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ON mTH-COMMUTATORS AND ANTI-COMMUTATORS

INVOLVING GENERALIZED DERIVATIONS IN PRIME RINGS

Mohd Arif Raza

c© 2019 by University of Nǐs, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. In this paper, we study the mth-commutator and anti-commutator involving
generalized derivations on some suitable subsets of rings. We attain the information
about the structure of rings and the behaviour of the generalized derivation in the form
of multiplication by some specific element of the Utumi quotient ring which satisfies
certain differential identities.
Keywords: prime ring; Generalized derivation, Generalized polynomial identity.

1. Motivation

It was shown by Herstein [10] that if d is a nonzero derivation of R, a prime ring
with a characteristic different from 2 such that [d(x), d(y)] = 0 for all x, y ∈ R, then
R is commutative. Later, Bell and Daif [5] proved that if R is a semiprime ring, I is
a nonzero right ideal ofR and d is a derivation ofR such that [d(x), d(y)] = [x, y] for
all x, y ∈ I, then I ⊆ Z(R). Motivated by the above result, Huang [11] obtained
the commutativity of prime ring R with characteristic different from 2 satisfies
[d(x), d(y)]m = [x, y]n, for all x, y ∈ I, a nonzero ideal of R, where 1 ≤ m,n ∈
Z
+. In [2], Ashraf and Rehman studied anti-commutator involving derivation, i.e.,

d(x) ◦ d(y) = x ◦ y and obtained the same conclusion.

On the other hand, Daif and Bell [7] proved that if R is a semiprime ring and
d is a nonzero derivation of R such that d([x, y]) = [x, y] for all x, y ∈ R, then R is
commutative. In this direction, Ashraf and Rehman [2] discussed the commutativity
of prime ring R whenever R satisfies d(x◦y) = x◦y for all x, y ∈ I, a nonzero ideal
of R. In recent years, several algebraist studied various generalizations of above
mentioned identities and obtained the structure of rings and behaviour of derivations
and generalized derivations on rings (see [1, 8, 12, 19, 20, 21] and references therein).

Received November 12, 2018; accepted March 12, 2019
2010 Mathematics Subject Classification. Primary 16N20; Secondary 16W25
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In this note we shall examine the action of derivations and generalized deriva-
tions having m-th commutator and anti-commutator on prime rings. More pre-
cisely, we study the differential identities which involves both commutator and anti-
commutator on some appropriate subset of rings and obtain the information about
the structure of rings and the behaviour of generalized derivation in the form of
multiplication by some specific element of Utumi quotient ring.

Throughout this note, unless specifically stated, R denotes a prime ring, i.e., for
a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0. A ring R is said to be a
left (right) faithful ring if for a ∈ R, aR = (0) (Ra = (0) resp.) implies a = 0. For
a left faithful ring R, the right Utumi quotient ring of R can be characterized as
the ring Ur(R) (up to isomorphisms fixing R) satisfying the following properties:
(1) R is a subring of Ur(R); (2) For each a ∈ Ur(R), there exists a dense right
ideal ρ of R such that aρ ⊆ R; (3) If a ∈ Ur(R) and aρ = 0 for some dense right
ideal ρ of R, then a = 0; (4) For any dense right ideal ρ of R and for any right
R-module map ϕ : ρR → RR, there exists a ∈ Ur(R) such that ϕ(x) = ax for all
x ∈ ρ. Analogously, for a right faithful ring R we may define Ul(R) the left Utumi
quotient ring of R in terms of dense left ideals of R. Let R be a left and right
faithful ring. The two-sided Utumi quotient ring U of R is the subring of Ur(R)
defined as follows: U = {x ∈ Ur(R)|λx ⊆ R for some dense left ideal λ of R}. In [6,
Theorem 2], Chuang proved that if R is a prime ring, then each dense right ideal
and U satisfy the same generalized polynomial identities (GPIs) with coefficients in
U . In any case, when R is a prime ring, all we need about U is that (1) R ⊆ U ;
(2) U is a prime ring; (3) The center of U , denoted by C, is a field which is called
the extended centroid of R. The axiomatic formulations and the properties of this
quotient ring U can be found in [3]. For any x, y ∈ R, the symbol [x, y] and x ◦ y
stands for the commutator xy − yx and anti-commutator xy + yx, respectively. we
set x ◦0 y = x, x ◦1 y = x ◦ y = xy + yx, and inductively x ◦m y = (x ◦m−1 y) ◦ y
for m > 1. Again we set [x, y]0 = x, [x, y]1 = [x, y] = xy − yx and inductively
[x, y]m = [[x, y]m−1, y] for m > 1. An additive mapping d : R → R is called a
derivation on R if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. In particular, d is
an inner derivation induced by an element q ∈ R if d(x) = [q, x] holds for all x ∈ R.
An additive mapping F : R → R is called generalized derivation of R if there exists
a derivation d of R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R.

2. Main results

We begin our discussion with the following remark as it is very crucial in developing
the proof for our main results.

Remark 2.1. ([4, Lemma 7.1 ]) Let DM be a left vector space over a division ring

D with dimDM ≥ 2 and T ∈ End(M). If x and T x are D-dependent for every

x ∈ M, then there exists λ ∈ D such that T x = λx for all x ∈ M.

Now we prove our main results.
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Theorem 2.1. Let 1 ≤ m,n ∈ Z
+. Next, let R be a prime ring of characteristic

different from 2, I be a nonzero ideal of R and F be a nonzero generalized derivation

associated with a derivation d of R. If F ([x, y]m) = d(x) ◦n d(y) for all x, y ∈ I,
then either R is commutative or d = 0 and there exist a ∈ U such that F (x) = ax
for all x ∈ R.

Proof. By [16, Theorem 3], there exists an element a ∈ U and a derivation d on
U such that F (x) = ax + d(x) for all x ∈ R. In view of our hypothesis, we have
a([x, y]m) + d([x, y]m) = d(x) ◦n d(y) which is rewritten as

a ([x, y]m) +

m
∑

k=1

(−1)k
(

m

k

)





∑

i+j=k−1

yid(y)yj



 xym−k

+

m
∑

k=0

(−1)k
(

m

k

)

ykd(x)ym−k

+

m−1
∑

k=0

(−1)k
(

m

k

)

ykx

(

∑

r+s=m−k−1

yrd(y)ys

)

= d(x) ◦n d(y)

for all x, y ∈ I. In the light of Kharchenko’s theory [14], we split our proof into
two cases. Firstly, we assume that d is an U-inner derivation induced by an element
q ∈ U , i.e., d(x) = [q, x] for all x ∈ R, then we have a(x ◦m y) + [q, x ◦m y] =
[[q, x], [q, y]]n for all x, y ∈ I. By Chuang [6, Theorem 1], the last identity is also
satisfied by U . If q ∈ C, then a(x ◦m y) + [q, x ◦m y] = [[q, x], [q, y]]n reduces to
a(x◦m y) = 0 for all x, y ∈ U . This a polynomial identity and by Lanski[15, Lemma
2], there exists a field F such that U ⊆ Mk(F), the ring of k×k matrices over a field
F, where k ≥ 1. Moreover, U and Mk(F) satisfy the same polynomial identity[15,
Lemma 1], i.e., a(x ◦m y) = 0 for all x, y ∈ Mk(F). Now, we assuming x = e12
and y = e22, we have 0 = ae12 which implies that a11 = a21 = 0. Similarly,
assuming x = e21 and y = e11 we can prove that a22 = a12 = 0, i.e., a = 0.
Thus in all, a(x ◦m y) + [q, x ◦m y] = [[q, x], [q, y]]n is a non-trivial generalized
polynomial identity (GPI) as q /∈ C. If the center C of U is infinite, then we have
a(x ◦m y) + [q, x ◦m y] = [[q, x], [q, y]]n for all x, y ∈ U ⊗C C, where C is algebraic
closure of C. Since both U and U ⊗C C are prime and centrally closed [9, Theorem
2.5 and Theorem 3.5], we may replace R by U or U ⊗C C according as C is finite
or infinite. Thus, we may assume that R is centrally closed over C (i.e., RC = R)
which is either finite or algebraically closed and a(x◦my)+[q, x◦my] = [[q, x], [q, y]]n
for all x, y ∈ R. By Martindale [17, Theorem 3], RC (and so R) is a primitive ring
having nonzero socle H with C as the associated division ring. Hence, by Jacobson’s
theorem [13, p.75], R is isomorphic to a dense ring of linear transformations of
some vector space V over C and H consists of finite rank linear transformations
in R. If V is finite dimensional over C, then the density of R on V implies that
R ∼= Mm(C), where m = dimCV .

Suppose that dimCV ≥ 3 such that v and qv are linearly C-independent for all
v ∈ V . By density of R, there exists u ∈ V such that v, qv and u are linearly
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C-independent and x, y ∈ R such that

xv = 0, xqv = −u, xu = v, xqu = 0
yv = 0, yqv = −v, yu = 0, yqu = −u.

Applying density theorem, we see that

0 = (a([x, y]m) + [q, x] ◦m [q, y]− [q, [x, y]n])v = 2mu,

a contradiction, as char(R) 6= 2. Hence, we conclude that {v, qv} is linearly C-
dependent for all v ∈ V . Thus, by Remark 2.1, there exists λ ∈ C such that qv = vλ
for any v ∈ V .

For r ∈ R, v ∈ V , we can write, qv = vλ, r(qv) = r(vλ), and also q(rv) = (rv)λ.
Thus 0 = [q, r]v for any v ∈ V , i.e., [q, r]V = 0. Since V is a left faithful irreducible
R-module, we have [q, r] = 0 for all r ∈ R, i.e., q ∈ Z(R) which gives d = 0 and
hence F (x) = ax for all x ∈ R.

