤ q− 1, i+ j = q}
makes a bipartite component with parts V1 and V2 such that | V1 |= t

and | V2 |= t | A |, where A = {ia′ + jb′ | 1 ≤ i, j ≤ q − 1, i+ j = q} and
t =| U(Zp2) |.

(g) The set {(ma, ka′) | m ∈ U(Zp2 ), 1 ≤ k ≤ q − 1} is a component.

(h) Similar to the case (g) the set {(ma, kb′) | m ∈ U(Zp2), 1 ≤ k ≤ q − 1}
makes an isomorphic component.

(i) The set {(ma, ia′ + ib′) | m ∈ U(Zp2), 1 ≤ i ≤ q − 1} is a component,
since in P(Ap) if ma is adjacent to x, then x = m′a, where m′ ∈ U(Zp2 ).
On the other hand, by using the same argument as in (e), one can show
that (ia′ + ib′) is adjacent to (i′a′ + i′b′), where 1 ≤ i, i′ ≤ q − 1.

(j) The component corresponding to the set

{(npa, ia′ + jb′) | 1 ≤ i, j ≤ q − 1, i+ j 6= q, i 6= j, n ∈ N}
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is a bipartite graph with parts V1 and V2 such that |V1| = |A| and
|V2| = |A|(|B| − 1), where A = {ia′+ jb′ | 1 ≤ i, j ≤ q− 1, i+ j 6= q} and
B = {npa | n ∈ N}.

(k) It is obvious that the vertices of the form (ma, ia′ + jb′) where m ∈
U(Zp2), 1 ≤ i 6= j ≤ q − 1, i+ j 6= p make a component.

Note that in this case if p = q = 2, then the tensor product graph has 8 isolated
vertices and four connected components isomorphic to K2. If p = q = 3, then
the tensor product graph has exactly nine components.

6. Rq
∼= Hq and p = q = 2. The graph only contains eight components isomor-

phic to K2. Also if p = 2 and q = 3, then the connected component will be
introduced in (6.d) splits into two connected components. For other values of
p and q it is straightforward to check that one of the following cases will be
occurred for the components of P(Ap)⊗ P(Hq).

(a) A star graphK1,(q2−1) containing the vertex (0, 0) and vertices (npa,ma′)
for all 1 ≤ n ≤ p− 1 and 1 ≤ m ≤ q − 1.

(b) A complete bipartite graph corresponding to the set

{(npa, 0), (0,ma′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1}

of vertices.

(c) The set {(np, v) | 0 ≤ n ≤ p− 1, 0 ≤ m ≤ q − 1, v ∈ V (P(Hq))− {ma′}}
makes a bipartite component.

(d) For everym ∈ U(Zp2), the vertices of the form (ma, 0) is connected to the
vertices of the form (m′a, ka′), where m 6= m′ ∈ U(Zp2), 1 ≤ k ≤ q − 1.
So, these vertices form a component.

(e) The component corresponding to the set

{(u, v) | u ∈ U(Zp2 ), 0 ≤ m ≤ q − 1, v ∈ V (P(Hq))− {ma′}}.

7. Rq
∼= Kq. Then the tensor product graph contain p2 isolated vertices and two

other components.

This completes our argument. �

Theorem 2.3. Let Rq be a ring of order q2. Then

C(P(Bp)⊗ P(Rq)) ∈ {1, 2, 4, 5, 9, 16, p2 + 1, p2 + 3}.

Proof . Suppose a is a generator of Bp. Our main proof will consider six cases as
follows:
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1. Rq
∼= Bq and a′ is a generator of Bq. In this case, the graph vertices can be

partitioned into the parts Mi, 1 ≤ i ≤ 5.

M1 = {(u, v) | u ∈ V (P(Bp)), v ∈ V (P(Bq)), v 6= tqa′, t ∈ N},

M2 = {(npa,mqa′) | 0 ≤ n ≤ p− 1, 0 ≤ m ≤ q − 1},

M3 = {(u,mqa′) | u ∈ V (P(Bp))− {npa}, 0 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1}}

M4 = {(a or kpa, lqa′) | 1 ≤ k ≤ p− 1, 1 ≤ l ≤ q − 1},

M5 = {(u, lqa′) | u ∈ V (P(Bp))− {a, kpa}, 1 ≤ k ≤ p− 1, 1 ≤ l ≤ q − 1},

where n andm are squares modulo p and q, respectively. Moreover, k and l are
not squares modulo p and q, respectively. It is easy to check that Mi∩Mj = ∅

and there are vertices ui ∈ Mi and uj ∈ Mj which are adjacent in Bp × Bq,
1 ≤ i, j ≤ 5. Hence this graph is connected.

2. Rq
∼= Cq. In this case, P(Bp)⊗P(Cq) is a bipartite graph with parts V1 and

V2 such that |V1| = p2(q2 − 1) and |V2| = p2. Hence this graph is connected.

3. Rq
∼= Dq and {a′, b′} is a generating set for Dq. In this case, we claim that

the tensor product graph has p2+3 components. Since 0 is an isolated vertex
of P(Dq), the tensor product graph has p2 isolated vertices. On the other
hand, this graph has a bipartite component for q 6= 2, such that one part
is containing all vertices of the form (u, a′ + b′) in which u ∈ V (P(Bp)) and
another part is the set of all vertices of the form (u, v) such that u ∈ V (P(Bp))
and v ∈ V (P(Dq)) − A, where A = {0,ma′,mb′, a′ + b′ | 1 ≤ m ≤ q − 1}
is a subset of V (P(Dq)). Note that P(Bp) is a connected graph but it is not
regular. Also the adjacent vertices to a′ + b′ ∈ V (P(Dq) are the group of
unit elements of the ring Dq. These are all elements of the form ia′ + jb′,
1 ≤ i, j ≤ q − 1, and so each vertex of V (P(Bp)) − A is adjacent to a′ + b′.
Therefore, this component is a non-complete bipartite subgraph. It is clear
that the sets {(u,ma′) | u ∈ V (P(Bp)), 1 ≤ m ≤ q − 1} and {(u,mb′) | u ∈
V (P(Bp)), 1 ≤ m ≤ q − 1} are different components for the graph. Thus, we
get exactly p2 + 3 components. One can see that if p = q = 2 then the tensor
product graph is a totally disconnected graph on sixteen vertices.

4. Rq
∼= Eq and {a′, b′} is a generating set for Eq. One can see that the graph

has five connected components that two of them make from the vertices of the
form (u,ma′) and (u,mb′), respectively, where m ∈ V (P(Bp)), 1 ≤ m ≤ q−1.
Three other components are corresponding to three set of vertices as follows:

{(u, ia′ + ib′) | u ∈ V (P(Bp)), 1 ≤ i ≤ q − 1},

{(u, ia′ + jb′) | u ∈ V (P(Bp)), 1 ≤ i 6= j ≤ q − 1, i+ j 6= q},

{(u, 0), (u, ia′ + jb′) | u ∈ V (P(Bp)), 1 ≤ i 6= j ≤ q − 1, i+ j = q}.

If p = q = 2, then the graph has eight isolated vertices and just a component.
If p = 2 and q = 3 this graph has four components since it does note have the
component corresponding to

{(u, ia′ + jb′) | u ∈ V (P(Bp)), 1 ≤ i 6= j ≤ q − 1, i+ j 6= q}.
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5. Rq
∼= Hq. Suppose that a

′ is a generator ofHq. In this case, the tensor product
graph has two components which one of them is containing all vertices in the
form (u, 0) and (u,ma′); u ∈ V (P(Bp)) and 1 ≤ m ≤ q − 1. The remaining
vertices will make another component.

6. Rq
∼= Kq. In this case, all vertices of the form (u, 0) where u ∈ V (P(Bp))

are isolated vertices of the tensor product graph, since 0 is an isolated vertex
of P(Kq). These are p2 isolated vertices. On the other hand, all of non-zero
vertices are connected to each other in P(Kq), hence all the remaining vertices
put together another component.

Hence the result. �

Theorem 2.4. Let Rq be a ring of order q2. Then

C(P(Cp)⊗ P(Rq)) ∈ {2, 3, 4, 6, 10, p2 + 1, p2 + 3, p2 + 6, 4p2}.

Proof . Suppose a is a generator of the ring Cp. Our main proof will consider
some cases as follows:

1. Rq
∼= Cq. The tensor product graph has a star component isomorphic to

K1,3(n2
−1) such that n = max{p, q}. Hence the vertex 0 in P(Cp) is adjacent

to every other non-zero vertex. So, (0, 0) is adjacent to all vertices in which
the first and the second entries are non-zero. Therefore, we obtain a star and
a complete bipartite component isomorphic to Kp2

−1,q2−1. Note that all the
non-zero vertices of P(Cp) are connected only with the vertex 0 and so the
tensor product has the edges (u, 0)(0, v), where u, v ∈ V (P(Cp))− {0}.

2. Rq
∼= Dq. Choose a generating set {a′, b′} for Dq. The tensor product graph

has p2 isolated vertices and one can check that the set

{(u,ma′) | u ∈ V (P(Cp)), 1 ≤ m ≤ q − 1}

makes a component. Since the elements a′ and b′ in Dq have the same prop-
erties, the set {(u,mb′) | u ∈ V (P(Cp)), 1 ≤ m ≤ q − 1} also makes a
component isomorphic to last one. So far we do not have considered the ver-
tices of the form (u, ia′+jb′), where u ∈ V (P(Cp)) and 1 ≤ i, j ≤ q−1. These
vertices put together another component. In this case, if q = 2 then the graph
is totally disconnected. If q = 3 then it is clear that the tensor product has
p2 isolated vertices and six components.

3. Rq
∼= Eq. Suppose {a′, b′} is a generating set for Dq. This graph has six

components as follows:

(a) A star graph corresponding to the vertex (0, 0).

(b) A complete bipartite graph.

(c) The subgraph induced by {(u,ma′) | u ∈ V (P(Cp)), 1 ≤ m ≤ q − 1}.
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(d) The subgraph induced by {(u,mb′) | u ∈ V (P(Cp)), 1 ≤ m ≤ q − 1}.

(e) {(u, 0), (0, ia′ + jb′) | u ∈ V (P(Cp))− {0}, 1 ≤ i, j ≤ q − 1, i+ j = q}.

(f) {(u, ia′ + jb′) | u ∈ V (P(Cp)), 1 ≤ i, j ≤ q − 1, i 6= j, i+ j 6= q}.

Note that if p = q = 2 then the graph has ten components.

4. Rq
∼= Hq. There is a component corresponding to the vertex (0, 0) that is

adjacent to all other vertices of the form (na,ma′), where 1 ≤ n ≤ p2 − 1 and
1 ≤ m ≤ q − 1. Also the graph has two other components such that each of
them can be induced by one of the following subsets:

(a) {(0,ma′), (na, 0) | 1 ≤ m ≤ q − 1, 1 ≤ n ≤ p2 − 1}.

(b) {(na, u) | u ∈ V (P(Hq))− {0,ma}, 0 ≤ n ≤ p2 − 1, 1 ≤ m ≤ q − 1}.

If q = 2 then the component corresponding to the part (b) will be divided
into two new components.

5. Rq
∼= Kq. All the vertices of the from (u, 0) where u ∈ V (P(Cp)) are isolated

vertices and all of the remaining vertices make only a component.

This completes our argument. �

Define:

T1 = {16, 18, 27, 33, p2+ q2 +8, 4q2, q2 +12, q2 +7, p2 + q2 +2, 4p2, q2 +9, 2p2 +7}.

Theorem 2.5. Let Rq be a ring of order q2. Then, C(P(Dp)⊗ P(Rq)) ∈ T1.

Proof . Suppose {a, b} is a generating set for Dp. Our main proof will consider
four cases as follows:

1. Rq
∼= Dq. The vertices of the form (u, 0) and (0, v), u ∈ V (P(Dp)) and

v ∈ V (P(Dq)), are isolated. It is straightforward to show that each of the set

{(na,ma′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

{(nb,mb′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

{(na,mb′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

{(nb,ma′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

induced a component. There are two other components corresponding to the
sets

{(a+ b,ma′) | 1 ≤ m ≤ q − 1},

{(a+ b,mb′) | 1 ≤ m ≤ q − 1},

that each of them composes a star isomorphic to K1,((p−1)2−1)n, where n =
deg(ma′) = deg(mb′). On the other hand, there are two new components
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corresponding to the sets {(na, a′ + b′) | 1 ≤ n ≤ p − 1} and {(nb, a′ + b′) |
1 ≤ n ≤ p− 1}. Obviously, after composing all these connected components
all of the remaining vertices are adjacent to the vertex (a + b, a′ + b′) which
gives our final component. In this case, if one of p or q is equal to 2, then the
tensor product is totally disconnected and it has 4q2 and 4p2 isolated vertices,
respectively. Also if p = q = 3 then the graph has the same components as
general case other than the connected component corresponding to the vertex
(a+ b, a′ + b′) is broken into two components.

2. Rq
∼= Eq. We first notice that the vertices of the form (0, u), u ∈ V (P(Eq)),

are isolated vertices in P(Dq)⊗P(Eq). The non-isolated vertices of P(Dq)⊗
P(Eq) can be divided into the following sets:

(a) {(na,mb′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

(b) {(na,ma′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

(c) {(nb,ma′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

(d) {(nb,mb′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

(e) {(ia+ jb,ma′) | 1 ≤ i, j ≤ p− 1, 1 ≤ m ≤ q − 1},

(f) {(ia+ jb,mb′) | 1 ≤ i, j ≤ p− 1, 1 ≤ m ≤ q − 1},

(g) {(na, ia′ + ib′) | 1 ≤ n ≤ p− 1, 1 ≤ i ≤ q − 1},

(h) {(nb, ia′ + ib′) | 1 ≤ n ≤ p− 1, 1 ≤ i ≤ q − 1},

(i) {(na, 0) | 1 ≤ n ≤ p− 1},

(j) {(nb, 0) | 1 ≤ n ≤ p− 1},

(k) {(ia+ jb, i′a′ + i′b′) | 1 ≤ i, j ≤ p− 1, 1 ≤ i′ ≤ q − 1},

(l) {(ia+ jb, 0), (ia+ jb, i′a+ j′b) | 1 ≤ i, j ≤ p− 1, 1 ≤ i′, j′ ≤ q− 1, i′ + j′ = q}.