Now suppose that dimCV ≤ 2. In this case R is a simple GPI-ring with 1 and
so it is a central simple algebra finite dimensional over its center. By Lanski[15,
Lemma 2], it follows that there exists a suitable field F such that R ⊆ Mm(F)
the ring of m×m matrices over F and moreover, Mm(F) satisfy the same GPI as
R. Assume m ≥ 3, then by the same argument as above we get the conclusion.
Obviously if m = 1, then R is commutative. Thus we may assume that m = 2,
i.e., R ⊆ M2(F), where M2(F) satisfies a([x, y]m) + [q, x] ◦m [q, y] − [q, [x, y]n] =
0. Denote by eij the usual unit matrix with 1 at (i, j)-entry and zero elsewhere.
By putting x = y = e12 and q =

∑

i,j

qijeij in the above identity and then right

multiplying by e12, one can easily get (e12q)
m+1e12 = 0. It follows easily that

(

0 qm+1

21

0 0

)

= 0 implies that q21 = 0. Similarly we can get q12 = 0. Thus in

all, we see that q is a diagonal matrix in M2(F). Let ψ ∈ Aut(M2(F)). Since
ψ(a)([ψ(x), ψ(y)]m) + [ψ(q), ψ(x)] ◦m [ψ(q), ψ(y)] − [ψ(q), [ψ(x), ψ(y)]n] = 0, ψ(q)
must be a diagonal matrix in M2(F). In particular, let ψ(x) = (1 − eij)x(1 + eij)
for i 6= j. Then ψ(q) = q+(qii − qjj)eij , i.e., qii = qjj for i 6= j. This implies that q
is central in M2(F), which leads to d = 0. Now lastly, we assume that d is U-outer
derivation, then I satisfies the polynomial identity

a ([x, y]m) +

m
∑

k=1

(−1)k
(

m

k

)





∑

i+j=k−1

yizyj



 xym−k +

m
∑

k=0

(−1)k
(

m

k

)

ykwym−k

+
m−1
∑

k=0

(−1)k
(

m

k

)

ykx

(

∑

r+s=m−k−1

yrzys

)

= w ◦n z

for all x, y, z, w ∈ I. In particular, if we take x = z = 0, then I satisfies the
polynomial identity

m
∑

k=0

(−1)k
(

m

k

)

ykwym−k = 0
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for all y, w ∈ I. That is, [w, y]m = 0 for all w, y ∈ I, which can be written as
[Iw(y), y]m−1 = 0 for all w, y ∈ I, where Iw(y) is an inner derivation determined by
w. By Lanski [15, Theorem 1], either R is commutative or Iw = 0 i.e., I ⊆ Z(R)
in which case R is also commutative by Mayne [18, Lemma 3].

Theorem 2.2. Let 1 ≤ m,n ∈ Z
+. Next, let R be a prime ring of characteristic

different from 2, I be a nonzero ideal of R and F be a nonzero generalized derivation

associated with a derivation d of R. If F (x ◦m y) = [d(x), d(y)]n for all x, y ∈ I,
then either R is commutative or d = 0 and there exists a ∈ U such that F (x) = ax
for all x ∈ R.

Proof. By the given hypothesis and [16, Theorem 3], we have a(x◦my)+d(x◦my) =
[d(x), d(y)]n which is rewritten as

a (x ◦m y) +

m
∑

k=1

(

m

k

)





∑

i+j=k−1

yid(y)yj



xym−k +

m
∑

k=0

(

m

k

)

ykd(x)ym−k

+

m−1
∑

k=0

(

m

k

)

ykx

(

∑

r+s=m−k−1

yrd(y)ys

)

= [d(x), d(y)]n

for all x, y ∈ I. In view of Kharchenko’s theory [14], we divide the proof into two
cases:

Case 1. If d is U-outer, then I satisfies the polynomial identity

a (x ◦m y) +
m
∑

k=1

(

m

k

)





∑

i+j=k−1

yizyj



xym−k +
m
∑

k=0

(

m

k

)

ykwym−k

+

m−1
∑

k=0

(

m

k

)

ykx

(

∑

r+s=m−k−1

yrzys

)

= [w, z]n

for all x, y, z, w ∈ I. In particular if we take x = z = 0, then I satisfies the
polynomial identity

m
∑

k=0

(

m

k

)

ykwym−k = 0

for all y, w ∈ I. That is w◦my = 0 for all w, y ∈ I. Using the same argument as used
in Theorem 2.1 and by choosing w = e12, y = e11, we see that w ◦m y = e12 6= 0, a
contradiction.

Case 2. If d is U-inner derivation induced by an element q ∈ U , i.e., d(x) = [q, x]
for all x ∈ R, then we have a(x ◦m y) + [q, x ◦m y] = [[q, x], [q, y]]n for all x, y ∈ I.
By Chuang [6, Theorem 1], I and U satisfy same generalized polynomial identities
(GPIs), i.e., a(x ◦m y) + [q, x ◦m y] = [[q, x], [q, y]]n for all x, y ∈ U . Using the
similar techniques with necessary variations as used in the proof of Theorem 2.1,
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we see that if V is finite dimensional over C, then the density of R on V implies that
R ∼= Mm(C), where m = dimCV .

Suppose that dimCV ≥ 2. Now, we want to show that v and qv are linearly
C-dependent for all v ∈ V . If qv = 0, then {v, qv} is linearly C-dependent. Suppose
on the contrary that v and qv are linearly C-independent for some v ∈ V .

If q2v /∈ SpanC{v, qv}, then the set {v, qv, q2v} is linearly C-independent. Since v
and qv are linearly C-independent, by the density of R, there exist x, y ∈ R such
that

xv = v, xqv = 0, xq2v = 0;
yv = 0, yqv = −v, yq2v = 0.

When m = n = 1, then we see that

0 = (a(x ◦m y) + [q, x ◦m y]− [[q, x], [q, y]]n)v = 2qv − v.

Moreover, when m,n > 1, we have

0 = (a(x ◦m y) + [q, x ◦m y] = [[q, x], [q, y]]n)v = 2mqv.

In both the cases we get a contradiction as characteristic of R is different from 2.

If q2v ∈ SpanC{v, qv}, then q
2v = vβ + qvγ for some β, γ ∈ C. By the density

of R, there exist x, y ∈ R such that

xv = v, xqv = 0;
yv = 0, yqv = −v.

For this, first we take m = n = 1, we see that

0 = (a(x ◦m y) + [q, x ◦m y]− [[q, x], [q, y]]n)v = 2qv − vγ − v.

Now, when m,n > 1, we have

0 = (a(x ◦m y) + [q, x ◦m y]− [[q, x], [q, y]]n)v = 2mqv − 2m−1vγ.

Using an argument similar to that mentioned above, we get a contradiction in both
cases. So, we conclude that {v, qv} is linearly C-dependent for all v ∈ V . Thus, by
Remark 2.1, there exists λ ∈ C such that qv = vλ for any v ∈ V .

For r ∈ R, v ∈ V , we can write, qv = vλ, r(qv) = r(vλ), and also q(rv) = (rv)λ.
Thus 0 = [q, r]v for any v ∈ V , i.e., [q, r]V = 0. Since V is a left faithful irreducible
R-module, we have [q, r] = 0 for all r ∈ R, i.e., q ∈ Z(R) and hence d = 0. This
completes the proof.

In view of Theorem 2.1 and Theorem 2.2, we can write the following corollaries
(proofs are omitted for sake of brevity)



On mth-Commutators and Anti-commutators 397

Corollary 2.1. Let 1 ≤ m ∈ Z
+. Next, let R be a prime ring of a characteristic

different from 2, I be a nonzero ideal of R and d be a derivation of R. If d(x) ◦m
d(y) = 0 for all x, y ∈ I, then either R is commutative or d = 0.

Corollary 2.2. Let 1 ≤ m ∈ Z. Next, let R be a prime ring of a characteristic

different from 2, I be a nonzero ideal of R and d be a derivation of R. If [d(x) ◦
d(y)]m = 0 for all x, y ∈ I, then either R is commutative or d = 0.

Acknowledgements: The author would like to thank the referee for his/her valu-
able suggestions.
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Abstract. In this paper, we establish sharp maximal function inequalities for the
Toeplitz-type operator associated with the singular integral operator with a variable
Calderón-Zygmund kernel. As an application, we obtain the boundedness of the oper-
ator on Lebesgue, Morrey and Triebel-Lizorkin spaces.
Keywords: function inequalities; Toeplitz-type operator; singular integral operator.

1. Introduction and Preliminaries

As the development of singular integral operators(see [6, 21]), their commutators
have been well studied. In [3, 19, 20], the authors prove that the commutators gen-
erated by singular integral operators and BMO functions are bounded on Lp(Rn)
for 1 < p < ∞. Chanillo (see [2]) proves a similar result when singular integral op-
erators are replaced by fractional integral operators. In [7, 16], the boundedness for
the commutators generated by singular integral operators and Lipschitz functions
on Triebel-Lizorkin and Lp(Rn)(1 < p < ∞) spaces are obtained. In [1], Calderón
and Zygmund introduce some singular integral operators with a variable kernel and
discuss their boundedness. In [11, 12, 13, 22], the authors obtain the boundedness
for the commutators generated by singular integral operators with a variable kernel
and BMO functions. In [14], the authors prove the boundedness for the multilinear
oscillatory singular integral operators generated by operators and BMO functions.
In [8, 9], some Toeplitz-type operators associated with singular integral operators
and strongly singular integral operators are introduced, and the boundedness for the
operators generated by BMO and Lipschitz functions are obtained. In this paper,
we will study the Toeplitz-type operator generated by the singular integral operator
with a variable Calderón-Zygmund kernel and Lipschitz and BMO functions.
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First, let us introduce some notations. Throughout this paper, Q will denote a
cube of Rn with sides parallel to the axes. For any locally integrable function f ,
the sharp maximal function of f is defined by

M#(f)(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)− fQ|dy,

where, and in what follows, fQ = |Q|−1
∫

Q
f(x)dx. It is well-known that (see [6, 21])

M#(f)(x) ≈ sup
Q∋x

inf
c∈C

1

|Q|

∫

Q

|f(y)− c|dy.

We say that f belongs to BMO(Rn) if M#(f) belongs to L∞(Rn) and define
||f ||BMO = ||M#(f)||L∞ . It has been known that (see [21])

||f − f2kQ||BMO 6 Ck||f ||BMO.

Let

M(f)(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)|dy.

For η > 0, let Mη(f)(x) = M(|f |η)1/η(x).

For 0 < η < n and 1 ≤ r < ∞, set

Mη,r(f)(x) = sup
Q∋x

(

1

|Q|1−rη/n

∫

Q

|f(y)|rdy

)1/r

.

The Ap weight is defined by (see [6])

Ap =

{

w ∈ L1
loc(R

n) : sup
Q

(

1

|Q|

∫

Q

w(x)dx

)(

1

|Q|

∫

Q

w(x)−1/(p−1)dx

)p−1

< ∞

}

,

1 < p < ∞. and

A1 = {w ∈ Lp
loc(R

n) : M(w)(x) 6 Cw(x), a.e.}.

For β > 0 and p > 1, let Ḟ β,∞
p (Rn) be a homogeneous Triebel-Lizorkin space(see

[16]).

For β > 0, the Lipschitz space Lipβ(R
n) is the space of functions f such that

||f ||Lipβ
= sup

x,y∈Rn

x 6=y

|f(x)− f(y)|

|x− y|β
< ∞.

Definition 1. Let ϕ be a positive, increasing function on R+ and there exists
a constant D > 0 such that

ϕ(2t) 6 Dϕ(t) for t > 0.
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Let f be a locally integrable function on Rn. Set, for 1 6 p < ∞,

||f ||Lp,ϕ = sup
x∈Rn, d>0

(

1

ϕ(d)

∫

Q(x,d)

|f(y)|pdy

)1/p

,

where Q(x, d) = {y ∈ Rn : |x− y| < d}. The generalized Morrey space is defined by

Lp,ϕ(Rn) = {f ∈ L1
loc(R

n) : ||f ||Lp,ϕ < ∞}.

If ϕ(d) = dδ, δ > 0, then Lp,ϕ(Rn) = Lp,δ(Rn), which is the classical Morrey
spaces (see [17, 18]). If ϕ(d) = 1, then Lp,ϕ(Rn) = Lp(Rn), which is the Lebesgue
spaces.

As the Morrey space may be considered as an extension of the Lebesgue space,
it is natural and important to study the boundedness of the operator on the Morrey
spaces (see [4, 5, 10, 15]).

In this paper, we will study some singular integral operators as follows(see [1]).

Definition 2. Let K(x) = Ω(x)/|x|n : Rn \ {0} → R. K is said to be a
Calderón-Zygmund kernel if
(a) Ω ∈ C∞(Rn \ {0});
(b) Ω is homogeneous of degree zero;
(c)

∫

Σ
Ω(x)xαdσ(x) = 0 for all multi-indices α ∈ (N ∪ {0})n with |α| = N , where

Σ = {x ∈ Rn : |x| = 1} is the unit sphere of Rn.

Definition 3. Let K(x, y) = Ω(x, y)/|y|n : Rn × (Rn \ {0}) → R. K is said to
be a variable Calderón-Zygmund kernel if
(d) K(x, ·) is a Calderón-Zygmund kernel for a.e. x ∈ Rn;

(e) max|γ|≤2n

∣

∣

∣

∣

∣

∣

∂γ

∂γy
Ω(x, y)

∣

∣

∣

∣

∣

∣

L∞(Rn×Σ)
= M < ∞.

Moreover, let b be a locally integrable function on Rn and T be a singular integral
operator with a variable Calderón-Zygmund kernel as

T (f)(x) =

∫

Rn

K(x, x− y)f(y)dy,

where K(x, x−y) = Ω(x,x−y)
|x−y|n

and that Ω(x, y)/|y|n is a variable Calderón-Zygmund

kernel. The Toeplitz-type operator associated with T is defined by

Tb =

m
∑

k=1

(T k,1MbIαT
k,2 + T k,3IαMbT

k,4),

where T k,1 is the singular integral operator with a variable Calderón-Zygmund
kernel T or ±I(the identity operator), T k,2 and T k,4 are linear operators, T k,3 = ±I,
k = 1, ...,m, Mb(f) = bf and Iα is the fractional integral operator(0 < α < n)(see
[2]).

Note that the commutator [b, T ](f) = bT (f) − T (bf) is a particular operator
of the Toeplitz-type operator Tb. The Toeplitz-type operator Tb are non-trivial
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generalizations of the commutator. It is well known that commutators are of great
interest in harmonic analysis and have been widely studied by many authors (see
[19, 20]). The main purpose of this paper is to prove sharp maximal inequalities for
the Toeplitz-type operator Tb. As the application, we obtain the Lp-norm inequality,
Morrey and Triebel-Lizorkin spaces boundedness for the Toeplitz-type operator Tb.

2. Theorems and Lemmas

We shall prove the following theorems.

Theorem 1. Let T be a singular integral operator as Definition 3, 0 < β < 1,
1 < s < ∞ and b ∈ Lipβ(R

n). If T1(g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞), then
there exists a constant C > 0 such that, for any f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

M#(Tb(f))(x̃) ≤ C||b||Lipβ

m
∑

k=1

(Mβ,s(IαT
k,2(f))(x̃) +Mβ+α,s(T

k,4(f))(x̃)).

Theorem 2. Let T be a singular integral operator as Definition 3, 0 < β < 1,
1 < s < ∞ and b ∈ Lipβ(R

n). If T1(g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞), then
there exists a constant C > 0 such that, for any f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

sup
Q∋x̃

inf
c∈Rn

1

|Q|1+β/n

∫

Q

|Tb(f)(x) − c| dx 6 C||b||Lipβ

m
∑

k=1

(Ms(IαT
k,2(f))(x̃)

+ Mα,s(T
k,4(f))(x̃)).

Theorem 3. Let T be a singular integral operator as Definition 3, 1 < s < ∞
and b ∈ BMO(Rn). If T1(g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞), then there exists
a constant C > 0 such that, for any f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

M#(Tb(f))(x̃) ≤ C||b||BMO

m
∑

k=1

(Ms(IαT
k,2(f))(x̃) +Mα,s(T

k,4(f))(x̃)).

Theorem 4. Let T be a singular integral operator as Definition 3, 0 < β < 1,
1 < p < n/(α+ β), 1/q = 1/p− (α + β)/n and b ∈ Lipβ(R

n). If T1(g) = 0 for any
g ∈ Lu(Rn)(1 < u < ∞) and T k,2 and T k,4 are bounded operators on Lp(Rn) for
1 < p < ∞, k = 1, ...,m, then Tb is bounded from Lp(Rn) to Lq(Rn).

Theorem 5. Let T be a singular integral operator as Definition 3, 0 < β < 1,
1 < p < n/(α + β), 1/q = 1/p − (α + β)/n, 0 < D < 2n and b ∈ Lipβ(R

n). If
T1(g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞) and T k,2 and T k,4 are bounded operators
on Lp,ϕ(Rn) for 1 < p < ∞, k = 1, ...,m, then Tb is bounded from Lp,ϕ(Rn) to
Lq,ϕ(Rn).

Theorem 6. Let T be a singular integral operator as Definition 3, 0 < β <
1, 1 < p < n/α, 1/q = 1/p − α/n and b ∈ Lipβ(R

n). If T1(g) = 0 for any
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g ∈ Lu(Rn)(1 < u < ∞) and T k,2 and T k,4 are bounded operators on Lp(Rn) for
1 < p < ∞, k = 1, ...,m, then Tb is bounded from Lp(Rn) to Ḟ β,∞

q (Rn).

Theorem 7. Let T be a singular integral operator as Definition 3, 1 < p <
n/α, 1/q = 1/p − α/n and b ∈ BMO(Rn). If T1(g) = 0 for any g ∈ Lu(Rn)(1 <
u < ∞) and T k,2 and T k,4 are bounded operators on Lp(Rn) for 1 < p < ∞,
k = 1, ...,m, then Tb is bounded from Lp(Rn) to Lq(Rn).

Theorem 8. Let T be a singular integral operator as Definition 3, 0 < D <
2n, 1 < p < n/α, 1/q = 1/p − α/n and b ∈ BMO(Rn). If T1(g) = 0 for any
g ∈ Lu(Rn)(1 < u < ∞) and T k,2 and T k,4 are bounded operators on Lp,ϕ(Rn) for
1 < p < ∞, k = 1, ...,m, then Tb is bounded from Lp,ϕ(Rn) to Lq,ϕ(Rn).

To prove the theorems, we need the following lemmas.

Lemma 1.(see [1]) Let T be a singular integral operator as Definition 3. Then
T is bounded on Lp(Rn) for 1 < p < ∞.

Lemma 2.(see [16]). For 0 < β < 1 and 1 < p < ∞, we have

||f ||
Ḟ

β,∞
p

≈

∣

∣

∣

∣

∣

∣

∣

∣

sup
Q∋x

1

|Q|1+β/n

∫

Q

|f(y)− fQ|dy

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≈

∣

∣

∣

∣

∣

∣

∣

∣

sup
Q∋x

inf
c

1

|Q|1+β/n

∫

Q

|f(y)− c|dy

∣

∣

∣

∣

∣

∣

∣

∣

Lp

,

where the sup is taken all cubes Q containing x ∈ Rn.

Lemma 3.(see [6]). Let 0 < p < ∞ and w ∈ ∪1≤r<∞Ar. Then, for any smooth
function f for which the left-hand side is finite,

∫

Rn

M(f)(x)pw(x)dx 6 C

∫

Rn

M#(f)(x)pw(x)dx.

Lemma 4.(see [2, 6]). Suppose that 0 < α < n, 1 ≤ s < p < n/α and 1/q =
1/p− α/n. Then

||Iα(f)||Lq 6 C||f ||Lp

and

||Mα,s(f)||Lq 6 C||f ||Lp .

Lemma 5. Let 1 < p < ∞, 0 < D < 2n. Then, for any smooth function f for
which the left-hand side is finite,

||M(f)||Lp,ϕ 6 C||M#(f)||Lp,ϕ .