One can easily check that each of these subsets induce a component in the
graph. The end component is bipartite with vertex bipartization

{(ia+ jb, 0) | 1 ≤ i, j ≤ p− 1},

{(ia+ jb, i′a+ j′b) | 1 ≤ i 6= j ≤ p− 1, 1 ≤ i′, j′ ≤ q − 1, i′ + j′ = q}.

We now mention some exceptions in this case. If p = 2 then the graph is
totally disconnected with 4q2 vertices. If p ≥ 3 and q = 2 then the tensor
product graph contains 4+2(p2−1) isolated vertices that they are made from
the sets (a − f) in above list. Also, each of the next two subsets is broken
into two connected components and the remaining vertices composes another
connected component. If p = q = 3 then we have nine isolated vertices and
all of the (a− l) are partitioned into two components.

3. Rq
∼= Hq. In this case, the tensor product graph has q2 isolated vertices (0, u),

u ∈ V (P(Hq)). Also, it has seven components corresponding to each of the
following subsets:

(a) {(na, u) | u ∈ V (P(Hq))− {ma′}, 1 ≤ n ≤ p− 1}, 0 ≤ m ≤ q − 1.
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(b) {(nb, u) | 0 6= u ∈ V (P(Hq))− {ma′}, 1 ≤ n ≤ p− 1}, 0 ≤ m ≤ q − 1.

(c) {(a+ b,ma′), (ia+ jb, 0) | 1 ≤ m ≤ q − 1, 1 ≤ i, j ≤ p− 1}.

(d) {(a+ b, 0), (ia+ jb,ma′) | 1 ≤ m ≤ q − 1, 1 ≤ i, j ≤ p− 1}.

(e) {(ia+ jb, u) | 1 ≤ i, j ≤ p− 1, u ∈ V (P(Hq))− {ma′}, 0 ≤ m ≤ q − 1.

(f) {(na,ma′) | 1 ≤ n ≤ p− 1, 0 ≤ m ≤ q − 1}.

(g) {(nb,ma′) | 1 ≤ n ≤ p− 1, 0 ≤ m ≤ q − 1}.

Note that in this case if p = 2 then the tensor product graph is totally dis-
connected on 4q2 vertices and if p = q = 3 then all above arguments are valid
just the sets (f) and (g) above are divided into two components.

4. Rq
∼= Kq. The tenor product graph has p2 + q2 + 1 isolated vertices and also

each of the set

(a) {(na, u) | 1 ≤ n ≤ p− 1, u ∈ V (P(Hq))− {0}},

(b) {(nb, u) | 1 ≤ n ≤ p− 1, u ∈ V (P(Hq))− {0}},

will induce a component. The remaining vertices of this graph compose only
one another component, so we have p2+q2+2 components. If p = q = 2, then
the tensor product graph is a totally disconnected graph on sixteen vertices.

This proves the theorem. �

Theorem 2.6. Let Rq be a ring of order q2. Then

C(P(Ep)⊗ P(Rq)) ∈ {8, 10, 12, 14, 20, 21, p2+ 6, 2q2 + 7}.

Proof . Choose a generating set {a, b} for Ep. The proof will consider four cases
as follows:

1. Rq
∼= Eq and p = q = 2. In this case, we have twelve isolated vertices and two

components isomorphic to K2. If p = 2 and q > 2 then the tensor product
graph has 2q2 isolated vertices and only seven components. For other values
of p and q, we don’t have isolated vertices and by using the graph structure
of P(Ep), one can check that each of the following subsets induce a unique
connected component of the graph:

(a) {(0, 0), (ia + jb, i′a′ + j′b′) | 1 ≤ i, j ≤ p − 1, 1 ≤ i′, j′ ≤ q − 1, i + j =
p, i′ + j′ = q}.

(b) {(ia+ ib,ma′) | 1 ≤ i ≤ p− 1, 1 ≤ m ≤ q − 1}.

(c) {(0,ma′), (ia+ jb,ma′) | 1 ≤ i, j ≤ p− 1, i+ j = p, 1 ≤ m ≤ q − 1}.

(d) (ia+ ib,mb′) | 1 ≤ i ≤ p− 1, 1 ≤ m ≤ q − 1}.

(e) {(0,mb′), (ia+ jb,mb′) | 1 ≤ i, j ≤ p− 1, i+ j = p, 1 ≤ m ≤ q − 1}.
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(f) {(ia + jb, 0), (0, i′a′ + j′b′) | 1 ≤ i, j ≤ p − 1, 1 ≤ i′, j′ ≤ q − 1, i + j =
p, i′ + j′ = q}, that is a complete bipartite component Kp−1,q−1.

(g) {(ia + ib, i′a′ + i′b′)) |, 1 ≤ i ≤ p − 1, 1 ≤ i′ ≤ q − 1}, that forms a
bipartite component, with parts V1 and V2 such that |V1| = |V2| = t,

where t = (p−1)(q−1)
2 .

(h) {(i′a + j′b, ia′ + jb′), (0, ia′ + jb′) | 1 ≤ i 6= j ≤ q − 1, 1 ≤ i′, j′ ≤
p−1, i+j 6= q, i′+j′ = p; deg(ia′+jb′) > deg(ja′+ib′) or deg(ia′+jb′) =
deg(ja′ + ib′), i < j}.

(i) {(na, ia′ + ib′) | 1 ≤ n ≤ p− 1, 1 ≤ i ≤ q − 1}.

(j) {(na, ia′ + jb′) | 1 ≤ n ≤ p− 1, 1 ≤ i 6= j ≤ q − 1, i+ j 6= q}.

(k) {(nb, ia′ + ib′) | 1 ≤ n ≤ p− 1, 1 ≤ i ≤ q − 1}.

(l) {(nb, ia′ + jb′) | 1 ≤ n ≤ p− 1, 1 ≤ i 6= j ≤ q − 1, i+ j 6= q}.

(m) {(na,mb′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1}.

(n) {(nb,mb′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1}.

(o) {(na,ma′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1}.

(p) {(nb,ma′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1}.

(q) {(na, ia′ + jb′) | 1 ≤ n ≤ p− 1, 1 ≤ i 6= j ≤ q − 1}.

(r) {(ia+ ib, i′a′ + j′b′) | 1 ≤ i ≤ p− 1, 1 ≤ i′ 6= j′ ≤ q − 1, i′ + j′ 6= q}.

(s) {(ia+ jb, 0), (ia+ jb, i′a′+ j′b′) | 1 ≤ i, j ≤ p−1, 1 ≤ i′, j′ ≤ q−1, i+ j 6=
p, i′ + j′ = q}.

(t) {(na, 0), (na, ia′ + jb′) | 1 ≤ n ≤ p− 1, 1 ≤ i 6= j ≤ q − 1, i+ j = q}.

(u) {(nb, 0), (nb, ia′ + jb′) | 1 ≤ n ≤ p− 1, 1 ≤ i 6= j ≤ q − 1, i+ j = q}.

Therefore, we have twenty one connected components.

2. Rq
∼= Hq and p = q = 2. In this case, the graph has exactly eight isolated

vertices, since the vertices a and b are not adjacent in P(E2). Also, this graph
has four components isomorphic to K2. For p = 2 and q = 3 it is easy to show
that the graph has eighteen isolated vertices and three other components.
For other values of p and q we have a star component corresponding to the
vertex (0, 0). This vertex is adjacent to all vertices of the form (ia+ jb,ma′),
where 1 ≤ i, j ≤ p − 1, i + j = p and 1 ≤ m ≤ q − 1. Also, it has a
bipartite component containing all vertices of the form (ia + jb, u) ∪ (0, u),
where 1 ≤ i, j ≤ p− 1, 1 ≤ m ≤ q− 1 and u is a non-zero elements of Hq such
that u 6= ta′, 1 ≤ t ≤ q− 1. Each of the following sets composes a component:

(a) {(ia+ jb,ma′) | 1 ≤ i, j ≤ p− 1, j + j 6= p, 1 ≤ m ≤ q − 1}

(b) {(0,ma′), (ia+ jb, 0) | 1 ≤ i, j ≤ p− 1, 1 ≤ m ≤ q − 1, i+ j = p}

(c) {(na, u) | 1 ≤ n ≤ p− 1, 0 ≤ m ≤ q − 1, u ∈ V (P(Hq))− {ma′}}

(d) {(na,ma′) | 1 ≤ n ≤ p− 1, 0 ≤ m ≤ q − 1}
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(e) {(nb,ma′) | 1 ≤ n ≤ p− 1, 0 ≤ m ≤ q − 1}

(f) {(nb, u) | 1 ≤ n ≤ p− 1, 0 ≤ m ≤ q − 1, u ∈ V (P(Hq))− {ma′}}

Therefore, the graph has exactly eight connected components.

3. Rq
∼= Kq. In this case, we have p2 isolated vertices and six components

corresponding to the following subsets:

(a) {(0, u), (ia+ jb, u) | 1 ≤ i, j ≤, i+ j = p}.

(b) {(na, u) | 1 ≤ n ≤ p− 1}.

(c) {(nb, u) | 1 ≤ n ≤ p− 1}.

(d) {(ia+ ib, u) | 1 ≤ i ≤ p− 1}.

(e) {(ia+ jb, u) | 1 ≤ i 6= j ≤ p− 1, i+ j 6= p}.

(f) {(ja+ ib, u) | (ia+ jb, u) ∈ (e)},

where u ∈ V (P(Kq))−{0}. If p = 2 and q = 2 or 3 then the graph has exactly
10 or 20 connected components, respectively.

Hence the result. �

Theorem 2.7. Let Rq be a ring of order q2 and p be a prime. Then

C(P(Hp)⊗ P(Rq)) ∈ {5, 6, 8, p2 + 2}.

Proof . Choose the generating set {a, b} for Hp. It is enough to consider two cases
that Rq

∼= Hq or Rq
∼= Kq.

1. Rq
∼= Hq. Consider the following subsets of Hp ⊗Rq:

(a) {(0, 0), (na,ma′) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1},

(b) {(u,ma′) | 0 ≤ m ≤ q − 1},

(c) {(u, v)},

(d) {(na, v) | 0 ≤ n ≤ p− 1},

(e) {(0,ma′), (na, 0) | 1 ≤ n ≤ p− 1, 1 ≤ m ≤ q − 1}.

It is easy to see that each of these subset are connected components of
C(P(Hp) ⊗ P(Rq)). In each of the cases that p = q = 2 and p = 2, q = 3
we have the same components that are composed of the set of vertices given
in parts (a) and (e) but in the first case each of other set of vertices (b − d)
is partitioned into two components isomorphic to K2 and in the second case
the set of vertices in (b) contains two components.

2. Rq
∼= Kq. We can see that P(Hp) ⊗ P(Kq) has p2 isolated vertices and two

components corresponding to the subsets:
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(a) {(na, u) | 0 ≤ n ≤ p− 1, u ∈ V (P(Kq))− {0}}.

(b) {(u, v) | u ∈ V (P(Hp)) − {na}, 0 ≤ n ≤ p− 1, v ∈ V (P(Kq))− {0}}.

Therefore, the graph has exactly five, six, eight or p2 + 2 connected compo-
nents.

This proves the result. �

Theorem 2.8. Let Rq be a ring of order q2. Then C(P(Kp)⊗P(Kq)) = p2 + q2.

Proof . The proof follows from analyzing the graph P(Kp). �

3. Diameter and Girth

In Section 2, some information on the connectivity of the tensor product of the
power graphs of some ring of order p2 were given. In this section our purpose is
to obtain diameter of these graphs when they are connected. Furthermore, we will
obtain the girth of P(Rp)⊗ P(Rq).

Theorem 3.1. Let Rp and Rq be two rings of order p2 and q2, respectively. Then
the graph P(Rp) ⊗ P(Rq) is connected if and only if Rp

∼= Bp and Rq
∼= Bq, Cq.

Moreover, diam(P(Bp)⊗ P(Bq)) = 3 and diam(P(Bp)⊗ P(Cq)) = 4.

Proof . The first part is a direct consequence of Theorems 2.2-2.8. Suppose that
u = (x1, y1) and v = (x2, y2) are two distinct vertices of the graph P(Bp)⊗P(Bq).
With notations as in Theorem 2.3, we have some different cases and in each case
we compute d(u, v). In all of the following cases we will introduce the shortest path
between u and v in P(Bp)⊗ P(Bq).

1. If u, v ∈ M1, then we can assume that there are 1 ≤ m1,m2, k1, k2 ≤ q − 1
such that y1 = (m1 + k1q)a

′ and y2 = (m2 + k2q)a
′. Since there are not

different vertices in the form (m + kq)a, 1 ≤ m, k ≤ q − 1, that they are
connected in P(Bq), (x1, y1) is not adjacent to (x2, y2). Thus 1 < d(u, v) and
we can proceed based on this fact that whether or not x1 is adjacent with x2

in P(Bp). We first assume that x1 is adjacent with x2 in P(Bp). Thus x1 = 0
or x2 = 0. Suppose x1 = 0 and choose 1 ≤ n,m, k ≤ p − 1, 1 ≤ k′ ≤ q − 1.
We consider some different cases as follows:

(a) x2 = kpa, where k is square modulo p. We consider the path u =
(x1, y1) = (0, (m1 + k1q)a

′), ((m + np)a, k′qa′), (kpa, (m2 + k2q)a
′) =

(x2, y2) = v of length two, where k′ is a square modulo q.

(b) x2 = kpa, where k is not square modulo p. It is enough to consider
the path u = (x1, y1) = (0, (m1 + k1q)a

′), (t, 0), (0, k′qa′), (kpa, (m2 +
k2q)a

′) = (x2, y2) = v of length three, where t ∈ V (P(Bp))− {0} and k′

is a square modulo q.
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(c) x2 = (m + np)a. In this case the path u = (x1, y1) = (0, (m1 + k1q)a
′),

(kpa, k′qa′), ((m + np)a, (m2 + k2q)a
′) = (x2, y2) = v has length two,

where k and k′ are squares modulo p and q, respectively.