Proof. For any cube Q = Q(x0, d) in Rn, we know M(χQ) ∈ A1 for any cube
Q by [6]. Noticing that M(χQ) ≤ 1 and M(χQ)(x) ≤ dn/(|x− x0| − d)n if x ∈ Qc,
by Lemma 3, we have, for f ∈ Lp,ϕ(Rn),
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∫

Q

M(f)(x)pdx =

∫

Rn

M(f)(x)pχQ(x)dx

6

∫

Rn

M(f)(x)pM(χQ)(x)dx 6 C

∫

Rn

M#(f)(x)pM(χQ)(x)dx

6 C

(

∫

Q

M#(f)(x)pdx+

∞
∑

k=0

∫

2k+1Q\2kQ

M#(f)(x)p
|Q|

|2k+1Q|
dx

)

6 C||M#(f)||pLp,ϕ

∞
∑

k=0

2−knϕ(2k+1d)

6 C||M#(f)||pLp,ϕ

∞
∑

k=0

(2−nD)kϕ(d)

6 C||M#(f)||pLp,ϕϕ(d),

thus
(

1

ϕ(d)

∫

Q

M(f)(x)pdx

)1/p

≤ C

(

1

ϕ(d)

∫

Q

M#(f)(x)pdx

)1/p

and
||M(f)||Lp,ϕ 6 C||M#(f)||Lp,ϕ .

This finishes the proof.

Lemma 6. Let 0 < α < n, 0 < D < 2n, 1 6 s < p < n/α and 1/q = 1/p−α/n.
Then

||Iα(f)||Lq,ϕ 6 C||f ||Lp,ϕ

and
||Mα,s(f)||Lr,ϕ 6 C||f ||Lp,ϕ .

The proof of the Lemma is similar to that of Lemma 5 by Lemma 4, we omit
the details.

3. Proofs of Theorems

Proof of Theorem 1. It suffices to prove for f ∈ C∞
0 (Rn) and some constant

C0, the following inequality holds:

1

|Q|

∫

Q

|Tb(f)(x)− C0| dx 6 C||b||Lipβ

m
∑

k=1

(Mβ,s(IαT
k,2(f))(x̃)+Mβ+α,s(T

k,4(f))(x̃)).

Without loss of generality, we may assume T k,1 are T (k = 1, ...,m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. We write, by T1(g) = 0,

Tb(f)(x) =

m
∑

k=1

T k,1MbIαT
k,2(f)(x) +

m
∑

k=1

T k,3IαMbT
k,4(f)(x)

= Ab(x) +Bb(x) = Ab−bQ(x) +Bb−bQ(x),
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where

Ab−bQ(x) =
m
∑

k=1

T k,1M(b−bQ)χ2Q
IαT

k,2(f)(x) +
m
∑

k=1

T k,1M(b−bQ)χ(2Q)c
IαT

k,2(f)(x)

= A1(x) +A2(x)

and

Bb−bQ(x) =

m
∑

k=1

T k,3IαM(b−bQ)χ2Q
T k,4(f)(x) +

m
∑

k=1

T k,3IαM(b−bQ)χ(2Q)c
T k,4(f)(x)

= B1(x) +B2(x).

Then

1

|Q|

∫

Q

∣

∣Ab−bQ(f)(x) −A2(x0)
∣

∣ dx 6
1

|Q|

∫

Q

|A1(x)|dx +
1

|Q|

∫

Q

|A2(x)−A2(x0)|dx

= I1 + I2

and

1

|Q|

∫

Q

∣

∣Bb−bQ(f)(x) −B2(x0)
∣

∣ dx 6
1

|Q|

∫

Q

|B1(x)|dx +
1

|Q|

∫

Q

|B2(x)−B2(x0)|dx

= I3 + I4.

For I1, by Hölder’s inequality and Lemma 1, we obtain

1

|Q|

∫

Q

|T k,1M(b−bQ)χ2Q
IαT

k,2(f)(x)|dx

6

(

1

|Q|

∫

Rn

|T k,1M(b−bQ)χ2Q
IαT

k,2(f)(x)|sdx

)1/s

6 C|Q|−1/s

(∫

Rn

|M(b−bQ)χ2Q
IαT

k,2(f)(x)|sdx

)1/s

6 C|Q|−1/s

(∫

2Q

(|b(x)− bQ||IαT
k,2(f)(x)|)sdx

)1/s

6 C|Q|−1/s||b||Lipβ
|2Q|β/n|2Q|1/s−β/n

(

1

|2Q|1−sβ/n

∫

2Q

|IαT
k,2(f)(x)|sdx

)1/s

≤ C||b||Lipβ
Mβ,s(IαT

k,2(f))(x̃),

thus

I1 ≤
m
∑

k=1

1

|Q|

∫

Rn

|T k,1M(b−bQ)χ2Q
IαT

k,2(f)(x)|dx

≤ C||b||Lipβ

m
∑

k=1

Mβ,s(IαT
k,2(f))(x̃).
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For I2, by [1][14], we know that

T (f)(x) =
∞
∑

u=1

gu
∑

v=1

auv(x)

∫

Rn

Yuv(x− y)

|x− y|n
f(y)dy,

where gu 6 Cun−2, ||auv||L∞ 6 Cu−2n, |Yuv(x− y)| 6 Cun/2−1 and
∣

∣

∣

∣

Yuv(x − y)

|x− y|n
−

Yuv(x0 − y)

|x0 − y|n

∣

∣

∣

∣

6 Cun/2|x− x0|/|x0 − y|n+1

for |x− y| > 2|x0 − x| > 0, we get, for x ∈ Q,

|T k,1M(b−bQ)χ(2Q)c
IαT

k,2(f)(x)− T k,1M(b−bQ)χ(2Q)c
IαT

k,2(f)(x0)|

6

∫

(2Q)c
|b(y)− b2Q||K(x, x− y)−K(x0, x0 − y)||IαT

k,2(f)(y)|dy

=
∞
∑

j=1

∫

2jd≤|y−x0|<2j+1d

|b(y)− b2Q|H1|IαT
k,2(f)(y)|dy

6 C

∞
∑

j=1

||b||Lipβ
|2j+1Q|β/n

∫

2jd≤|y−x0|<2j+1d

|IαT
k,2(f)(y)|H2dy

≤ C||b||Lipβ

∞
∑

u=1

u−2n · un/2
∞
∑

j=1

|2j+1Q|β/n
∫

2jd≤|y−x0|<2j+1d

H3dy

≤ C||b||Lipβ

∞
∑

j=1

2−j

(

1

|2j+1Q|1−β/n

∫

2j+1Q

|IαT
k,2(f)(y)|dy

)

≤ C||b||Lipβ
Mβ,s(IαT

k,2(f))(x̃)

∞
∑

j=1

2−j

≤ C||b||Lipβ
Mβ,s(IαT

k,2(f))(x̃),

where

H1 =

∣

∣

∣

∣

Ω(x, x − y)

|x− y|n
−

Ω(x0, x0 − y)

|x0 − y|n

∣

∣

∣

∣

, H3 =
|x− x0|

|x0 − y|n+1
|IαT

k,2(f)(y)|,

H2 =
∞
∑

u=1

gu
∑

v=1

|auv(x)|

∣

∣

∣

∣

Yuv(x− y)

|x− y|n
−

Yuv(x0 − y)

|x0 − y|n

∣

∣

∣

∣

,

thus

I2 6
1

|Q|

∫

Q

m
∑

k=1

|H4|dx

6 C||b||Lipβ

m
∑

k=1

Mβ,s(IαT
k,2(f))(x̃).
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where

H4 = T k,1M(b−bQ)χ(2Q)c
IαT

k,2(f)(x) − T k,1M(b−bQ)χ(2Q)c
IαT

k,2(f)(x0).

Similarly, by Lemma 4, for 1/r = 1/s− α/n,

I3 ≤

m
∑

k=1

(

1

|Q|

∫

Rn

|IαM(b−bQ)χ2Q
T k,4(f)(x)|rdx

)1/r

6 C
m
∑

k=1

|Q|−1/r

(∫

2Q

(|b(x) − bQ||T
k,4(f)(x)|)sdx

)1/s

6 C||b||Lipβ

m
∑

k=1

|Q|−1/r|2Q|β/n|2Q|1/s−(β+α)/nH5

≤ C||b||Lipβ

m
∑

k=1

Mβ+α,s(T
k,4(f))(x̃),

where

H5 =

(

1

|2Q|1−s(β+α)/n

∫

2Q

|T k,4(f)(x)|sdx

)1/s

.

I4 ≤

m
∑

k=1

1

|Q|

∫

Q

∫

(2Q)c
|b(y)− b2Q|

∣

∣

∣

∣

1

|x− y|n−α
−

1

|x0 − y|n−α

∣

∣

∣

∣

|T k,4(f)(y)|dydx

≤ C

m
∑

k=1

∞
∑

j=1

||b||Lipβ
|2j+1Q|β/n

∫

2jd≤|y−x0|<2j+1d

d

|x0 − y|n−α+1
|T k,4(f)(y)|dy

≤ C||b||Lipβ

m
∑

k=1

∞
∑

j=1

(2jd)βd(2jd)−n+α−1(2jd)n(1−1/s)(2jd)n/s−β−α

×

(

1

|2j+1Q|1−s(β+α)/n

∫

2j+1Q

|T k,4(f)(y)|sdy

)1/s

≤ C||b||Lipβ

m
∑

k=1

Mβ+α,s(T
k,4(f))(x̃)

∞
∑

j=1

2−j

≤ C||b||Lipβ

m
∑

k=1

Mβ+α,s(T
k,4(f))(x̃).

These complete the proof of Theorem 1.

Proof of Theorem 2. It suffices to prove for f ∈ C∞
0 (Rn) and some constant

C0, the following inequality holds:

1

|Q|1+β/n

∫

Q

|Tb(f)(x)−C0| dx 6 C||b||Lipβ

m
∑

k=1

(Ms(IαT
k,2(f))(x̃)+Mα,s(T

k,4(f))(x̃)).
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Without loss of generality, we may assume T k,1 are T (k = 1, ...,m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. Similar to the proof of Theorem 1, we have

1

|Q|1+β/n

∫

Q

|Tb(f)(x) −A2(x0)−B2(x0)| dx

≤
1

|Q|1+β/n

∫

Q

|A1(x)|dx +
1

|Q|1+β/n

∫

Q

|A2(x) −A2(x0)|dx

+
1

|Q|1+β/n

∫

Q

|B1(x)|dx +
1

|Q|1+β/n

∫

Q

|B2(x)−B2(x0)|dx

= I5 + I6 + I7 + I8.

By using the same argument as in the proof of Theorem 1, we get, for 1/r =
1/s− α/n,

I5 ≤ |Q|−β/n

m
∑

k=1

(

1

|Q|

∫

Rn

|T k,1M(b−bQ)χ2Q
IαT

k,2(f)(x)|sdx

)1/s

6 C|Q|−β/n

m
∑

k=1

|Q|−1/s

(∫

2Q

(|b(x) − bQ||IαT
k,2(f)(x)|)sdx

)1/s

6 C|Q|−β/n

m
∑

k=1

|Q|−1/s||b||Lipβ
|2Q|β/n|Q|1/s

(

1

|Q|

∫

2Q

|IαT
k,2(f)(x)|sdx

)1/s

≤ C||b||Lipβ

m
∑

k=1

Ms(IαT
k,2(f))(x̃),

I6 ≤ |Q|−β/n

m
∑

k=1

1

|Q|

∫

Q

∞
∑

j=1

∫

2jd≤|y−x0|<2j+1d

|b(y)− b2Q|

×|K(x, x− y)−K(x0, x0 − y)||IαT
k,2(f)(y)|dydx

≤ |Q|−β/n

m
∑

k=1

C

|Q|

∫

Q

∞
∑

j=1

||b||Lipβ
|2j+1Q|β/n

∫

2jd≤|y−x0|<2j+1d

∞
∑

u=1

gu
∑

v=1

|auv(x)|

×

∣

∣

∣

∣

Yuv(x− y)

|x− y|n
−

Yuv(x0 − y)

|x0 − y|n

∣

∣

∣

∣

|IαT
k,2(f)(y)|dydx

≤ C||b||Lipβ
|Q|−β/n

m
∑

k=1

1

|Q|

×

∫

Q

∞
∑

j=1

|2j+1Q|β/n
∫

2jd≤|y−x0|<2j+1d

|x− x0|

|x0 − y|n+1
|IαT

k,2(f)(y)|dydx
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≤ C||b||Lipβ
d−β

m
∑

k=1

∞
∑

j=1

(2jd)β
d

(2jd)n+1
(2jd)n

(

1

|2j+1Q|

∫

2j+1Q

|IαT
k,2(f)(y)|sdy

)1/s

≤ C||b||Lipβ

m
∑

k=1

Ms(IαT
k,2(f))(x̃)

∞
∑

j=1

2j(β−1)

≤ C||b||Lipβ

m
∑

k=1

Ms(IαT
k,2(f))(x̃),

I7 ≤ |Q|−β/n

m
∑

k=1

(

1

|Q|

∫

Rn

|IαM(b−bQ)χ2Q
T k,4(f)(x)|rdx

)1/r

6 C|Q|−β/n−1/r
m
∑

k=1

(∫

2Q

(|b(x) − bQ||T
k,4(f)(x)|)sdx

)1/s

6 C||b||Lipβ

m
∑

k=1

|Q|−β/n−1/r|2Q|β/n|Q|1/s−α/n

×

(

1

|2Q|1−sα/n

∫

2Q

|T k,4(f)(x)|sdx

)1/s

≤ C||b||Lipβ

m
∑

k=1

Mα,s(T
k,4(f))(x̃),

I8 ≤ |Q|−β/n−1
m
∑

k=1

∫

Q

∫

(2Q)c
|b(y)− b2Q|

×

∣

∣

∣

∣

1

|x− y|n−α
−

1

|x0 − y|n−α

∣

∣

∣

∣

|T k,4(f)(y)|dydx

≤ C|Q|−β/n

m
∑

k=1

∞
∑

j=1

||b||Lipβ
|2j+1Q|β/n

×

∫

2jd≤|y−x0|<2j+1d

d

|x0 − y|n−α+1
|T k,4(f)(y)|dy

≤ C||b||Lipβ

m
∑

k=1

∞
∑

j=1

d−β(2jd)βd(2jd)−n+α−1(2jd)n(1−1/s)(2jd)n/s−α

×

(

1

|2j+1Q|1−sα/n

∫

2j+1Q

|T k,4(f)(y)|sdy

)1/s

≤ C||b||Lipβ

m
∑

k=1

Mα,s(T
k,4(f))(x̃)

∞
∑

j=1

2j(β−1)

≤ C||b||Lipβ

m
∑

k=1

Mα,s(T
k,4(f))(x̃).

These complete the proof of Theorem 2.
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Proof of Theorem 3. It suffices to prove for f ∈ C∞
0 (Rn) and some constant

C0, the following inequality holds:

1

|Q|

∫

Q

|Tb(f)(x) − C0| dx 6 C||b||BMO

m
∑

k=1

(Ms(IαT
k,2(f))(x̃) +Mα,s(T

k,4(f))(x̃)).

Without loss of generality, we may assume T k,1 are T (k = 1, ...,m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. Similar to the proof of Theorem 1, we have

1

|Q|

∫

Q

|Tb(f)(x) −A2(x0)−B2(x0)| dx ≤
1

|Q|

∫

Q

|A1(x)|dx

+
1

|Q|

∫

Q

|A2(x)−A2(x0)|dx+
1

|Q|

∫

Q

|B1(x)|dx +
1

|Q|

∫

Q

|B2(x)−B2(x0)|dx

= I9 + I10 + I11 + I12.

By using the same argument as in the proof of Theorem 1, we get, for 1 < r1 < s,
1 < p < min(s, n/α) with 1/r2 = 1/p− α/n,

I9 ≤
m
∑

k=1

(

1

|Q|

∫

Rn

|T k,1M(b−bQ)χ2Q
IαT

k,2(f)(x)|r1dx

)1/r1

6 C

m
∑

k=1

|Q|−1/r1

(∫

2Q

(|b(x)− bQ||IαT
k,2(f)(x)|)r1dx

)1/r1

6 C

m
∑

k=1

(

1

|Q|

∫

2Q

|IαT
k,2(f)(x)|sdx

)1/s(
1

|Q|

∫

2Q

|b(x)− bQ|
sr1/(s−r1)dx

)(s−r1)/sr1

≤ C||b||BMO

m
∑

k=1

Ms(IαT
k,2(f))(x̃),

I10 ≤

m
∑

k=1

1

|Q|

∫

Q

∞
∑

j=1

∫

2jd≤|y−x0|<2j+1d

|b(y)− b2Q||K(x, x− y)−K(x0, x0 − y)||IαT
k,2(f)(y)|dydx

≤

m
∑

k=1

C

|Q|

∫

Q

∞
∑

j=1

∫

2jd≤|y−x0|<2j+1d

|b(y)− b2Q|

∞
∑

u=1

gu
∑

v=1

|auv(x)|

×

∣

∣

∣

∣

Yuv(x− y)

|x− y|n
−

Yuv(x0 − y)

|x0 − y|n

∣

∣

∣

∣

|IαT
k,2(f)(y)|dydx



Boundedness for TTO Associated with SIO with Variable C-Z Kernel 411

≤

m
∑

k=1

C

|Q|

∫

Q

∞
∑

j=1

∫

2jd≤|y−x0|<2j+1d

|b(y)− b2Q|
|x− x0|

|x0 − y|n+1
|IαT

k,2(f)(y)|dydx

≤ C

m
∑

k=1

∞
∑

j=1

d

(2jd)n+1

(∫

2j+1Q

|b(y)− bQ|
s′dy

)1/s′

×

(∫

2j+1Q

|IαT
k,2(f)(y)|sdy

)1/s

dx

≤ C||b||BMO

m
∑

k=1

∞
∑

j=1

j2−j

(

1

|2j+1Q|

∫

2j+1Q

|IαT
k,2(f)(y)|sdy

)1/s

≤ C||b||BMO

m
∑

k=1

Ms(IαT
k,2(f))(x̃)

∞
∑

j=1

j2−j

≤ C||b||BMO

m
∑

k=1

Ms(IαT
k,2(f))(x̃),

I11 ≤

m
∑

k=1

(

1

|Q|

∫

Rn

|IαM(b−bQ)χ2Q
T k,4(f)(x)|r2dx

)1/r2

6 C|Q|−1/r2

m
∑

k=1

(∫

2Q

(|b(x)− bQ||T
k,4(f)(x)|)pdx

)1/p

6 C

m
∑

k=1

(

1

|Q|

∫

2Q

|b(x)− bQ|
ps/(s−p)dx

)(s−p)/ps(
1

|Q|1−sα/n

∫

2Q

|T k,4(f)(x)|sdx

)1/s

≤ C||b||BMO

m
∑

k=1

Mα,s(T
k,4(f))(x̃),

I12 ≤ |Q|−1
m
∑

k=1

∫

Q

∫

(2Q)c
|b(y)− b2Q|

∣

∣

∣

∣

1

|x− y|n−α
−

1

|x0 − y|n−α

∣

∣

∣

∣

|T k,4(f)(y)|dydx

≤ C
m
∑

k=1

∞
∑

j=1

∫

2jd≤|y−x0|<2j+1d

|b(y)− b2Q|
d

|x0 − y|n−α+1
|T k,4(f)(y)|dy

≤ C

m
∑

k=1

∞
∑

j=1

d(2jd)−n+α−1(2jd)n(1−1/s)(2jd)n/s−α

(

1

|2j+1Q|

∫

2j+1Q

|b(y)− bQ|
s′dy

)1/s′

×

(

1

|2j+1Q|1−sα/n

∫

2j+1Q

|T k,4(f)(y)|sdy

)1/s

≤ C||b||BMO

m
∑

k=1

Mα,s(T
k,4(f))(x̃)

∞
∑

j=1

j2−j ≤ C||b||BMO

m
∑

k=1

Mα,s(T
k,4(f))(x̃).