Suppose x2 = 0. By a similar method and a case by case investigation, one
can see that d(u, v) ∈ {2, 3}. We now assume that x1 is not adjacent to x2.
It is clear that x1 6= 0 and x2 6= 0. Choose 1 ≤ n,m, k, n′,m′, k′ ≤ p− 1 and
1 ≤ k′′ ≤ q − 1, k′′ is square modulo q, based on the following cases:

(a) x1 = (m + np)a and x2 = kpa, k is not square modulo p. The path
u = (x1, y1) = ((m+np)a, (m1+k1q)a

′), (0, k′′qa′), (kpa, (m2+k2q)a
′) =

(x2, y2) = v has length two.

(b) x1 = kpa, k is not square modulo p and x2 = (m + np)a. The path
u = (x1, y1) = (kpa, (m1+k1q)a

′), (0, k′′qa′), ((m+np)a, (m2+k2q)a
′) =

(x2, y2) = v has length two.

(c) x1 = kpa, k is square modulo p and x2 = k′pa, k′ is not square modulo

p. The path u = (x1, y1) = (kpa, (m1 + k1q)a
′), (0, k′′qa′), (k′pa, (m2 +

k2q)a
′) = (x2, y2) = v has length two.

(d) x1 = kpa, k is not square modulo p, and x2 = k′pa, k′ is a square modulo

p. It can be easily seen that the path u = (x1, y1) = (kpa, (m1 + k1q)a
′),

(0, k′′qa′), (k′pa, (m2 + k2q)a
′) = (x2, y2) = v has length two.

(e) x1 = (m + np)a and x2 = (m′ + n′p)a. It is easy to see that the path
u = (x1, y1) = ((m+np)a, (m1+k1q)a

′), (k′pa, k′′qa′), ((m′+n′p)a, (m2+
k2q)a

′) = (x2, y2) = v has length three, where k′ is a square modulo p.

(f) x1 = kpa, and x2 = k′pa, k and k′ are squares modulo p and q, re-

spectively. The path u = (x1, y1) = (kpa, (m1 + k1q)a
′), (0 or (m +

np)a, k′′qa′), (k′pa, (m2 + k2q)a
′) = (x2, y2) = v has length two.

(g) x1 = kpa, and x2 = k′pa, k and k′ are not squares modulo p and q,

respectively. The path u = (x1, y1) = (kpa, (m1 + k1q)a
′), (0, k′′qa′),

(k′pa, (m2 + k2q)a
′) = (x2, y2) = v has length two.

2. u, v ∈ M2. A similar argument as in the Case 1 shows that d(u, v) ∈ {1, 2}.

3. u, v ∈ M4. Since d(u, v) > 1, the only case that can be occurred is the case
that in P(Bp), x1 is not adjacent to x2 and in P(Bq), x2 is not adjacent to y2.
Choose the path (x1, y1), (0, 0), (x2, y2) of length two to prove that d(u, v) = 2.

Note that a similar argument for the remaining cases shows that d(u, v) ∈ {1, 2, 3}
and so diam(P(Bp) ⊗ P(Bq)) = 3. We now return to determine diam(P(Bp) ⊗
P(Cq)). By Theorem 2.3, the graph P(Bp) ⊗ P(Cq) is bipartite and the parts
V1 and V2 are defined as the set of all vertices of the form (V (P(Bp)), 0) and
(V (P(Bp)), V (P(Cq)) − {0}), respectively. It is obvious that if u and v are in
different parts, then d(u, v) ∈ {1, 3}. If u, v ∈ V1, then one can see that d(u, v) ∈
{2, 4}. Assume that u, v ∈ V2, where u = (u1, v1) and v = (u2, v2) such that u1

and u2 are non-zero. Then the path (u1, v1), (0, 0), (u2, v2), connecting u and v
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is a shortest path in this case. If u1 and u2 are zero, then we consider the path
(u1, v1), (kpa, 0), (u2, v2), where 1 ≤ k ≤ p − 1 and k is a square modulo p and so
d(x, y) = 2. Therefore, diam(P(Bp)⊗ P(Cq)) = 4. �

Theorem 3.2. LetRq be a ring of order q
2. Then gr(P(Ap)⊗P(Rq)) ∈ {3, 4, 6,∞}.

Proof . Apply Theorems 2.3-2.8. We have the following separate cases:

1. Rq
∼= Aq and p, q 6= 2. It is clear that we have the cycle (u, v), (x, y),

(x−1, y−1), (u, v), where u ∈ U(Zp2), v ∈ U(Zq2 ), x is a generator of U(Zp2)
and y is a generator of U(Zq2). Thus, the girth of the graph is 3.

2. Rq
∼= Bq and p, q 6= 2. In this case let u ∈ U(Zp2), v be a generator of U(Zp2)

and 1 ≤ m, k ≤ q − 1. Then we will have the following cycles:

(a) (u, kqa′), (v, 0), (v−1, (m+ kq)a′), (u, kqa′),

(b) (u, 0), (v, kqa′), (v−1, (m+ kq)a′), (u, 0),

(c) (u, (m+ kq)a′), (v, kqa′), (v−1, 0), (u, (m+ kq)a′).

Hence the girth of the graph will be 3.

3. Rq
∼= Dq, p 6= 2 and p, q 6= 3. In this case let u ∈ U(Zp2 ), v be a generator

of U(Zp2) and 1 ≤ n,m, k ≤ q − 1. Then the shortest cycles have one of the
following forms:

(a) (u, na′), (v,ma′), (v−1, ka′), (u, na′),

(b) (u, nb′), (v,mb′), (v−1, kb′), (u, nb′).

So, the girth of the graph is 3.

4. Rq
∼= Eq, p 6= 2 and q 6= 2, 3. Let u ∈ U(Zp2), v be a generator of U(Zp2) and

1 ≤ n,m, k ≤ q− 1. Then the shortest cycles have one of the following forms:

(a) (u, na′), (v,ma′), (v−1, ka′), (u, na′),

(b) (u, nb′), (v,mb′), (v−1, kb′), (u, nb′),

and so the girth is equal to 3.

5. Rq
∼= Hq and p, q 6= 2. Let u ∈ U(Zp2), v be a generator of U(Zp2). Then

the cycle (u, 2b′), (v, b′), (v−1, 2a′+2b′), (u, 2b′) has the shortest length and so
the girth is 3.

6. Rq
∼= Kq and p 6= 2. One can see that the cycle (u, a′+b′), (v, a′), (v−1, b′), (u, a′+

b′) has the minimum length. Thus the girth is 4.

We now present the cases that gr(P(Ap)⊗ P(Rq)) = 4.
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1′ Rq
∼= Aq, p = 2 and q 6= 2. The cycle (0, u), (2a, v), (0, a′), (2a, v−1), (0, u) has

the shortest length, where u ∈ U(Zq2 ) and v is a generator of (U(Zq2 ),×).

2′ Rq
∼= Aq, q = 2 and p 6= 2. Note that (u, 0), (v, 2a′), (a, 0), (v−1, 2a′), (u, 0) is

a shortest cycle for the graph.

3′ Rq
∼= Cq, p 6= 2. It is enough to consider the following cycles:

(a) (u, 0), (v, w), (v−1, 0), (v, z), (u, 0) ,

(b) (kpa, 0), (0, w), (k′pa, 0), (0, z), (kpa, 0),

(c) (u,w), (v, 0), (a, z), (v−1, 0), (u,w),

where u ∈ U(Zp2), v is a generator of (U(Zp2 ),×), w, z ∈ V (P(Cq)) − {0},
w 6= z and 1 ≤ k 6= k′ ≤ p− 1.

4′ Rq
∼= Dq, p 6= 2 and q = 3. It is enough to choose the shortest cycle (u, a′),

(v, 2a′), (a, a′), (v−1, 2a′), (u, a′), where u ∈ U(Zp2)−{a} and v is a generator
of (U(Zp2),×).

5′ Rq
∼= Eq, p 6= 2 and q = 3. The cycles:

(a) (u, a′), (v, 2a′), (a, a′), (v−1, 2a′), (u, a′),

(b) (u, b′), (v, 2b′), (a, b′), (v−1, 2b′), (u, b′),

where u ∈ U(Zp2) − {a}, v is a generator of U(Zp2), have length 4 and they
are the shortest cycles.

6′ Rq
∼= Eq, p 6= 2 and q = 2. A shortest cycle for the graph is (u, 0), (v, a′+ b′),

(a, 0), (v−1, a′ + b′), (u, 0), as desired.

7′ Rq
∼= Hq, p 6= 2 and q = 2. The cycle (u, 0), (v, a′), (a, 0), (v−1, a′), (u, 0) has

the shortest length.

8′ Rq
∼= Bq and p = 2. The result follows from the fact that (a, qa′), (3a, a′),

(a, 0), (3a, (q + 1)a′), (a, qa′) is a shortest cycle of length 4.

9′ Rq
∼= Cq and p, q 6= 2. By Theorem 2.2, the graph P(Ap)⊗P(Cq) has at least

one complete bipartite component and so the girth of this graph is 4.

10′ Rq
∼= Hq and p = 2. In this case, a shortest cycle for the graph is (a, b′),

(3a, a′ + 2b′), (a, 2b′), (3a, 2a′ + 2b′), (a, b′).

Finally if Rq
∼= Kq and p = q = 2, then the cycles:

1. (0, a′), (2a, a′ + b′), (0, b′), (2a, a′), (0, a′ + b′), (2a, b′), (0, a′)

2. (a, a′), (3a, a′ + b′), (a, b′), (3a, a′), (a, a′ + b′), (3a, b′), (a, a′),

are the shortest cycles of length 6. In the remaining cases, the graph is acyclic
which completes the proof. �
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Theorem 3.3. Let Rq be a ring of order q2. Then gr(P(Bq)⊗P(Rq)) ∈ {3, 4,∞}.

Proof . The proof runs as Theorem 3.2. We first note that (0, 0), (a, a), (pa, qa),
(0, 0) is a triangle in P(Bp) ⊗ P(Bq) and so gr(P(Bp) ⊗ P(Bq)) = 3. Also, by [2,
Theorem 1] we have gr(P(Bp) ⊗ P(Cq)) ∈ {4, 6, 8}, but we have a square (0, 0),
(a, a), (pa, 0), (a, qa), (0, 0) in the graph. Thus gr(P(Bp)⊗P(Cq)) = 4. By Theorem
2.3, it is straightforward to see that gr(P(B2)⊗ P(D2)) = ∞ and for other values
of p and q, gr(P(Bp)⊗P(Dq)) = 4, since (0, a′), (a, (q−1)a′), (pa, a′), ((p+1)a, (q−
1)a′), (0, a′) is a shortest cycle for the graph. Furthermore, gr(P(B2)⊗P(E2)) = 3
and by Theorem 2.3, for other values of p and q we have the cycle (kpa, ia′ + ib′),
((m + np)a, a′ + b′), (0, i′a′ + i′b′), (k′pa, ia′ + jb′), where 1 ≤ m,n, k, k′ ≤ p − 1,
2 ≤ i, i′ ≤ q − 1 and k is a square modulo p. In P(B2)⊗P(H2), we have the cycle
(a, a′), (2a, 0), (3a, a′), (0, 0), (a, a′) and so gr(P(B2)⊗P(H2)) = 4. For other values
of p and q, we have gr(P(Bp)⊗P(Hq)) = 3, since (a, b′), (pa, 2b′), (0, 2a′+2b′), (a, b′)
is a cycle in the graph. Finally, let 1 ≤ m, k, k′ ≤ p − 1 such that k′ be a square
modulo p. Then the cycle (0, b′), (k′pa, a′), ((m + kp)a, a′ + b′), (0, b′) is a triangle
in P(Bp)⊗ P(Kq), which proves that gr(P(Bp)⊗ P(Kq)) = 3. �

Theorem 3.4. Let Rq be a ring of order q2. Then gr(P(Cp)⊗ P(Rq)) ∈ {4,∞}.

Proof . By Theorem 2.4, it is easy to prove that if q = 2, then gr(P(Cp) ⊗
P(D2)) = gr(P(Cp)⊗P(H2)) = ∞ and if p = q = 2, then gr(P(Cp)⊗P(Eq)) = ∞.
Again by Theorem 2.4 and using the method of Theorem 3.3, we can show that in
the remaining cases gr(P(Cp)⊗ P(Rq)) = 4. �

Theorem 3.5. Let Rq be a ring of order q2. Then gr(P(Sp)⊗P(Rq)) ∈ {4, 6,∞},
where Sp

∼= Dp, Ep or Hp and Rq
∼= Dq, Eq, Hq or Kq. Moreover gr(P(Kp) ⊗

P(Kq)) = 3.

Proof . In view of Theorems 2.5, 2.6 and 2.7, it is clear that if (Sp
∼= Dp, Rq

∼=
Dq,Kq and p = 2 or q = 2), (Sp

∼= Ep, Rq
∼= Eq, Hq and p = q = 2) and finally

(Sp
∼= Hp, Rq

∼= Hq and p = q = 2), then gr(P(Sp) ⊗ P(Rq)) = ∞ and also
gr(P(D2) ⊗ P(Hq)) = ∞. Also, there is a cycle of length 6 in P(E2) ⊗ P(K2).
Moreover, P(Hp) ⊗ P(Hq), when p 6= 2 and q 6= 2 has the girth 4. By the same
way in other cases, we have a cycle of length 4 or 6. To prove the second part, it is
enough to consider the triangle (a+ b, a′ + b′), (b, a′), (a, b′), (a+ b, a′ + b′). �

4. Concluding Remarks

In this paper the number of connected components in the tensor product of the
power graphs of some finite rings were computed. We apply our results to calculate
the diameter of all such graphs when they are connected. Moreover, the girth of
these graphs are also computed.
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In the end of this paper, we suppose that p, q are primes and Rp, Rq denote
arbitrary rings of order p2 and q2, respectively. Then we claim that P(Rp ×Rq) ⊆
P(Rp)⊗P(Rq). To do this, we first note that for every edge (a, b)(c, d) ∈ E(P(Rp×
Rq)), there exists n ∈ N such that (a, b)n = (c, d) or there exists m ∈ N such
that (c, d)m = (a, b). Therefore, an = c, bn = d or cm = a, dm = b. Then
ac ∈ E(P(Rp)), bd ∈ E(P(Rq)), which shows that (a, b)(c, d) ∈ P(Rp)⊗P(Rq). The
Figures 1 and 2, present a counterexample which proves that another conclusion
does not hold in general.