412 Q. Zhao

This completes the proof of Theorem 3.

Proof of Theorem 4. Choose 1 < s < p in Theorem 1 and set 1/r = 1/p−α/n.
We have, by Lemmas 3 and 4,

||Tb(f)||Lq 6 ‖M(Tb(f))‖Lq 6 C‖M#(Tb(f))‖Lq

6 C||b||Lipβ

m
∑

k=1

(‖Mβ,s(IαT
k,2(f))‖Lq + ‖Mβ+α,s(T

k,4(f))‖Lq )

6 C||b||Lipβ

m
∑

k=1

(‖IαT
k,2(f)‖Lr + ‖T k,4(f)‖Lp)

6 C||b||Lipβ

m
∑

k=1

(‖T k,2(f)‖Lp + ‖f‖Lp) ≤ C||b||Lipβ
‖f‖Lp.

This completes the proof of Theorem 4.

Proof of Theorem 5. Choose 1 < s < p in Theorem 1 and set 1/r = 1/p−α/n.
We have, by Lemmas 5 and 6,

||Tb(f)||Lq,ϕ 6 ‖M(Tb(f))‖Lq,ϕ 6 C‖M#(Tb(f))‖Lq,ϕ

6 C||b||Lipβ

m
∑

k=1

(‖Mβ,s(IαT
k,2(f))‖Lq,ϕ + ‖Mβ+α,s(T

k,4(f))‖Lq,ϕ)

6 C||b||Lipβ

m
∑

k=1

(‖IαT
k,2(f)‖Lr,ϕ + ‖T k,4(f)‖Lp,ϕ)

6 C||b||Lipβ

m
∑

k=1

(‖T k,2(f)‖Lp,ϕ + ‖f‖Lp,ϕ) ≤ C||b||Lipβ
‖f‖Lp,ϕ.

This completes the proof of Theorem 5.

Proof of Theorem 6. Choose 1 < s < p in Theorem 2. We have, by Lemmas
2, 3 and 4,

||Tb(f)||Ḟβ,∞
q

6 C

∣

∣

∣

∣

∣

∣

∣

∣

sup
Q∋x

1

|Q|1+β/n

∫

Q

|Tb(f)(y)− C0| dy

∣

∣

∣

∣

∣

∣

∣

∣

Lq

6 C||b||Lipβ

m
∑

k=1

(‖Ms(IαT
k,2(f))‖Lq + ‖Mα,s(T

k,4(f))‖Lq )

6 C||b||Lipβ

m
∑

k=1

(‖IαT
k,2(f)‖Lq + ‖T k,4(f)‖Lp)

6 C||b||Lipβ

m
∑

k=1

(‖T k,2(f)‖Lp + ‖f‖Lp) 6 C||b||Lipβ
||f ||Lp .

This completes the proof of the theorem.
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Proof of Theorem 7. Choose 1 < s < p in Theorem 3, we have, by Lemmas
3 and 4,

||Tb(f)||Lq 6 ‖M(Tb(f))‖Lq 6 C‖M#(Tb(f))‖Lq

6 C||b||BMO

m
∑

k=1

(‖Ms(IαT
k,2(f))‖Lq + ‖Mα,s(T

k,4(f))‖Lq )

6 C||b||BMO

m
∑

k=1

(‖IαT
k,2(f)‖Lq + ‖T k,4(f)‖Lp)

6 C||b||BMO

m
∑

k=1

(‖T k,2(f)‖Lp + ‖f‖Lp) 6 C||b||BMO‖f‖Lp.

This completes the proof of Theorem 7.

Proof of Theorem 8. Choose 1 < s < p in Theorem 3, we have, by Lemmas
5 and 6,

||Tb(f)||Lq,ϕ 6 ‖M(Tb(f))‖Lq,ϕ 6 C‖M#(Tb(f))‖Lq,ϕ

6 C||b||BMO

m
∑

k=1

(‖Ms(IαT
k,2(f))‖Lq,ϕ + ‖Mα,s(T

k,4(f))‖Lq,ϕ)

6 C||b||BMO

m
∑

k=1

(‖IαT
k,2(f)‖Lq,ϕ + ‖T k,4(f)‖Lp,ϕ)

6 C||b||BMO

m
∑

k=1

(‖T k,2(f)‖Lp,ϕ + ‖f‖Lp,ϕ) 6 C||b||BMO‖f‖Lp,ϕ.

This completes the proof of Theorem 8.
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Abstract. In this paper, we introduce the concept of common limit range ((CLR)−property)
in the framework of quasi-partial metric spaces. By using this concept, some fixed point
theorems involving two pairs of contraction mappings are proved without using the com-
pleteness condition of the whole space. Our results extend some results in literature,
such as Nazir and Abbas [8] and Vetro et al. [11].
Keywords: quasi-partial metric spaces; (CLR)−property; contraction mappings.

1. Introduction

The connotation of partial metric spaces (PMS for short) was defined by
Matthews in [9]. He amended metric spaces via setting self-distances to be not
always identical to zero. Additionally, he relocated the Banach contraction principle
in the setting of (PMS). Since then, there has been extensive research into fixed point
results related to partial metric spaces (see [2, 3, 4, 7]). By dropping the symmetry
condition, in 2013 Karapinar et al. [6] defined the notation of quasi-partial metric
spaces (QPMS for short) and established some fixed point results in these spaces.

Let us first present some definitions and consequences which we need in the
sequel.

Definition 1.1. [6] The function σ : X ×X → [0,∞) is a quasi-partial metric if
the following conditions are satisfied for all γ, ω, δ ∈ X:
(1) If 0 ≤ σ(γ, γ) = σ(γ, ω) = σ(ω, ω) ⇒ γ = ω;
(2) σ(γ, ω) ≥ σ(γ, γ);
(3) σ(ω, γ) ≥ σ(γ, γ);
(4) σ(γ, δ) ≤ σ(γ, ω) + σ(ω, δ)− σ(ω, ω).
The couple (X, σ) is known as a (QPMS).

Received October 18, 2018; Accepted February 15, 2019
2010 Mathematics Subject Classification. Primary 47H09; Secondary 47H10,47H20
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For each partial metric p on X , the function dp : X ×X → [0,∞) defined by

dp(γ, ω) = 2p(γ, ω)− p(γ, γ)− p(ω, ω),(1.1)

is a metric on X . Similarly, if (X, σ) is a (QPMS), then the function dσ : X ×X →
[0,∞) defined by

dσ(γ, ω) = σ(γ, ω) + σ(ω, γ)− σ(γ, γ)− σ(ω, ω),(1.2)

is also a metric on X.

Definition 1.2. [6] Let (X, σ) be a quasi-partial metric space.
1. A sequence {xn} is called convergent to x ∈ X, written as lim

n→∞
xn = x, if

lim
n→∞

σ(xn, x) = lim
n→∞

σ(x, xn) = lim
n→∞

σ(xn, xn) = σ(x, x);

2. A sequence {xn} is called Cauchy if lim
n,m→∞

σ(xn, xm) and lim
n,m→∞

σ(xm, xn) exist

and are finite;
3. (X, σ) is called complete if every Cauchy sequence {xn} in X is convergent to
some x ∈ X. Further, lim

n,m→∞
σ(xn, xm) = lim

n,m→∞
σ(xm, xn) = σ(x, x).

In 1996, Jungck [5] introduced the concept of weakly compatible mappings (w-
compatible for short).

Definition 1.3. [5] Let X be a nonempty set. Given S,H : X → X. The mappings
H and S are w-compatible if and only if SHµ = HSµ for µ ∈ C(S,H), where
C(S,H) = {u, fu = gu}.

Definition 1.4. [1] Let S and H be two self-mappings on a metric space (X, d).
The mappings S and H fulfill the (E.A)-property if there exists a sequence {an} in
X such that

lim
n→∞

Han = lim
n→∞

San = µ

for µ ∈ X.

Note that the (E.A)-property exchanges the completeness condition of the space
with closedness of the range. The connotation of (CLR)-property was defined by
Sintunavarat and Kumam in [10]. Its significance is that one does no longer refer
to the closeness condition of the range of subspaces.

Definition 1.5. [10] Let (X, d) be a metric space and S,H be two self-mappings
on X. These maps satisfy the (CLRS)-property, if there exists a sequence {an} in
X so that

lim
n→∞

Han = lim
n→∞

San = µ,

where µ ∈ S(X).
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Currently, Nazir and Abbas [8] established some fixed point results via the (E.A)-
property in the class of (PMS). However, we see that the circumstance p(t, t) = 0
in [4, Definition 1.7] is superfluous. In our current work, we shall give the definition
of (CLR)-property (for two pairs of self-mappings) on (QPMS). Additionally, by
using this concept, we employ a different method compared with that in the proof
of [4, Theorem 2.1] in order to prove our main results in the class of (QPMS). Some
illustrated examples are also given.

2. Main results

First, let ψ : [0,∞) → [0,∞) be a function such that
(a) ψ is nondecreasing and continuous;
(b) ψ(µ) = 0 ⇔ µ = 0.
Denote F (resp. G) the set of functions verifying the conditions (a) and (b) (resp.
(b) and (c): ψ is lower-semicontinuous).

Now, we introduce the concept of (CLR)-property first for a single pair and
after for a double pair of self-mappings on a (QPMS).

Definition 2.1. Let (X, σ) be a (QPMS). The pair of self-mappings (f, S) on X
satisfies the (CLRS)-property, if there exists {xn} ⊂ X such that

lim
n→∞

σ(fxn, w)= lim
n→∞

σ(w, fxn)= lim
n→∞

σ(Sxn, w)= lim
n→∞

σ(w, Sxn)=σ(w,w), w∈SX.

Example 2.1. Let X = (0,∞) and σ(x, y) = |x− y|+ x for all x, y ∈ X. Clearly,
(X, σ) is a (QPMS). Let (f, S) be a pair of self-mappings on X such that fx = 3x+2

2
and Sx = 2x. Choose {xn} = { 2n+1

n
}. We have

lim
n→∞

σ(fxn, 4) = lim
n→∞

σ(4, fxn) = lim
n→∞

σ(Sxn, 4) = lim
n→∞

σ(4, Sxn)=σ(4, 4) = S2 = 4.