Figure 1. P(A2)⊗ P(A2)

Figure 2. P(A2 ×A2)
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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A
FIRST-ORDER DIFFERENTIAL EQUATION VIA FIXED POINT

THEOREM IN ORTHOGONAL METRIC SPACE

Madjid Eshaghi Gordji and Hasti Habibi

Abstract. In this paper we provide new and simple proofs for the classical existence
and uniqueness theorems of solutions to the first-order differential equation using the
fixed point theorem in an orthogonal metric space.
Keywords: Fixed point; Differential equation; Existence; Uniqueness; Solution; Or-
thogonal set.

1. Introduction

Let us consider the differential equation

ẋ(t) = v(t, x), x(t0) = x0,(1.1)

where t ∈ R, x ∈ R
n and v(t, x) is defined and differentiable (of class Cr, r ≥ 1) in

a domain U of R× R
n.

The solution to this equation will be a function φ : R → R
n where

φ̇(t) = v(t, φ(t)), φ(t0) = x0.(1.2)

The existence and uniqueness of solutions to first-order differential equations with
given initial conditions are some of the most fundamental results of ordinary differ-
ential equations. This is stated in the two following theorems.

Theorem 1.1. [8] (The Existence Theorem) Suppose the right-hand side v of the

differential equation ẋ(t) = v(t, x) is continuously differentiable in a neighborhood

of the point (t0, x0) ∈ R×R
n. Then there exists a neighborhood of the point t0 such

that a solution of the differential equation is defined in this neighborhood with the

initial condition φ(t0) = x0, where x is any point sufficiently close to x0. Moreover,

this solution depends continuously on the initial point x.
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Theorem 1.2. [8](The Uniqueness Theorem) Given the above conditions, there is

only one possible solution for any given initial point, in the sense that all possible

solutions are equal in the neighborhood under consideration.

Previous studies have provided proofs of Theorems 1.1 and 1.2 using the concepts
of Banach contraction principle [1, 7, 8], [12] and [16, 15].
Recently, M. Eshaghi et.al. [13] introduced the concept of orthogonal sets. A
real extension of Banach contraction principle in orthogonal metric space has been
considered in [13] (see also [9, 10, 19]). In this paper, we are interested in obtaining
new and simple proofs for Theorems 1.1 and 1.2 which guarantee existence and
uniqueness of the solution for any equation of the form (1.1).
This paper is organized as follows: In section 2, we state some definitions and
theorems which are needed to prove the main results. Also, we recall under what
conditions will any mapping on an orthogonal metric space have a unique fixed
point. In section 3, we consider new concepts of tangent space to an orthogonal
metric space and derivative of mapping at a point in an orthogonal metric space.
This section provides a priori bound for the solution. In this section, we make use
of the standard tools of the fixed point theory in orthogonal metric spaces to obtain
new and simple proofs for existence and uniqueness theorems of solutions for the
differential equation (1.1).

2. Preliminary definitions

First, we begin with the following definition which can be considered as the main
definition of [13].

Definition 2.1. [13] Let M 6= φ and ⊥ ⊆ M × M be a binary relation. If ⊥
satisfies the following condition

∃x0; ((∀y; y⊥x0) or (∀y;x0⊥y)),

it is called an orthogonal set (briefly O-set). We denote this O-set by (M,⊥) (see
also [9, 10, 19]).

We now give some examples of orthogonal sets.

Example 2.1. Let M = [2,∞), we define x⊥y if x ≤ y, then by putting x0 = 2, (M,⊥)
is an O-set.

In the following example, we can see that x0 is not necessarily unique.

Example 2.2. Suppose M(n) is the set of all n×n matrices and Q is a positive definite
matrix. Define the relation ⊥ on M(n) by

A⊥B ⇐⇒ ∃X ∈ M(n) ; AX = B.

It is easy to see that I⊥B, B⊥0 and Q
1

2⊥B for all B ∈ M(n).
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Now, we turn our consideration to the definition of orthogonal sequence.

Definition 2.2. [13] Let (M,⊥) be an O-set. A sequence {xn}n∈N is called or-
thogonal sequence (briefly O-sequence) if

(∀n;xn⊥xn+1) or (∀n;xn+1⊥xn).

(see also [9, 10, 19]).

Let (M,ρ,⊥) be an orthogonal metric space ((M,⊥) is an O-set and (M,ρ) is a
metric space). We consider the notion of O-complete orthogonal metric space.

Definition 2.3. [13] M is orthogonally complete (briefly O-complete) if every
Cauchy O-sequence is convergent (see also [9, 10, 19]).

Definition 2.4. Let (M,ρ,⊥) be an orthogonal metric space and 0 < λ < 1 (see
[13]).

1. A mapping f : M → M is said to be orthogonal contraction (⊥−contraction)
with Lipchitz constant λ if

ρ(fx, fy) ≤ λρ(x, y) ifx⊥y.(2.1)

2. A mapping f : M → M is called orthogonality-preserving (⊥−preserving) if
f(x)⊥f(y) if x⊥y.

3. A mapping f : M → M is continuous orthogonal (⊥−continuous) in a ∈ M

if for each O-sequence {an}n∈N in M if an → a, then f(an) → f(a). Also f

is ⊥−continuous on M if f is ⊥−continuous in each a ∈ M .

(see also [9, 10, 19]).

Example 2.3. Let M = [0, 1) and let the metric on M be the Euclidian metric. Define
x⊥y if xy ∈ {x, y}. M is not complete but it is O-complete. Let x⊥y and xy = x. If {xk}
is an arbitrary Cauchy O-sequence in M , then there exists a subsequence {xkn

} of {xk}
for which xkn

= 0 for all n. It follows that {xkn
} converges to a x ∈ M . On the other

hand, we know that every Cauchy sequence with a convergent subsequence is convergent.
It follows that {xk} is convergent.
Let f : M → M be a mapping defined by f(x) = x

2
if x ∈ Q ∩ M and f(x) = 0 if

x ∈ Q
c ∩M .

We have the following cases:

case 1) x = 0 and y ∈ Q ∩M . Then f(x) = 0 and f(y) = y

2
.

case 2) x = 0 and y ∈ Q
c ∩M . Then f(x) = f(y) = 0.

This implies that f(x)f(y) = f(x). Hence f is ⊥-preserving.
Also, this implies that |f(x) − f(y)| ≤ 1

2
|x − y|. Hence f is ⊥−contraction. But f is not

a contraction. To see this, for each λ < 1, |f( 1
2
)− f(

√

3
4
)| > λ| 1

2
−

√

3
4
|.
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If {xn} is an arbitrary O-sequence in M such that {xn} converges to x ∈ M . Since f is
⊥−contraction, for each n ∈ N we have

|f(xn)− f(x)| ≤
1

2
|xn − x|.

As n goes to infinity, f is ⊥-continuous. But it can be easily seen that f is not continuous.

We can now state the main theoretical result of [13]. Sufficient conditions under
which any mapping on an orthogonal metric space will have a unique fixed point
are given in the theorem.

Theorem 2.1. Let (M,ρ,⊥) be an O-complete metric space (not necessarily com-

plete metric space) and 0 < λ < 1. Let f : M → M be ⊥−continuous, ⊥−contraction

(with Lipschitz constant λ) and ⊥−preserving, then f has a unique fixed point x∗

in M . Also, f is a Picard operator, that is, lim fn(x) = x∗ for all x ∈ M .

(see also [9, 10, 19]).

Theorem 2.2. [8](chap.4,31.1) Given a point (t0, x0) ∈ R×R
n consider a differ-

ential equation (1.1). Let P be a Picard mapping that takes a function φ : t → x to

the function Pφ : t → x defined by

(Pφ)(t) = x0 +

∫ t

t0

v(τ, φ(τ))dτ τ ∈ R(2.2)

Note that (Pφ)(t0) = x0 for any φ. The mapping φ : I → R
n is a solution to

ẋ = v(t, x) with the initial condition φ(t0) = x0 if and only if φ = Pφ.

Simply, the theorem states that the solution to a first-order differential equation
is the ”fixed point” of a Picard mapping. Theorem 2.1 gives us some conditions un-
der which a mapping has one and only one fixed point. Thus, if we could construct
a mapping that includes both types of functions in just the right way, we could
take advantage of the existence and uniqueness of the fixed point of this mapping
to prove the existence and uniqueness of the solution to our differential equation.

3. Main results

In this section, we are ready to state new and simple proofs of Theorems 1.1 and
1.2. To this end, we need some definitions.
Let (M,ρ,⊥) be an orthogonal metric space ((M,⊥) is an O-set and (M,ρ) is a
metric space).

Definition 3.1. Let φ be a mapping of an open interval I in R to (M,ρ,⊥). The
derivative of φ is defined by

φ̇(t) := lim
s→0

ρ(φ(t + s), φ(t))

s
,

where t ∈ R is a limit point of I and φ(t)⊥φ(t+ s) if the limit exists.
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We now consider the tangent space to (M,ρ,⊥) at a point.

Definition 3.2. Let φ be a differentiable mapping of an open interval I in R to
(M,ρ,⊥). φ is said to leave the point x for some x ∈ M if φ(0) = x. The derivative
of φ at the point t = 0 is a vector v as:

v = φ̇(0) =
dφ

dt
|t=0.(3.1)

The tangent space to (M,⊥) at a point x is the set of all vectors v of all such curves
leaving x and denoted TxM .

We turn our attention to the concept of the derivative of a mapping f at a point.

Definition 3.3. Let f : U → V be a differentiable mapping from the subset U of
the orthogonal metric space (M1, ρ1,⊥1) into the subset V of the orthogonal metric
space (M2, ρ2,⊥2) and let φ : I → U be a differentiable mapping which leaves the
point x ∈ U at t = 0. The derivative of the mapping f at the point x is the mapping

f∗x : TxU → Tf(x)V,

which carries the vector v leaving the point x of the curve φ into the vector f∗x(v)
leaving the point f(x) of the curve f(φ) i.e.

f∗x(v) = f∗x(
dφ

dt
|t=0) =

df(φ)

dt
|t=0.(3.2)

Then we have the following result.

Proposition 3.1. Let f : U → R
n be a smooth mapping (f ∈ Cr, r ≥ 1) from

U ⊆ (Rm,⊥1) to (Rn,⊥2) and x ∈ U . Then f satisfies the Lipchitz condition

on each convex compact subset V of U with the Lipchitz constant L equal to the

supremum of the derivative of f on V :

L = sup
x∈V

|f∗x|.(3.3)

Proof. Take any two points x, y ∈ V , x⊥1y and join them together with a line
segment

z(t) = x+ t(y − x) ; 0 ≤ t ≤ 1.

Since V is convex, z(t) ∈ V ; ∀t ∈ [0, 1]. Now, we have

∫ 1

0

d

dt
(f(z(t))dt = f(z(1))− f(z(0)) = f(y)− f(x),

and ∫ 1

0

d

dt
(f(z(t))dt =

∫ 1

0

df

dz
|z(t)

dz

dt
(t)dt =

∫ 1

0

f∗z(t)(y − x)dt.
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Examining the absolute magnitude of this integral, we find

∣∣
∫ 1

0

f∗z(t)(y − x)dt
∣∣ ≤

∫ 1

0

|f∗z(t)(y − x)|dt

≤

∫ 1

0

|f∗z(t)||y − x|dt

≤ (

∫ 1

0

|f∗z(t)|dt) |y − x|

≤ (

∫ 1

0

Ldt) |y − x|

= |L.1− L.0| |y − x| = L|y − x|.

We have thus determined that for any two points x, y ∈ V ,

|f(y)− f(x)| =
∣∣
∫ 1

0

f∗z(τ)(y − x)dτ
∣∣ ≤ L|y − x|,

and hence f satisfies the Lipchitz condition on V with the constant L.

Remark 3.1. In the previous proposition, since f ∈ C1 the mapping f∗ = df

dx
which

takes a given x and returns the mapping f∗x is continuous. Since V is compact |f∗x|
actually attains its maximum value L.

Now, we are interested in obtaining a mapping that satisfies the properties of
Theorem 2.1 and the fixed point of this mapping is the solution to (1.1). In this
way, we prove the existence and uniqueness (Theorems 1.1 and 1.2) of the solution
to (1.1).
Because v is differentiable at the point (t0, x0) ∈ U , there exists some neighborhood
C around (t0, x0) such that C ⊂ U . Then there exist small enough numbers a and
b such that

C = {(t, x); |t− t0| ≤ a, |x− x0| ≤ b} ⊂ U.(3.4)

Clearly, C is compact and |v| attains its supremum over C. Similarly, |v∗| = | dv
dx
|

attains its supremum over C. Let

c = sup
C

|v|, L = sup
C

|v∗|.(3.5)

We are interested in obtaining a function based on v, satisfying Lipchitz condition
on each convex compact subset of U , including C with the Lipchitz constant L. Let
us separate C into some subregions. There exists

á = min{a,
b

2c
,
1

2L
},(3.6)

such that
K0 = {(t, x); |t− t0| ≤ á, |x− x0| ≤ c|t− t0|},
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lies in C.
For b́ = b

2
and x́ with |x́− x0| ≤ b́ another point (t0, x́) can be considered such that

Kx́ = {(t, x); |t− t0| ≤ á, |x− x́| ≤ c|t− t0|}.(3.7)

The following argument shows that á exists and is equal to min{a, b
2c
, 1

2L
}. Since

|x − x0| ≤ c|t − t0| ≤ cá then á = min{a, b
c
} exists. On the other hand, by using

triangle inequality, we find

|x− x0| ≤ |x− x́|+ |x́− x0| ≤ cá+ b́ = b.

So, let á = min{a, b
2c
}. á will need one more bound later on, namely, the condition

á < 1

L
(we are ignoring the trivial case L = 0). So, let us go ahead and put

á = min{a, b
2c
, 1

2L
}.

We are trying to obtain the solution φx́ : R → R
n of (1.1) with the initial condition

φx́(t0) = x́ expressed in the form φx́(t) = x́ + h(t, x́), though we can now remove
the prime on x:

φx(t) = x+ h(t, x).(3.8)

Then the mapping

φ : {(t, x); |t− t0| ≤ á, |x− x0| ≤ b́} → R
n,(3.9)

defined by

φ(t, x) = φx(t),(3.10)

is the ”general” solution of (1.1).
One may easily verify the following lemma:

Lemma 3.1. For any solution φx, the point (t, φx(t)) lies within Kx for all t such

that |t− t0| ≤ á.

Recall that we are interested in obtaining a mapping that satisfies the properties
of Theorem 2.1 and the fixed point of this mapping is the solution to (1.1). Let us
first define the orthogonal metric space we will use. This space should include all the
mappings which could possibly be solutions. Given some central initial condition
(t0, x0), the mapping φ should take the point (t, x) from the region |t − t0| ≤

á, |x− x0| ≤ b́ to R
n.

Since φx must be a differentiable function in order to be a solution, it must
be continuous on the set over which it is a solution. The space of all continuous
functions h(t, x) which added to x could give us a solution φx with the initial
condition φx(t0) = x will be considered. Denote this space by M . Since φ takes the

point (t, x) from the region |t− t0| ≤ á, |x− x0| ≤ b́ to R
n, the map h must be over

this region.

h : {(t, x); |t− t0| ≤ á, |x− x0| ≤ b́} → R
n.(3.11)
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Note that h(t0, x) = 0 for any h ∈ M , x ∈ C, where 0 is the zero vector in R
n.

In the space M , we can define a relation ⊥ by

h1⊥h2 ⇐⇒ ‖h1‖‖h2‖ ≤ c|t− t0|(‖h1‖ ∨ ‖h2‖),(3.12)

which is an orthogonality relation on M . It shows that the spaceM is an orthogonal
space.
Let ρ : M ×M → R+ be given by

ρ(h1, h2) = ‖h1 − h2‖ = sup |h1(t, x) − h2(t, x)|,(3.13)

for all h1, h2 ∈ M . Then ρ is a metric on M and the orthogonal metric space M will
be denoted by (M,ρ,⊥). Since every h is a continuous function over a closed and
bounded subset of the Euclidean space, this supremum is actually attained. Hence,
the orthogonal metric space (M,ρ,⊥) is complete.
In the orthogonal metric space (M,ρ,⊥), a mapping A : (M,ρ,⊥) → (M,ρ,⊥) can
be defined by

(Ah)(t, x) =

∫ t

t0

v(τ, x + h(τ, x))dτ,(3.14)

for |t− t0| ≤ á, |x− x0| ≤ b́. Clearly, (τ, x + h(τ, x)) is in the domain of v for any
(τ, x) in the appropriate region but we should be careful to check that Ah is in fact
an element of (M,ρ,⊥).

Lemma 3.2. For all h ∈ M , Ah ∈ M .

Proof. Take any h ∈ M . By construction Ah is a function that satisfies (3.11). The
function h is continuous for any (τ, x) in its domain, so the point (τ, x + h(τ, x))
varies continuously with (τ, x) and since v is also continuous on its domain v varies
continuously with (τ, x) as well. Taking the integral will then result in a continuous
function of the boundary terms taken at (t, x) and (t0, x). Thus, Ah is a continuous
function of (t, x) meaning Ah ∈ M .

We now discuss some properties of mapping A.

1. A is ⊥-preserving mapping.

2. A is ⊥-contraction mapping.

3. A is ⊥-continuous mapping.

Proof. 1. We recall that A is ⊥-preserving, if for h1, h2 ∈ M , h1⊥h2, we have
Ah1⊥Ah2.

|(Ah1)(t, x)| =
∣∣
∫ t

t0

v(τ, x + h1(τ, x))dτ
∣∣
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≤

∫ t

t0

|v(τ, x+ h1(τ, x))|dτ

≤

∫ t

t0

cdτ

= |c.t− c.t0| = c|t− t0|.

So,

‖Ah1‖‖Ah2‖ ≤ c|t− t0|‖Ah2‖.

Meaning that Ah1⊥Ah2.

2. We need to prove that for any h1, h2 ∈ M , h1⊥h2, ‖Ah1−Ah2‖ ≤ λ‖h1−h2‖
for some constant 0 < λ < 1. Let us then construct the mapping Ah1 −Ah2.

|(Ah1)(t, x)| =
∣∣
∫ t

t0

v(τ, x + h1(τ, x))dτ
∣∣ (abbreviated

∫ t

t0

v1dτ),

(Ah1 −Ah2)(t, x) =

∫ t

t0

v1dτ −

∫ t

t0

v2dτ =

∫ t

t0

(v1 − v2)dτ.

For a fixed (τ, x), v will act as a mapping that takes hi(τ, x) to v(τ, x+hi(τ, x)).
As v was assumed to be continuously differentiable over its domain, we invoke
Proposition 3.1 to find that v satisfies the Lipchitz condition on each convex
compact subset of its domain and therefore on each subset C of U . Proposition
3.1 also gives us the Lipchitz constant L(τ) = sup

|x−x0|≤b |v∗| where we have
emphasized the fact that this L depends on the choice of the constant τ . Thus,
for all points (τ, x),

|v1(τ, x) − v2(τ, x)| ≤ L(τ)‖h1 − h2‖.

As seen earlier, the magnitude of any mapping in M attains its supremum at
some point in its domain, so we have

‖Ah1 −Ah2‖ = sup |Ah1(t, x) −Ah2(t, x)| = |Ah1(tm, xm)−Ah2(tm, xm)|,

for some (tm, xm) ∈ C. Therefore,

‖Ah1 −Ah2‖ =
∣∣
∫ tm

t0

(v1(τ, xm)− v2(τ, xm))dτ
∣∣

≤

∫ tm

t0

|(v1(τ, xm)− v2(τ, xm))|dτ

≤

∫ tm

t0

L(τ)‖h1 − h2‖dτ

=

∫ tm

t0

L(τ)dτ‖h1 − h2‖.
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In (3.5), L (without the parenthetical τ) was designated the supremum of |v∗|
over all of C i.e. over both the t and x domains meaning that

‖Ah1 −Ah2‖ ≤

∫ tm

t0

L(τ)dτ‖h1 − h2‖

≤

∫ tm

t0

Ldτ‖h1 − h2‖

= L|tm − t0|‖h1 − h2‖

≤ Lá‖h1 − h2‖.

Lastly, we take advantage of the extra bound we placed on á to find that
Lá ≤ L 1

2L
= 1

2
< 1. Thus, for all h1, h2 ∈ M , h1⊥h2,

‖Ah1 −Ah2‖ ≤ Lá‖h1 − h2‖ , 0 < Lá < 1,

making A a ⊥-contraction mapping.

3. Suppose {hn} is an O-sequence in M such that {hn} converging to h ∈ M .
Because A is ⊥-preserving, {Ahn} is an O-sequence. For each n ∈ N, since A

is ⊥-contraction, we have

‖Ahn(t, x)−Ah(t, x)‖ ≤ Lá‖hn − h‖.

As n goes to infinity, it follows that A is ⊥-continuous.

The mapping A defined above is ⊥-preserving, ⊥-contraction and ⊥-continuous
mapping over an orthogonal metric space (M,ρ,⊥). The mapping A satisfies the
hypotheses of Theorem 2.1. Thus, the existence and uniqueness of its fixed point
h0 ∈ M is guaranteed by Theorem 2.1. The purpose of the present paper is to
incorporate this in a Picard mapping of potential solutions to (1.1). Using the
existence and uniqueness of h0 to confirm the existence and uniqueness of the fixed
point of the Picard mapping, which will in turn prove our main theorems.
First, recall that we are looking for solutions expressed in the form φx(t) = x +
h(t, x). If h is a fixed point of A, then φx(t) = x +Ah(t, x) and when the solution
φx is the fixed point, our Picard mapping φx(t) will equal (Pφx)(t). Hence,

(Pφx)(t) = x+ (Ah)(t, x)

= x+

∫ t

t0

v(τ, x+ h(τ, x))dτ

= x+

∫ t

t0

v(τ, φx(τ))dτ

By Theorem (2.2), φx is a solution to ẋ = v(t, x) with φx(t0) = x if and only if
φx = Pφx. We can now conclude this section with a new proof of the forthcoming
results concerning the existence and uniqueness of the solution to (1.1) satisfying
any initial condition in the domain of v.
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Theorem 3.1. (The Existence Theorem) Suppose the right-hand side v of the dif-

ferential equation ẋ(t) = v(t, x) is continuously differentiable in a neighborhood of

the point (t0, x0) ∈ R × R
n. Then there exists a neighborhood of the point t0 such

that the solution to the differential equation is defined in this neighborhood with the

initial condition φ(t0) = x0 where x is any point sufficiently close to x0. Moreover,

this solution depends continuously on the initial point x.

Proof. Given v(t, x) as well as (t0, x0), demarcate a neighborhood C around the

central point and use it to define the constants á, b́; also, construct the orthogonal
metric space (M,⊥, ρ), ⊥-preserving, ⊥- continuous, ⊥-contraction mapping A and
a Picard mapping P as determined by v,C and the central point (t0, x0). Since
M is an orthogonal complete metric space, the fixed point h0 of A must exist by
Theorem 2.1. The function g : R× R

n → R
n given by

g(t, x) = x+ h0(t, x),

is therefore always well-defined in a neighborhood of (t0, x0). Applying the Picard
mapping

(Pg)(t, x) = x+ (Ah0)(t, x) = x+ h0(t, x) = g(t, x),

which proves that, by Theorem 2.2, g is the solution to the differential equation
which satisfies the initial condition g(t0, x) = x. The function which returns the
value x is continuous on R × R

n, h0 is continuous by construction and the sum of
any two continuous function is continuous over the same domain. So g, the function
of t and x, is continuous over its domain. Thus, the solution depends continuously
on the initial point x.

Uniqueness immediately follows:

Theorem 3.2. (The Uniqueness Theorem) Given the above conditions, there is

only one possible solution for any given initial point, in the sense that all possible

solutions are equal in the neighborhood under consideration.

Proof. Construct a neighborhood and mapping as above but now set b́ = 0, which
restricts the initial x under our consideration to the specific point x0. Find the
solution g(t, x0) = x0 + h0(t, x0). The uniqueness of the fixed point h0 guarantees
that this is the only solution with the initial condition x0 that can be expressed in
the form x+ h(t, x).
Now, consider any solution φx0

with φx0
(t0) = x0. By Lemma 3.1, φx0

(t) ∈ K0 for
all t in our neighborhood. Label φx0

(t) − x0 by hφ(t, x0). This new function also
clearly satisfies (3.11) and, furthermore, since any solution φ must be continuous,
hφ is also continuous. So, hφ ∈ M and φx0

(t) = x0 + hφ(t, x0). The uniqueness of
h0 shows that all possible solutions to the differential equation with a given initial
condition are expressed in the form φx0

= x0 + h(t, x0) for h ∈ M . As there is only
one such function possible, the solution g is thus unique.
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COMPUTING TRIANGULATIONS OF THE CONVEX POLYGON
IN PHP/MYSQL ENVIRONMENT

Sead H. Mašović, Muzafer H. Saračević, Predrag S. Stanimirović
and Predrag V. Krtolica

Abstract. In this paper we implement the Block method for convex polygon triangula-
tion in the web environment (PHP/MySQL). Our main aim is to show the advantages
of the usage of web technologies in performing complex algorithm from computer graph-
ics. The basic assumption is that once obtained, the results can be stored in a database
and used for other calculations. Databases are convenient and structured methods of
sharing and retrieving data. We have performed a comparative analysis of the devel-
oped program with respect to two criteria: CPU time in generating triangulation and
CPU time in reading results from the database.
Keywords: Computer graphics, Polygon triangulation, Block method, PHP/MySQL.

1. Introduction and preliminaries

Polygon triangulation is an important problem applicable in computer graphics.
Restricted to the convex case, the decomposition of a polygon is done into triangles
by a maximal set of non-intersecting diagonals.

Let Pn denote a polygon with n vertices. The total number Tn of n-gon trian-
gulations is

(1.1) Tn = Cn−2 =
1

n− 1

(
2n− 4

n− 2

)
=

(2n− 4)!

(n− 1)!(n− 2)!
, n > 3.

Here, Cn represents the nth Catalan number (see e.g. [9]).

The set of all triangulations of the convex polygon Pn is denoted by Tn. Diagonal
connecting vertices i and j are denoted by δi,j . An outer face edge can be considered
as a diagonal, while nonadjacent vertices are connected by an internal diagonal.
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Many authors deal with the problem of how to generate the triangulation of
a convex polygon based on some criterion. In this paper we implement the Block
method for convex polygon triangulation [6] in the web environment using PH-
P/MySQL technologies.

The combination of PHP and MySQL is the most convenient approach to dy-
namic, database-driven web design application. Due to its open source roots, it is
free to implement and is therefore an extremely popular option for web development.

PHP is extremely powerful and exceptionally fast it can run on even the most
basic hardware, and it hardly puts a dent in the system resources. The main
characteristics of PHP are described in [2].

According to the TIOBE Programming Community index1, the PHP program-
ming language is one of the top 10 most popular programming languages. Eighty
percent of the top 10 million websites use PHP in one way or the other, including
Facebook and Wikipedia.

PHP, as a scripting language, is popular among web developers because of its
ability to interact with database systems.

MySQL is probably the most popular database management system for web
servers.

MySQL is a fast and powerful, yet easy-to-use, database system that offers just
about anything a website would need in order to find and serve up data to browsers.

The combination of PHP and MySQL can be used to build simple or com-
plex and high traffic websites (see for e.g. [1, 7]). Similarly, the authors [4] used
PHP/MySQL environment for computing the weighted Moore-Penrose inverse em-
ploying the partitioning method, as well as for storing the generated results.