Hence the pair (f, S) satisfies the (CLRS)-property.

Definition 2.2. Let (X, σ) be a (QPMS). The pairs of self-mappings (f, S) and
(g,H) on X satisfy the (CLRSH)-property, if there exist sequences {xn} and {yn}
in X such that

lim
n→∞

σ(fxn, w) = lim
n→∞

σ(w, fxn) = lim
n→∞

σ(Sxn, w) = lim
n→∞

σ(w, Sxn)

= lim
n→∞

σ(w, gyn) = lim
n→∞

σ(gyn, w)

= lim
n→∞

σ(Hyn, w) = lim
n→∞

σ(w,Hyn) = σ(w,w), w ∈ SX ∩HX.

We illustrate Definition 2.2 by the following example.
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Example 2.2. Let X = (0, 2) be equipped with the quasi-partial metric σ(x, y) =
|x − y|+ x for all x, y ∈ X. Let (f, S) and (g,H) be two pairs of self-mappings on
X defined as

fx =
{ 1 ; x ∈ (0, 1]

4
3 ; x ∈ (1, 2)

gx =
{ 1 ; x ∈ (0, 1]

3
2 ; x ∈ (1, 2)

Sx =
{

x2 ; x ∈ (0, 1]
x− 1 ; x ∈ (1, 2)

Hx =
{

x ; x ∈ (0, 1]
2− x ; x ∈ (1, 2).

Consider {xn} = {1− 1
n
} and {yn} = { 5n2

−4
5n2+2}. We have

lim
n→∞

σ(fxn, 1) = lim
n→∞

σ(1, fxn) = lim
n→∞

σ(Sxn, 1) = lim
n→∞

σ(1, Sxn) = σ(1, 1) = S1 = 1.

Moreover,

lim
n→∞

σ(gyn, 1) = lim
n→∞

σ(1, gyn) = lim
n→∞

σ(Hyn, 1) = lim
n→∞

σ(1, Hyn) = σ(1, 1) = H1 = 1.

Hence the two pairs (f, S) and (g,H) satisfy the (CLRSH)-property.

The following lemma is crucial in order to prove our main result (Theorem 2.1).

Lemma 2.1. Let (X, σ) be a (QPMS). Suppose that the self-mappings f, g, S,H :
X → X are such that
(i) fX ⊆ HX (or gX ⊆ SX);
(ii) the pair (f, S) satisfies the (CLRS)-property (or (g,H) satisfies the (CLRH)-
property);
(iii) HX (or SX) is closed;
(iv) {gyn} ( or {fyn}) is bounded for every sequence {yn} in X;
(v) there exist β ∈ F and α ∈ G such that

(2.1) β(σ(fa, gb)) ≤ β(Λ(a, b))− α(Λ(a, b)),

where Λ(a, b) = max{σ(Sa,Hb), σ(fa, Sa), σ(Hb, gb), σ(fa,Hb), σ(Sa, gb)}. Then
the pairs (f, S) and (g,H) satisfy the (CLRSH)-property.

Proof. From Condition (ii), if (f, S) satisfies the (CLRS)-property, then there exists
{xn} ⊂ X , so that
(2.2)
lim
n→∞

σ(fxn, w) = lim
n→∞

σ(w, fxn) = lim
n→∞

σ(Sxn, w) = lim
n→∞

σ(w, Sxn) = σ(w,w); w ∈ SX.

Since fX ⊆ HX, there exists {yn} such that

(2.3) fxn = Hyn.

Due to (2.2) and (2.3), we write lim
n→∞

σ(Hyn, w) = σ(w,w), so from the closedness

condition of HX, we have
w ∈ SX ∩HX.
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Now, we want to prove that gyn → w as n→ ∞. We have

σ(fxn, gyn) ≤ σ(fxn, Sxn) + σ(Sxn, gyn)− σ(Sxn, Sxn)

≤ σ(fxn, w) + σ(w, Sxn)− σ(w,w) + σ(Sxn, gyn)− σ(Sxn, Sxn).

By (2.2), lim
n→∞

σ(Sxn, Sxn) = σ(w,w). We also get

(2.4) lim sup
n→∞

σ(fxn, gyn)− lim sup
n→∞

σ(Sxn, gyn) ≤ 0.

Again, by (2.2), lim
n→∞

σ(fxn, fxn) = σ(w,w), so similarly,

(2.5) lim sup
n→∞

σ(Sxn, gyn)− lim sup
n→∞

σ(fxn, gyn) ≤ 0.

As {gyn} is bounded, lim sup
n→∞

σ(fxn, gyn) and lim sup
n→∞

σ(Sxn, gyn) are finite num-

bers. Using (2.4) and (2.5), there exists δ ≥ 0 such that one writes

(2.6) lim sup
n→∞

σ(Sxn, gyn) = lim sup
n→∞

σ(fxn, gyn) = δ.

So there are subsequences {xnk
} and {ynk

} such that

(2.7) lim
k→∞

σ(Sxnk
, gynk

) = lim
k→∞

σ(fxnk
, gynk

) = δ.

Clearly, by (2.2),

(2.8) σ(w,w) = lim
k→∞

σ(fxnk
, Sxnk

) = lim
k→∞

σ(Sxnk
, fxnk

).

Since σ(fxnk
, fxnk

) ≤ σ(fxnk
, Sxnk

), passing to the limit as k → ∞, we obtain

(2.9) σ(w,w) ≤ δ.

We have

Λ(fxnk
, ynk

)

= max{σ(Sxnk
, Hynk

), σ(fxnk
, Sxnk

), σ(Hynk
, gynk

), σ(fxnk
, Hynk

), σ(Sxnk
, gynk

)}

= max{σ(Sxnk
, fxnk

), σ(fxnk
, Sxnk

), σ(fxnk
, gynk

), σ(fxnk
, fxnk

), σ(Sxnk
, gynk

)}.

Passing to the limit as k → ∞, we get due to (2.9)

(2.10) lim
k→∞

Λ(fxnk
, ynk

) = max{σ(w,w), σ(w,w), δ, σ(w,w), δ} = δ.

By using (2.1),

β(σ(fxnk
, gynk

)) ≤ β(Λ(xnk
, ynk

))− α(Λ(xnk
, ynk

)).

Taking the upper limit as k → ∞ and using (2.8) and (2.10),

β(δ) ≤ β(δ)− α(δ),
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i.e., α(δ) = 0, which yields that δ = 0. Thus σ(w,w) = δ = 0. So, by (2.6), we have

lim
n→∞

σ(fxn, gyn) = 0.

Consequently,
lim
k→∞

σ(gynk
, gynk

) = 0 = σ(w,w).

We obtained

lim
n→∞

σ(w, gyn) = lim
n→∞

σ(gyn, w) = lim
n→∞

σ(Hyn, w) = lim
n→∞

σ(w,Hyn) = σ(w,w).

So the pairs (f, S) and (g,H) satisfy the (CLRSH)−property.

Now, we introduce and prove our main result by using the concept of (CLR)-
property on the class of quasi-partial metric spaces.

Theorem 2.1. Let f, g,H and S be self-mappings on a (QPMS) (X, σ) satisfying
the condition (v) of Lemma 2.1. If the pairs (f, S) and (g,H) satisfy the (CLRSH)-
property, then there exists x ∈ X such that fx = gx = Sx = Hx. Furthermore, if
(f, S) and (g,H) are w-compatible, then such x is the unique common fixed point
of f , g, H and S.

Proof. As (f, S) and (g,H) verify the (CLRSH)-property, there exist two sequences
{xn} and {yn} in X such that

lim
n→∞

σ(fxn, w) = lim
n→∞

σ(w, fxn) = lim
n→∞

σ(Sxn, w) = lim
n→∞

σ(w, Sxn)

= lim
n→∞

σ(w, gyn) = lim
n→∞

σ(gyn, w)

= lim
n→∞

σ(Hyn, w) = lim
n→∞

σ(w,Hyn) = σ(w,w); w ∈ SX ∩HX.

Since w ∈ SX , there exists k ∈ X such that Sk = w. Now, we want to prove that
fk = Sk. Suppose that fk 6= Sk. Obviously,

(2.11) lim
n→∞

σ(Hyn, gyn) = σ(w,w),

and

(2.12) lim
n→∞

σ(fk,Hyn) = lim
n→∞

σ(fk, gyn) = σ(fk, w).

From (2.1),

(2.13) β(σ(fk, gyn)) ≤ β(Λ(k, yn))− α(Λ((k, yn)),

where

Λ(k, yn) = max{σ(Sk,Hyn), σ(fk, Sk), σ(Hyn, gyn), σ(fk,Hyn), σ(Sk, gyn)}.
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Taking the limit as n→ ∞ and using the equations (2.11) and (2.12), we get

lim
n→∞

Λ(k, yn) = max{σ(w,w), σ(fk, w), σ(w,w), σ(fk, w), σ(w,w)}(2.14)

= σ(fk, w).

Letting n→ ∞ in (2.13), by (2.12) and (2.14), we get

β(σ(fk, w)) ≤ β(σ(fk, w)) − α(σ(fk, w)).

So α(σ(fk, w)) = 0, that is, σ(fk, w) = 0, i.e.,

(2.15) fk = Sk = w.

Since w ∈ HX , there exists ν ∈ X such that Hν = w. As (2.11) and (2.12), we
may write

(2.16) lim
n→∞

σ(fxn, Sxn) = σ(w,w),

and

(2.17) lim
n→∞

σ(Syn, gν) = lim
n→∞

σ(fxn, gν) = σ(w, gν).

By (2.1),

β(σ(fxn, gν)) ≤ β(Λ(xn, ν))− α(Λ(xn, ν)),

where

Λ(xn, ν) = max{σ(Sxn, Hν), σ(fxn, Sxn), σ(Hν, gν), σ(fxn, Hν), σ(Sxn, gν)}.