This paper is organized as follows. In the Section 2 we present the main parts
of the Block method for convex polygon triangulation. In Section 3 we describe
the implementation of the algorithm in the PHP/MySQL environment. Section 4
includes a comparative analysis of the obtained numerical results.

2. Block method for convex polygon triangulation

Here we restate the Block method for convex polygon triangulation [6] which is
the subject of our implementation.

The general strategy of the method is to decompose the problem into smaller
dependant subproblems. Each subproblem is solved only once and used many times
avoiding unnecessary repetitions of calculation.

The method is based on the usage of the previously generated triangulations for
polygon with a smaller number of vertices. More precisely, the algorithm generates
the set Tn using all the previously generated triangulations Tb, where b < n. The
set Tb is used as many times as necessary as a block, i.e. it is repeated several times
in Tn.

1https://www.tiobe.com/tiobe-index/
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The formal statement of the subject method is given by the following equation

(2.1) Tn = 2Tn−1 + rest(Rn).

The general idea of the Block method uses Tn−1 to generate Tn, which is il-
lustrated in Figure 2.1, where one case of the transformation process from a P5

triangulation into two corresponding P6 triangulations is presented. In part (a) we
see that the diagonals δ2,4 and δ2,5 make all vertices closed except the vertices 1, 2,
5, and 6 which form a quadrilateral. The parts (b) and (c) show two ways to trian-
gulate a quadrilateral, which gives two P6 triangulations having a P5 triangulation
as a starting block.

Fig. 2.1: Transformation from a P5 into the corresponding P6 triangulations.
P5 = {(2, 4), (2, 5)} → P6 = {(2, 4), (2, 5), (1, 5)&(2, 4), (2, 5), (2, 6)}

Starting from the assumption that triangulation has at least two ears and that,
in the worst case, one ear can be a vertex n, then we always have at least one ear
among the rest of the vertices.

For the correctness of the algorithm in the procedure used for finding and elim-
inating closed vertices, the authors introduced a list of ordered pairs of the form

(2.2) L = {(1, 1), (2, 2), . . . , (n, n)}.

After the elimination of n− l pairs the list L becomes

(2.3) L = {(s, is), s = 1, . . . , l}, 4 ≤ l ≤ n, il = n.

The values is, s = 1, . . . , l are the vertex marks, while the values 1, . . . , l represent
the relative vertex positions in the list L.

Here we restate two additional algorithms 2.1 - Pair elimination & 2.2 - Form a
quadrilateral, which are part of the Block Method Algorithm 2.3.
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Algorithm 2.1 Pair elimination

Require: List L of the form (2.3) and vertices ip and iq, where d(p, q) = 2.
1: Remove from the list L the pair placed between the pairs (p, ip) and (q, iq) in a circular

manner.
2: Decrease by one the first pair members in the pairs following the eliminated one.

Algorithm 2.2 Form a quadrilateral

Require: List L of the form (2.2), integer n and array of n− 4 diagonals (i.e a row in the
table for Tn).

1: Find a diagonal δip,iq where d(p, q) = 2 in the list L.
2: Call Algorithm 2.1 for the parameters ip and iq .
3: Repeat Steps 1–2 n− 4 times.

The main algorithm for the Block method is presented below.

Algorithm 2.3 Algorithm for the Block method

Require: An integer n and Tb with rowb = Cn−3 rows and colb = n− 4 columns

1: Create an empty table for Tn with rown = Cn−2 rows and coln = n− 3 columns.

2: Fill the table for Tn by the triangulations from Tb duplicating each row from Tb.

3: Fill the rest of the entered blocks (the last column in the first 2rowb rows) in the
following way.

for (i = 1; i <= 2rowb; i+ = 2)
{
Make a list L of the form (2.2).
Call Algorithm 2.2 with row i from the table for Tn as a parameter.
From the remaining four vertices in the list L make a diagonal δi1,i3 and place
it in the last column of the row i and diagonal δi2,i4 and place it in the last
column of the row i+ 1.
}

4: Fill the rest of the table for Tn containing Tn − 2Tb rows.

4.1 Filling the first n− 4 columns in the last rown − 2rowb rows.
i = 2 ∗ rowb + 1;
Make the list L of the form (2.2).
Eliminate the vertices adjacent to n calling Algorithm 2.1 for the parameters
1 and n− 1.
Fill the current table row i by diagonals δ2,n, δ3,n, . . . , δn−2,n.
The first n− 4 columns in the rest rown − 2rowb − 1 rows should be filled with
the diagonals with the last vertex n, while the first vertices are combinations of
the (n−4)th class in the set {2, 3, . . . , n−2}. The number of these combinations
is

(
n−3
n−4

)
= n− 3.

4.2 Filling the last column in the last (rown − 2rowb) rows.
for (i = 2rowb + 2; i <= rown; i++)

{
Make the list L of the form (2.2).
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Call Algorithm 2.2 with the row i from the table for Tn as a parameter.
From the remaining four vertices in the list L make a diagonal δi1,i3 and
place it in the last column of the row i.
}

3. PHP/MySQL implementation of Block method

The most used architecture for development of web applications is three-tier
architecture (Figure 3.1). Three-tier web architecture is a unique system for devel-
oping web database applications which work around the three-tier model comprising
the database tier at the bottom, the application tier in the middle and the client
tier on top.

Fig. 3.1: Three-tier Web Architecture

The web interface of our application is given in Figure 3.2

Fig. 3.2: Web interface of the application

According to the three-tier architecture, our application is organized as follows:

• On the client tier we have the web interface;

• Algorithm for the Block method is performed on application tier ;

• Generated triangulations are stored on database tier ;

In what follows, we presents a detailed view of the application scenario:
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First, we have to enter the value n for which convex polygon we want to calculate
triangulation.

Preconditions : n ≥ 4

Second, when we press the submit button, Application search in database:
Case 1: Force Generation = Not marked
Have we already calculated triangulations of n in the database;

- If we have, the application displays the results of Tn in the browser;
- If we have not, the application checks if we have the results of Tn−1 in the

database:
* If we have, then call Algorithm 2.3
* If we do not, the preconditions of Algorithm 2.3 are not fulfilled;

Case 2: Force Generation = Marked
Have we already calculated triangulations of n− 1 in the database;

- If we have, then call Algorithm 2.3
- If we have not, the preconditions of Algorithm 2.3 are not fulfilled;

Third, the output results can be downloaded in a CSV format if we mark ”Down-
load Triangulation”.

Example 3.1. Let us illustrate how the application works on generating hexagon trian-
gulations using the already known pentagon triangulations.

First, n = 6;
Preconditions fulfilled: 6 ≥ 4;

Second, the submit button is pressed
Case 1: Force Generation = Not marked

- The application checks if we have the results of T5 in the database:
* If we have, then call Algorithm 2.3

→ Generating triangulations and displaying results in browsers (Figure 3.3)

Fig. 3.3: Generating results for T6
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4. Comparative analysis and experimental results

The main idea of our implementation is to provide an appropriate client-server
web application, in the free open source PHP/MySQL development environment,
utilizing the minimum of resources: an internet browser and an operating system.

For a comparative analysis in presenting the advantages of web technologies, we
implement an additional algorithm from the field of computer graphics (Orbiting
Triangle method [8]).

Both algorithms are based on the usage of the previously generated triangula-
tions for a polygon with a smaller number of vertices.

The execution times with respect to two criteria are presented in Table 4.1. The
table column ”Speedup” shows the quotient of the values contained in the previous
two columns.

The testing is performed on the following configuration*: CPU - Inter(R) Core(TM)
i5-4210U CPU @ 1.70GHz 2.40GHz, RAM memory 8GB, Graphics card: NVIDIA
GeForce 820M.

Table 4.1: The execution times of computing triangulations (in seconds)

n
Number of BM in BM in reading

Speedup
OTM in OTM in reading

Speeduptriangulations generating from DB generating from DB

5 5 0.256 0.003 85.33 0.067 0.001 67.00
6 14 0.345 0.003 115.00 0.088 0.001 88.00
7 42 0.391 0.003 130.33 0.123 0.001 123.00
8 132 0.457 0.004 114.25 0.185 0.002 92.50
9 429 0.756 0.008 94.50 0.927 0.002 463.50

10 1,430 1.606 0.019 84.53 1.524 0.003 508.00
11 4,862 3.915 0.063 62.14 3.182 0.008 397.75
12 16,796 26.657 0.461 57.82 10.081 0.024 420.04
13 58,786 185.566 2.482 74.76 29.713 0.075 396.17
14 208,012 883.726 6.802 129.92 121.749 0.248 490.92
15 742,900 4,498.768 25.697 175.07 536.326 0.975 550.08

5. Conclusion

We implemented the Block method for convex polygon triangulation in the web
environment using the open source software (PHP/MySQL). With this implemen-
tation we presented the advantages of web technologies in preforming a complex
algorithm from computer graphics. The research also contributes to the manner
in which an MySQL database is used for storing the obtained results and utilizing
them for another calculation. As presented in the comparative analysis section, we
can conclude that the advantages of using a database in performing complex algo-
rithms are justified. This way of implementation provides a good basis for further
application of the web technology in computing other algorithms.
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A Important source code of the implementation

Source code for creating a MySQL database:

CREATE DATABASE IF NOT EXISTS triangulation;’;

if ($conn->query($sql)) {

$conn->select_db(’triangulation’);

} else {

die(’Could not create database: ’ . $conn->error . ’<br/>’);

}

The source code for database connection:

// Connection

$conn = new mysqli(’localhost’, ’root’, ’’);

if ($conn->connect_errno) {

die(’Could not connect: (’ . $conn->connect_errno . ’)

’ . $conn->connect_error . ’<br/>’);

}

In our implementation, we use only one table for storing generated triangula-
tions.

CREATE TABLE IF NOT EXISTS Triangulation

(

n int,

T int,

i int,

j int,

INDEX Triangulation_n_idx (n),

INDEX Triangulation_T_idx (T),

INDEX Triangulation_i_idx (i),

INDEX Triangulation_j_idx (j)

);

The source code of the implementation of Algorithm 2.3 - step 3:

// Step 3

// diagonal \delta_{i_1 ,i_3}

$sql .= ’

INSERT INTO Triangulation

SELECT DISTINCT a.n,

a.T,

1 AS i,

’ . ($n-1) . ’ AS j

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=0;

’;

// diagonal \delta_{i_2 ,i_4}

$sql .= ’

INSERT INTO Triangulation

SELECT ’ . $n . ’ AS n,

a.T,



Computing Triangulations of the Convex Polygon in PHP/MySQL Environment 145

a.v AS i,

’ . $n . ’ AS j

FROM

(SELECT a.T,

a.j AS v

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=1

AND a.i=1

UNION

SELECT DISTINCT a.T,

2 AS v

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=1) a

INNER JOIN

(SELECT a.T,

a.i AS v

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=1

AND a.j=’ . ($n-1) . ’

UNION

SELECT DISTINCT a.T,

’ . ($n-2) . ’ AS v

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=1) b

ON a.T=b.T

AND a.v=b.v;

’;

The source code of the implementation of Algorithm 2.3 - step 4:

// Step 4

for ($k = 1; $k <= $n-4; $k++) {

$sql .= ’

INSERT INTO Triangulation

SELECT ’ . $n . ’ AS n,

(CASE a.T

WHEN @curTn_1 THEN @curTn

ELSE @curTn := @curTn + SIGN(@curTn_1 := a.T) * SIGN(@curK := 1)

* SIGN(@lastV := ’ . ($n-2) . ’)

END) + ’ . $N . ’ AS T,

(CASE

WHEN a.i=’ . $n . ’ THEN @lastV

ELSE a.i

END) AS i,

SIGN(

CASE WHEN a.j=’ . ($n-1) . ’ AND @curK = ’ . ($k+1) . ’

THEN @lastV:= a.i

ELSE 1

END) *

(CASE

WHEN a.j=’ . ($n-1) . ’ AND @curK <= ’ . $k . ’

THEN ’ . $n . ’ * SIGN(@curK := @curK+1)
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ELSE a.j

END) AS j

FROM

(SELECT a.T,

a.i,

a.j

FROM Triangulation a

WHERE a.n=’ . ($n-1) . ’

AND a.T IN

(SELECT a.T

FROM Triangulation a

WHERE a.n=’ . ($n-1) . ’

AND a.j=’ . ($n-1) . ’

GROUP BY a.T

HAVING count(a.i)>=’ . $k . ’)

UNION SELECT a.T,

’ . $n . ’ AS i,

’ . $n . ’ AS j

FROM Triangulation a

WHERE a.n=’ . ($n-1) . ’

AND a.j=’ . ($n-1) . ’

GROUP BY a.T

HAVING count(a.i)>=’ . $k . ’ ) a ,

(SELECT @curTn := 0, @curTn_1 := 0, @curK := 0, @lastV := ’ . ($n-2) . ’) b

ORDER BY a.T,

a.i,

a.j;

’;

if ($result = $conn->query(’

SELECT a.T

FROM Triangulation a

WHERE a.n=’ . ($n-1) . ’

AND a.j=’ . ($n-1) . ’

GROUP BY a.T

HAVING count(a.i)>=’ . $k . ’;

’

)) {

$N += $result->num_rows;

$result->close();

}

else {

die(’Could not access Triangulation table: ’ . $conn->error . ’<br/>’);

}

}
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Faculty of Science and Mathematics

Department of Computer Science
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Faculty of Science and Mathematics

Department of Computer Science
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HERMITE-HADAMARD TYPE INEQUALITIES FOR P-CONVEX
FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS

Tekin Toplu, Erhan Set, İmdat İşcan and Selahattin Maden

Abstract. In this paper, the authors establish the Hermite-Hadamard inequality for
p-convex functions via Katugampola fractional integrals, followed by proving a new
identity involving Katugampola fractional integrals. By using this identity, some new
Hermite-Hadamard type inequalities for classes of p-convex functions are obtained.
Keywords: p-convex function, Hermite-Hadamard type inequalities, Katugampola
fractional integrals.

1. Introduction

Definition 1.1. The function f : I ⊂ R → R, is said to be convex, if the following
inequality holds

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

for all x, y ∈ I and t ∈ [0, 1]. We say f is concave if (−f) is convex.

Now we will give a useful inequality for convex functions as below.

Let f : I ⊂→ R be a convex function defined on an interval I of real numbers
and a, b ∈ I with a < b. The following inequality

f

(
a+ b

2

)
≤

1

b− a

b∫

a

f (x) dx ≤
f (a) + f (b)

2
(1.1)

holds. This double inequality is known in the literature as Hermite-Hadamard
integral inequality for convex functions. Both inequalities hold in the reserved
direction, when f is concave. Hermite-Hadamard inequality for convex functions has
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received renewed attention in recent years and a remarkable variety of refinements
and generalizations have been found; for example, see [1, 6, 7, 8, 10, 18, 11] and the
references cited therein.

In [28], Zhang and Wan gave a definition of the p-convex function as follows.

Definition 1.2. Let I be a p-convex set. A function f : I → R is said to be a
p-convex function or belongs to class PC (I) , if

f
(
[txp + (1− t)yp]

1

p

)
≤ tf (x) + (1− t) f (y)

for all x, y ∈ I and t ∈ [0, 1] .

Remark 1.1. [28] An interval I is said to be a p− convex set, if [txp + (1− t)yp]
1

p ∈ I

for all x, y ∈ I and t ∈ [0, 1] ,where p = 2k + 1 or p = n/m, n = 2r + 1, m = 2s + 1 and
k, r, s ∈ N.

Remark 1.2. [9] If I ⊂ (0,∞) be a real interval and p ∈ R\{0}, then for all x, y ∈ I

and t ∈ [0, 1], [txp + (1− t)yp]
1

p ∈ I .

According to Remark 1.2, we can give a different version of the definition of the
p-convex function as below.

Definition 1.3. [9] Let I ⊂ (0,∞) be a real interval and p ∈ R\{0}. A function
f : I → R is said to be a p-convex function, if

f
(
[txp + (1− t)yp]

1

p

)
≤ tf (x) + (1− t) f (y)(1.2)

for all x, y ∈ I and t ∈ [0, 1] . If the inequality is reserved, then f is said to be
p-concave.

According to the definition above, it can easily be seen that for p = 1 and
p = −1, p-convexity reduces to ordinary convexity and harmonically convexity [12]
of functions defined on I ⊂ (0,∞) respectively.

In [3, Theorem 5], if we take I ⊂ (0,∞) , p ∈ R\{0} and h(t) = t, then we have
the following inequalities for p− convex functions.

f : I → R be a p-convex function and a, b ∈ I with a < b. If f ∈ L[a, b], then we
have

f

([
ap + bp

2

] 1

p

)
≤

p

bp − ap

b∫

a

f(x)

x1−p
dx ≤

f (a) + f (b)

2
.(1.3)

For some results related to p-convex functions and its generalizations, we refer the
reader to see now [3, 9, 22, 21, 28].

In [22, Lemma 2.4], if we take I ⊂ (0,∞) and p ∈ R\{0}, then we have the
following Lemma.
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Lemma 1.1. Let f : I → R be a differentiable function on I◦ and a, b ∈ I with

a < b. If f ′ ∈ L[a, b], then we have,

f(a) + f(b)

2
−

p

bp − ap

a∫

b

f(x)

x1−p
dx(1.4)

=
p

bp − ap

1∫

0

1− 2t

[tap + (1− t)bp]
1− 1

p

f ′

(
[tap + (1− t)bp]

1

p

)
dt.

We recall the following special functions and inequality.(see [16, 27] )

(1) The Gamma Function:

The Gamma Γ function is defined by

Γ(z) = Γ(α) =

∫
∞

0

e−ttα−1dt

for all complex numbers z with Re(z) > 0, respectively. The gamma function is a
natural extension of the factorial from integers n to real (and complex) numbers z.

(2) The Beta Function:

β (x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

1∫

0

tx−1 (1− t)y−1
dt, x, y > 0,

(3) The Hypergeometric Function

2F1(a, b; c, z) =
1

β(b, c− b)

1∫

0

tb−1 (1− t)
c−b−1

(1− zt)
−a

dt, c > b > 0, |z| < 1.

Lemma 1.2. [24, 29] For 0 < α < 1 and 0 ≤ a < b, we have

|aα − bα| ≤ (b− a)α .

Definition 1.4. Let [a, b] be a finite interval on the real axis R and f ∈ L[a, b]. The
Riemann-Liouville fractional integrals Jα

a+f and Jα
b−
f of order α > 0 are defined by

Jα
a+f (x) =

1

Γ(α)

x∫

a

(x− t)
α−1

f (t) dt, x > a,

Jα
b−f (x) =

1

Γ(α)

b∫

x

(t− x)
α−1

f (t) dt, x < b

respectively.(see [16])
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In [26] Sarıkaya et al. proved the following theorem for Riemann-Liouville frac-
tional integrals.

Theorem 1.1. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈
L1[a, b]. If f is convex function on [a, b], then the following inequality for fractional

integrals holds:

f

(
a+ b

2

)
≤

Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)] ≤

f(a) + f(b)

2
(1.5)

with α > 0.

Definition 1.5. [17] Let the space Xp
c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) of those complex-

valued Lebesque measurable functions f on [a, b] for which ‖f‖xp
c < ∞, where the

norm is defined by,

‖f‖xp
c −




b∫

a

|tcf(t)|p
dt

t




1/p

< ∞(1.6)

for 1 ≤ p ≤ ∞, c ∈ R and for the case p = ∞,

‖f‖xp
c = ess sup

a≤t≤b

[tc |f(t)|] (c ∈ R) .(1.7)

Katugampola introduced a new fractional which generalizes the Riemann-Liouville
and the Hadamard fractional integrals into a single form as follows.(see [13, 14, 15])

Definition 1.6. Let [a, b] ⊂ R be a finite interval. Then, the left-and right-side
Katugampola fractional integrals of order (α > 0) of f ∈ Xp

c (a, b) are defined by

pIαa+f(x) =
p1−α

Γ(α)

x∫

a

tp−1

(xp − tp)
1−α

f(t)dt and pIαb−f(x) =
p1−α

Γ(α)

b∫

x

tp−1

(tp − xp)
1−α

f(t)dt

with a < x < b and p > 0, if the integral exists.

For more detailed information about fractional integrals and their applications,
we refer the reader to see [4, 5, 2, 20, 23, 25, 19]

The aim of this paper is to establish some new Hermite-Hadamard type inequal-
ities for p− convex function via Katugampola fractional integral.

2. Main Results

Let f : I ⊂ (0,∞) → R be a differentiable function on I◦, the interior of I,
throughout this section,

Kf (α, a, b) =
f (a) + f (b)

2
−

pαΓ(α+ 1)

2 (bp − ap)
α [pIαa+f(b) +p Iαb−f(a)]

will be taken, where a, b ∈ I, α > 0 and Γ is Euler Gamma function.
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Theorem 2.1. Let f : I ⊂ (0,∞) → R be a p-convex function, p > 0, α > 0
and a, b ∈ I with a < b. If f ∈ L[a, b], then the following inequality for fractional

integrals holds:

f

([
ap + bp

2

] 1

p

)
≤

pαΓ (α+ 1)

2 (bp − ap)α
[pIαa+f (b) +p Iαb−f (a)] ≤

f (a) + f (b)

2
.(2.1)

Proof. Since f is p-convex function on [a, b], we have for all x, y ∈ [a, b] (with t = 1
2

in 1.2)

f

([
xp + yp

2

] 1

p

)
≤

f (x) + f (y)

2
.

By choosing x = [tap + (1 − t)bp]
1

p and y = [(1 − t)ap + tbp]
1

p , then we get

2f

([
ap + bp

2

] 1

p

)
≤ f

(
[tap + (1 − t)bp]

1

p

)
+ f

(
[(1− t)ap + tbp]

1

p

)
.(2.2)

Multiplying both sides of the inequality of (2.2) by tα−1 and then integrating the
resulting inequality with respect to t over [0, 1], then we obtain,

2

α
f

([
ap + bp

2

] 1

p

)
≤

1∫

0

tα−1f
(
[tap + (1− t)bp]

1

p

)
dt

+

1∫

0

tα−1f
(
[(1 − t)ap + tbp]

1

p

)
dt

=

a∫

b

(
bp − xp

bp − ap

)α−1

f(x)
pxp−1

ap − bp
dx

+

b∫

a

(
xp − ap

bp − ap

)α−1

f(x)
pxp−1

bp − ap
dx

=
pαΓ(α)

(bp − ap)α
[pIαa+f(b) +p Iαb−f(a)] .

Thus we have

f

([
ap + bp

2

] 1

p

)
≤

pαΓ(α+ 1)

2 (bp − ap)
α [pIαa+f(b) +p Iαb−f(a)] ,

which completes the proof of the the first inequality. For the proof of the second
inequality in (2.1), by using p-convexity of a function f , we can write,

f
(
[tap + (1− t)bp]

1

p

)
≤ tf(a) + (1− t)f(b),
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and

f
(
[(1 − t)ap + tbp]

1

p

)
≤ (1− t)f(a) + tf(b).

By adding these inequalities, then we have,

f
(
[tap + (1− t)bp]

1

p

)
+ f

(
[(1− t)ap + tbp]

1

p

)
≤ f(a) + f(b).(2.3)

Multiplying both sides of the equation (2.3) by tα−1, α > 0 and then integrating
the resulting inequality with t over [0, 1] , we similarly obtain,

pαΓ(α + 1)

2 (bp − ap)
α [pIαa+f(b) +p Iαb−f(a)] ≤

f (a) + f (b)

2
.

So the proof is completed.

Remark 2.1. In Theorem 2.1, if we take p = 1, then the inequality reduces to the
inequality (1.5).

Remark 2.2. In Theorem 2.1, if we take α = 1, then the inequality reduces to the
inequality (1.3).

Lemma 2.1. Let f : I ⊂ (0,∞) → R be a differentiable function mapping with

0 ≤ a < b. If f ′ is differentiable on [a, b], then the following inequality holds:

Kf (α, a, b) =
bp − ap

2p

1∫

0

[(1− t)α − tα] f ′

(
[tap + (1− t)bp]

1

p

)

[tap + (1− t)bp]
1− 1

p

dt.(2.4)

Proof. Let Mp = tap + (1− t)bp. It suffices to note that

Kf(α, a, b)

=
bp − ap

2p

1∫

0

[(1− t)α − tα] f ′

(
[tap + (1− t)bp]

1

p

)

[tap + (1− t)bp]1−
1

p

dt

=
bp − ap

2p

1∫

0

(1− t)αf ′

(
[tap + (1− t)bp]

1

p

)

[tap + (1− t)bp]1−
1

p

dt(2.5)

−
bp − ap

2p

1∫

0

tαf ′

(
[tap + (1− t)bp]

1

p

)

[tap + (1 − t)bp]
1− 1

p

dt

= I1 + I2.

By integrating the part, we have,

I1 = −
1

2




(1− t)
α−1

f
(
[tap + (1 − t)bp]

1

p

)∣∣∣
1

0

+α
1∫
0

(1− t)
α−1

f
(
[tap + (1− t)bp]

1

p

)
dt


 ,(2.6)
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if we take x = [tap + (1− t)bp]
1

p

= −
1

2


−f(b) +

pα

(bp − ap)α

b∫

a

(xp − ap)
α−1

x1−p
f(x)dx




=
f(b)

2
−

pα

2 (bp − ap)
α

b∫

a

(xp − ap)
α−1

x1−p
f(x)dx

=
f(b)

2
−

pαΓ(α+ 1)

2 (bp − ap)
α [pIαb−f(a)]

and similarly we get I2,

(2.7)

I2 =
1

2


 tα−1f

(
[tap + (1− t)bp]

1

p

)∣∣∣
1

0
+ α

1∫

0

tα−1f
(
[tap + (1− t)bp]

1

p

)
dt




=
1

2


−f(a)−

pα

(bp − ap)
α

b∫

a

(bp − ap)
α−1

x1−p
f(x)dx




=
f(a)

2
−

pα

2 (bp − ap)
α

b∫

a

(bp − xp)
α−1

x1−p
f(x)dx

=
f(a)

2
−

pαΓ(α+ 1)

2 (bp − ap)
α [pIαa+f(b)] .

By adding the results of (2.6) and (2.7) side by side in the equation (2.6), we obtain
the inequality (2.4). This completes the proof.

Remark 2.3. Also in the equation (2.4) of Lemma (2.1), if we take specially α = 1, then
the inequality reduces to the equation (1.4).

By using Lemma 2.1, we can have the following fractional inequality.

Theorem 2.2. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦,a, b ∈ I

with a < b, p > 0, and f ′ ∈ L[a, b]. If |f ′|
q
is p-convex on [a, b] for q ≥ 1 then the

following inequality for fractional integrals holds:

(2.8)

|Kf (α, a, b)| ≤
bp − ap

2p
M

1−1/q
1 (α, a, b)

[
M2(α, a, b) |f

′(a)|
q
+M3(α, a, b) |f

′(b)|
q]1/q

where

M1(α, a, b) =
b1−p

α+ 1


 2F1

(
1− 1

p
, 1;α+ 2; 1− ap

bp

)

+2F1

(
1− 1

p
, α+ 1;α+ 2; 1− ap

bp

)
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M2(α, a, b) =
b1−p

α+ 2




1
α+12

F1

(
1− 1

p
, 2;α+ 3; 1− ap

bp

)

+2F1

(
1− 1

p
, α+ 2;α+ 3; 1− ap

bp

)



M3(α, a, b) =
b1−p

α+ 1


 2F1

(
1− 1

p
, 1;α+ 3; 1− ap

bp

)

+ 1
α+12

F1

(
1− 1

p
, α+ 1;α+ 3; 1− ap

bp

)

 .

Proof. From Lemma 2.1 by using the property of the modulus, the power mean
inequality and the p-convexity of |f ′|

q
, then we have,

|Kf (α, a, b)|

≤
bp − ap

2p

1∫

0

|(1 − t)α − tα|
∣∣∣f ′

(
[tap + (1− t)bp]

1

p

)∣∣∣

[tap + (1− t)bp]
1− 1

p

dt(2.9)

≤
bp − ap

2p




1∫

0

|(1− t)α − tα|

[tap + (1− t)bp]
1− 1

p

dt




1−1/q

×




1∫

0

|(1− t)α − tα|
∣∣∣f ′

(
[tap + (1 − t)bp]

1

p

)∣∣∣
q

[tap + (1− t)bp]1−
1

p

dt




1/q

≤
bp − ap

2p




1∫

0

[(1− t)α + tα]

[tap + (1− t)bp]
1− 1

p

dt




1−1/q

×




1∫

0

[(1− t)α + tα]

[tap + (1− t)bp]
1− 1

p

[
t |f ′(a)|

q
+ (1− t)t |f ′(b)|

q]
dt




1/q

=
bp − ap

2p
M

1−1/q
1 (α, a, b)

[
M2(α, a, b) |f

′(a)|
q
+M3(α, a, b) |f

′(b)|
q]1/q

,(2.10)

where, by simple computation, we obtain,

M1(α, a, b) =

1∫

0

[(1− t)α + tα]

[tap + (1− t)bp]1−
1

p

dt

=
b1−p

α+ 1


 2F1

(
1− 1

p
, 1;α+ 2; 1− ap

bp

)

+2F1

(
1− 1

p
, α+ 1;α+ 2; 1− ap

bp

)

(2.11)

M2(α, a, b) =

1∫

0

[(1− t)α + tα]

[tap + (1− t)bp]
1− 1

p

tdt
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=
b1−p

α+ 2




1
α+12

F1

(
1− 1

p
, 2;α+ 3; 1− ap

bp

)

+2F1

(
1− 1

p
, α+ 2;α+ 3; 1− ap

bp

)

(2.12)

M3(α, a, b) =

1∫

0

[(1− t)α + tα]

[tap + (1− t)bp]
1− 1

p

(1− t)dt

=
b1−p

α+ 1


 2F1

(
1− 1

p
, 1;α+ 3; 1− ap

bp

)

+ 1
α+12

F1

(
1− 1

p
, α+ 1;α+ 3; 1− ap

bp

)

 .(2.13)

Then by using the results from the equations (2.11)-(2.13) in the equation (2.10),
we have desired result (2.9). This completes the proof.

Remark 2.4. If we specially take α = 1, in inequality 2.9, then the inequality reduces
to [22, Theorem 3.2].

When 0 < α ≤ 1 by using Lemma 1.2 and Lemma 2.1, we have another fractional
integral inequality for p convex functions as follows.

Theorem 2.3. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦,a, b ∈ I

with a < b, p > 0, and f ′ ∈ L[a, b]. If |f ′|
q
is p-convex on [a, b] for q ≥ 1, then the

following inequality for fractional integrals holds:

(2.14)

|Kf (α, a, b)| ≤
bp−ap

2p M
1−1/q
4 (α, a, b)

[
M5(α, a, b) |f

′(a)|
q
+M6(α, a, b) |f

′(b)|
q]1/q

where

M4(α, a, b) =
b1−p

α+ 1




2F1

(
1− 1

p
, α+ 1;α+ 2; 1− ap

bp

)

−2F1

(
1− 1

p
, 1;α+ 2; 1− ap

bp

)

+2F1

(
1− 1

p
, 1;α+ 2; 1

2

(
1− ap

bp

))




M5(α, a, b) =
b1−p

α+ 2




2F1

(
1− 1

p
, α+ 2;α+ 3; 1− ap

bp

)

− 1
α+12

F1

(
1− 1

p
, 2;α+ 3; 1− ap

bp

)

+ 1
2(α+1) 2

F1

(
1− 1

p
, 2;α+ 3; 1

2

(
1− ap

bp

))




M6(α, a, b) =
b1−p

α+ 2




1
α+12

F1

(
1− 1

p
, α+ 1;α+ 3; 1− ap

bp

)

−2F1

(
1− 1

p
, 1;α+ 3; 1− ap

bp

)

+2F1

(
1− 1

p
, 1;α+ 2; 1

2

(
1− ap

bp

))

− 1
2(α+1) 2

F1

(
1− 1

p
, 2;α+ 3; 1

2

(
1− ap

bp

))




and 0 < α ≤ 1.
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Proof. From Lemma 2.1 using the property of the modulus, the power mean in-
equality and the p-convexity of |f ′|

q
, we have,

|Kf(α, a, b)|

≤
bp − ap

2p

1∫

0

|(1− t)α − tα|
∣∣∣f ′

(
[tap + (1 − t)bp]

1

p

)∣∣∣

[tap + (1− t)bp]
1− 1

p

dt(2.15)

≤
bp − ap

2p




1∫

0

|(1 − t)α − tα|

[tap + (1 − t)bp]
1− 1

p

dt




1−1/q

×




1∫

0

|(1− t)α − tα|
∣∣∣f ′

(
[tap + (1− t)bp]

1

p

)∣∣∣
q

[tap + (1− t)bp]
1− 1

p

dt




1/q

(2.16)

≤
bp − ap

2p




1∫

0

|(1 − t)α − tα|

[tap + (1 − t)bp]
1− 1

p

dt




1−1/q

×




1∫

0

|(1 − t)α − tα|

[tap + (1 − t)bp]
1− 1

p

[
t |f ′(a)|

q
+ (1− t)t |f ′(b)|

q]
dt




1/q

=
bp − ap

2p
K

1−1/q
4 (α, a, b)

[
K5(α, a, b) |f

′(a)|
q
+K6(α, a, b) |f

′(b)|
q]1/q

,(2.17)

where by using Lemma 1.2 and by simple calculations of integrals, we obtain,

K4 =

1∫

0

|(1− t)α − tα|

[tap + (1− t)bp]
1− 1

p

dt

=

1/2∫

0

(1− t)α − tα

[tap + (1− t)bp]1−
1

p

dt+

1∫

1/2

tα − (1 − t)α

[tap + (1− t)bp]1−
1

p

dt

=

1∫

0

tα − (1 − t)α

[tap + (1− t)bp]
1− 1

p

dt+ 2

1/2∫

0

(1− t)α − tα

[tap + (1− t)bp]
1− 1

p

dt

≤

1∫

0

tα

[tap + (1− t)bp]
1− 1

p

dt−

1∫

0

(1− t)α

[tap + (1− t)bp]
1− 1

p

dt

+2

1/2∫

0

(1 − 2t)α

[tap + (1− t)bp]
1− 1

p

dt
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= M4(α, a, b) =
b1−p

α+ 1




2F1

(
1− 1

p
, α+ 1;α+ 2; 1− ap

bp

)
−

2F1

(
1− 1

p
, 1;α+ 2; 1− ap

bp

)

+2F1

(
1− 1

p
, 1;α+ 2; 12

(
1− ap

bp

))


 ,(2.18)

K5 =

1∫

0

|(1− t)α − tα|

[tap + (1− t)bp]1−
1

p

tdt

≤

1∫

0

tα+1

[tap + (1− t)bp]
1− 1

p

dt−

1∫

0

(1− t)α

[tap + (1 − t)bp]
1− 1

p

tdt

+2

1/2∫

0

(1− 2t)α

[tap + (1− t)bp]
1− 1

p

tdt

= M5(α, a, b) =
b1−p

α+ 2




2F1

(
1− 1

p
, α+ 2;α+ 3; 1− ap

bp

)

− 1
α+12

F1

(
1− 1

p
, 2;α+ 3; 1− ap

bp

)

+ 1
2(α+1) 2

F1

(
1− 1

p
, 2;α+ 3; 12

(
1− ap

bp

))


 ,(2.19)

K6 =

1∫

0

|(1− t)α − tα|

[tap + (1− t)bp]
1− 1

p

(1 − t)dt

≤

1∫

0

tα

[tap + (1− t)bp]
1− 1

p

(1 − t)dt−

1∫

0

(1− t)α+1

[tap + (1− t)bp]
1− 1

p

dt

+2

1/2∫

0

(1− 2t)α

[tap + (1− t)bp]
1− 1

p

(1− t)dt

= M6(α, a, b) =
b1−p

α+ 2




1
α+12

F1

(
1− 1

p
, α+ 1;α+ 3; 1− ap

bp

)

−2F1

(
1− 1

p
, 1;α+ 3; 1− ap

bp

)

+2F1

(
1− 1

p
, 1;α+ 2; 12

(
1− ap

bp

))

− 1
2(α+1) 2

F1

(
1− 1

p
, 2;α+ 3; 12

(
1− ap

bp

))



.(2.20)

Then by using the results from the equations (2.18)-(2.20), we have the desired
inequality (2.15). This completes the proof.



160 T. Toplu, E. Set, İ. İşcan and S. Maden

Theorem 2.4. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦,a, b ∈ I

with a < b, p > 0, and f ′ ∈ L[a, b]. If |f ′|
q
is p-convex on [a, b] for q ≥ 1, then the

following inequality for fractional integrals holds:

|Kf (α, a, b)| ≤
bp − ap

2p
M

1/r
7 (α, a, b)

(
1

αq + 1

)1/q (
|f ′(a)|

q
+ |f ′(b)|

q

2

)1/q

(2.21)

where

M7(α, a, b) =
b1−p

2 2
F1

(
r −

r

p
, 1; 2; 1−

ap

bp

)

and 1/r + 1/q = 1.

Proof. From Lemma 1.2 and Lemma 2.1, by using the property of the modulus, the
Hölder inequality and the p-convexity of |f ′|

q
, we obtain,

|Kf(α, a, b)|

≤
bp − ap

2p

1∫

0

|(1− t)α − tα|
∣∣∣f ′

(
[tap + (1− t)bp]

1

p

)∣∣∣

[tap + (1− t)bp]1−
1

p

dt

≤
bp − ap

2p




1∫

0

1

[tap + (1 − t)bp]
r− r

p

dt




1/r

×




1∫

0

|(1 − t)α − tα|
q
∣∣∣f ′

(
[tap + (1 − t)bp]

1

p

)∣∣∣
q

dt




1/q

≤
bp − ap

2p




1∫

0

1

[tap + (1 − t)bp]
r− r

p

dt




1/r

(2.22)

×




1∫

0

|1− 2t|αq
[
t |f ′(a)|

q
+ (1− t)t |f ′(b)|

q]
dt




1/q

=
bp − ap

2p
M

1/r
7 (α, a, b)

(
1

αq + 1

)1/q (
|f ′(a)|

q
+ |f ′(b)|

q

2

)1/q

,(2.23)

after calculations of integrals in the inequality (2.21) as follows,

M7(α, a, b) =

1∫

0

1

[tap + (1 − t)bp]
r− r

p

dt =
b1−p

2 2
F1

(
r −

r

p
, 1; 2; 1−

ap

bp

)
(2.24)
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1∫

0

|1− 2t|
αq

tdt =

1/2∫

0

(1− 2t)
αq

tdt+

1∫

1/2

(2t− 1)
αq

tdt =
1

2(αq + 1)
(2.25)

1∫

0

|1− 2t|αq (1− t)dt =
1

2(αq + 1)
.(2.26)

Then by using the results from the equations (2.24)-(2.26) in the equation (2.23),
then we have the desired result (2.21). This the completes the proof.

Theorem 2.5. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦,a, b ∈ I

with a < b, p > 0, and f ′ ∈ L[a, b]. If |f ′|
q
is p-convex on [a, b] for q ≥ 1, then the

following inequality for fractional integrals holds:

(2.27)

|Kf (α, a, b)| ≤
bp−ap

2p

(
M

1/r
8 (α, a, b) +M

1/r
9 (α, a, b)

)(
|f ′(a)|

q
+|f ′(b)|

q

2

)1/q

where

M8(α, a, b) =
b(1−p)r

αp+ 1 2

F1

(
r −

r

p
, 1;αr + 2; 1−

ap

bp

)

M9(α, a, b) =
b(1−p)r

αp+ 1 2

F1

(
r −

r

p
, αr + 1;αr + 2; 1−

ap

bp

)

and 1/r + 1/q = 1.

Proof. From Lemma 2.1, by using the property of the modulus, the Hölder inequal-
ity and the p-convexity of |f ′|

q
, then we obtain,

|Kf (α, a, b)|

≤
bp − ap

2p

1∫

0

|(1− t)α − tα|
∣∣∣f ′

(
[tap + (1− t)bp]

1

p

)∣∣∣

[tap + (1 − t)bp]
1− 1

p

dt

≤
bp − ap

2p





(
1∫
0

(1−t)αr

[tap+(1−t)bp]
r− r

p
dt

)1/r ( 1∫
0

∣∣∣f ′

(
[tap + (1 − t)bp]

1

p

)∣∣∣
q

dt

) 1

q

+

(
1∫
0

tαr

[tap+(1−t)bp]
r− r

p
dt

)1/r ( 1∫
0

∣∣∣f ′

(
[tap + (1− t)bp]

1

p

)∣∣∣
q

dt

) 1

q





(2.28)

≤
bp − ap

2p

(
M

1/r
8 (α, a, b) +M

1/r
9 (α, a, b)

)



1∫

0

t |f ′(a)|
q
+ (1− t) |f ′(b)|

q
dt




1

q

(2.29)

=
bp − ap

2p

(
M

1/r
8 (α, a, b) +M

1/r
9 (α, a, b)

)( |f ′(a)|
q
+ |f ′(b)|

q

2

)1/q

,
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after calculations of integrals in the inequality (2.28) as follows,

(2.30)

M8(α, a, b) =
1∫
0

(1−t)αr

[tap+(1−t)bp]
r− r

p
dt = b(1−p)r

αp+1 2
F1

(
r − r

p
, 1;αr + 2; 1− ap

bp

)

(2.31)

M9(α, a, b) =
1∫
0

tαr

[tap+(1−t)bp]
r− r

p
dt = b(1−p)r

αp+1 2
F1

(
r − r

p
, αr + 1;αr + 2; 1− ap

bp

)
.

Then by using the results from the equations (2.31)-(2.32) in the equation (2.29),
then we have the desired inequality (2.28). This completes the proof.
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