Due to (2.16) and (2.17),

lim
n→∞

Λ(xn, ν) = max{σ(w,w), σ(w,w), σ(w, gν), σ(w,w), σ(w, gν)}(2.18)

= σ(w, gν).

By (2.17) and (2.18),

β(σ(w, gν)) ≤ β(σ(w, gν)) − α(σ(w, gν)).

This gives that α(σ(w, gν)) = 0, hence σ(w, gν)) = 0. So Hν = gν = w. The
w-compatibility of (f, S) together with fk = Sk implies that

fw = fSk = Sfk = Sw.

We shall prove that fw = Sw = w. We have

β(σ(fw,w)) = β(σ(fw, gν)) ≤ β(Λ(w, ν)) − α(Λ(w, ν)),
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where

Λ(w, ν) = max{σ(Sw,Hν), σ(fw, Sw), σ(Hν, gν), σ(fw,Hν), σ(Sw, gν)}

= max{σ(fw,w), σ(fw, fw), σ(w,w), σ(fw,w), σ(fw,w)}

= σ(fw,w).

Then
β(σ(fw, gν)) ≤ β(σ(fw, gν)) − α(σ(fw, gν)).

This implies that α(σ(fw,w)) = 0, that is, σ(fw,w) = 0, so fw = w = Sw.
Again the w-compatibility condition of (g,H) and the fact that gν = Hν imply
that gw = gHν = Hgν = Hw. Again, using (2.1),

β(σ(w, gw)) = β(σ(fk, gw)) ≤ β(Λ(k, w)) − α(Λ(k, w)),

where

Λ(k, w) = max{σ(Sk,Hw), σ(fk, Sk), σ(Hw, gw), σ(fk,Hk), σ(Sk, gk)}

= max{σ(w, gw), σ(w,w), σ(gw, gw), σ(w, gw), σ(w, gw)}

= σ(w, gw).

Then
β(σ(w, gw)) = β(σ(fk, gw)) ≤ β(σ(w, gw)) − α(σ(w, gw)),

hence, α(σ(w, gw)) = 0. Thus σ(w, gw) = 0, so w = gw = Hw.

Finally, we shall show that w is unique. Consider that λ = fλ = gλ = Sλ = Hλ.
From (2.1),

β(σ(w, λ)) = β(σ(fw, gλ)) ≤ β(Λ(w, λ)) − α(Λ(w,w)).

Since

Λ(w, λ) = max{σ(Sw,Hλ), σ(fw, Sw), σ(Hλ, gλ), σ(fw,Hλ), σ(Sw, gλ)}

= max{σ(w, λ), σ(w,w), σ(λ, λ), σ(w, λ), σ(w, λ)}

= σ(w, λ),

we get
β(σ(w, λ)) = β(σ(fw, gλ)) ≤ β(σ(w, λ)) − α(σ(w, λ)).

Therefore, α(σ(w, λ)) = 0, that is, σ(w, λ) = 0, hence w = λ. The proof is com-
pleted.

Example 2.3. Take A = [0, 1]. Consider the quasi-partial metric on A defined by

σ(c, d) = |c− d|+ c.

Given f, g,H, S : A→ A as

f(d) = 0, g(d) =
1

8
d, S(d) =

1

2
d, H(d) =

1

3
d.
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It is clear that fA ⊂ HA, gA ⊂ SA and the pairs (f, S) and (g,H) satisfy the
(CLRSH)-property. Take β(t) = 8t and α(t) = t. We will prove that (2.1) holds.
First,

β(σ(fc, gd)) = β(|fc− gd|+ fc) = β(
1

8
d) = d.(2.19)

Moreover,

Λ(c, d) = max{σ(Sc,Hd), σ(fc, Sc), σ(Hd, gd), σ(fc,Hd), σ(Sc, gd)}

= max {σ(
1

2
c,
1

3
d), σ(0,

1

2
c), σ(

1

3
d,

1

8
d), σ(0,

1

3
d)σ(

1

2
c,
1

8
d)}

= max{|
1

2
c−

1

3
d|+

1

2
c,
1

2
c,
13

24
d,

1

3
d, |

1

2
c−

1

8
d|+

1

2
c}.

Case 1. Let Λ(c, d) = 13
24d. We obtain

β(Λ(c, d)) − α(Λ(c, d)) =
13

3
d−

13

24
d =

91

24
d > d = β(σ(fc, gd)).(2.20)

Case 2. Let Λ(c, d) = | 12c−
1
3d|+

1
2c. We have

β(Λ(c, d))− α(Λ(c, d)) = 8(|
1

2
c−

1

3
d|+

1

2
c)− (|

1

2
c−

1

3
d|+

1

2
c)

= 7(|
1

2
c−

1

3
d|+

1

2
c) > 7(

13

24
d) > d = β(σ(fc, gd)).(2.21)

Case 3. Let Λ(c, d) = | 12c−
1
8d|+

1
2c. We have

β(Λ(c, d))− α(Λ(c, d)) = 8(|
1

2
c−

1

8
d|+

1

2
c)− (|

1

2
c−

1

8
d|+

1

2
c)

= 7(|
1

2
c−

1

8
d|+

1

2
c) > 7(

13

24
d) > d = β(σ(fc, gd)).(2.22)

From (2.20) to (2.21), the condition (2.1) holds. Here, 0 is the unique common
fixed point, that is, f0 = g0 = S0 = H0 = 0.

Example 2.4. Let X = [0, 7) and σ(x, y) = |x− y|+ x for all x, y ∈ X. (X, σ) is
a (QPMS). Define (f, S) and (g,H) as two pairs of self-mappings on X, where

f(x) =
{

0 ; x ∈ {0} ∪ [5, 7)
2 ; x ∈ (0, 5),

g(x) =
{

0 ; x ∈ {0} ∪ [5, 7)
4 ; x ∈ (0, 5)

S(x) =
{

0 ; x ∈ {0}
5 ; x ∈ (0, 5)

x+5
2 ; x ∈ [5, 7),

H(x) =
{

0 ; x ∈ {0}
6 ; x ∈ (0, 5)

x− 5 ; x ∈ [5, 7).

Also, define β(t) = 8t and α(t) = t
10 . Choose {xn} = {0} and {yn} = {5 + 1

n
}.

Then

lim
n→∞

σ(f(xn), 0) = lim
n→∞

σ(0, f(xn)) = lim
n→∞

σ(S(xn), 0) = lim
n→∞

σ(0, S(xn)) = σ(0, 0) = S(0) = 0.
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Also
lim
n→∞

σ(g(yn), 0) = lim
n→∞

σ(0, g(yn)) = lim
n→∞

σ(H(yn), 0)

= lim
n→∞

σ(0, H(yn)) = σ(0, 0) = H(0) = 0.

Hence the two pairs (f, S) and (g,H) satisfy the (CLRSH)-property. Now, we
will show that the contraction condition (2.1) holds. For this, we distinguish the
following cases.
Case 1. x, y ∈ {0} ∪ [5, 7). Here, we have

β(σ(fx, gy)) = β(σ(0, 0)) = 0 ≤ β(Λ(x, y)) − α(Λ(x, y)).

Case 2. x ∈ {0} and y ∈ (0, 5). We have

β(σ(fx, gy)) = β(σ(0, 4)) = 32.

Also,

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(0, 6), σ(0, 0), σ(6, 4), σ(0, 6), σ(0, 4)}

= max{6, 0, 8, 6, 4} = 8.

Hence,

β(Λ(x, y)) − α(Λ(x, y)) = 64−
4

5
> 32 = β(σ(fx, gy)).

Case 3. x ∈ (0, 5) and y ∈ [5, 7). We have

β(σ(fx, gy)) = β(σ(2, 0)) = 32.

Moreover,

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(5, y − 5), σ(2, 5), σ(y − 5, 0), σ(2, y − 5), σ(5, 0)}

= max{|10− y|+ 5, 5, 2y − 10, |7− y|+ 2, 10} = 10.

Then

β(Λ(x, y))− α(Λ(x, y)) = 79 > 32 = β(σ(fx, gy)).

Case 4. x ∈ (0, 5) and y = 0. In this case,

β(σ(fx, gy)) = β(σ(2, 0)) = 32.

Then

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(5, 0), σ(2, 5), σ(0, 0), σ(2, 0), σ(5, 0)}

= max{10, 5, 0, 4, 10}= 10,
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that is,

β(Λ(x, y))− α(Λ(x, y)) = 79 > 32 = β(σ(fx, gy)).

Case 5. x, y ∈ (0, 5). Here,

β(σ(fx, gy)) = β(σ(2, 4)) = 32.

Also,

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(5, 6), σ(2, 5), σ(6, 4), σ(2, 6), σ(5, 4)}

= max{6, 5, 8, 6, 6} = 8.

Then

β(Λ(x, y)) − α(Λ(x, y)) = 64−
4

5
> 32 = β(σ(fx, gy)).

Case 6. x ∈ [5, 7) and y ∈ (0, 5). We have

β(σ(fx, gy)) = β(σ(0, 4)) = 32.

Also,

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(
x+ 5

2
, 6), σ(0,

x+ 5

2
), σ(6, 4), σ(0, 6), σ(

x+ 5

2
, 4)}

= max{6,
x+ 5

2
, 8, 6, |

x+ 5

2
− 4|+

x+ 5

2
} = 8.

Hence,

β(Λ(x, y)) − α(Λ(x, y)) = 64−
4

5
= β(σ(fx, gy)).

Therefore, all conditions of Theorem 2.1 are satisfied. So, the mappings f, g,H and
S have a common fixed point, which is 0.

On the other hand, fX = {0, 2} * SX = {0} ∪ [5, 6) and gX = {0, 4} * HX =
{6}∪ [0, 2). Note that the result of Nazir and Abbas [8] is not applicable because the
hypothesis of containment among ranges of the mappings f, g, S,H in [[8], Theorem
2.1] does not hold here.

Corollary 2.1. Let (X, σ) be a (QPMS). Assume that f, S, g,H : X → X verify
all conditions in Lemma 2.1. Suppose, in addition, that the pairs (f, S) and (g, T )
are w-compatible. Then there exists a unique common fixed point of f , g, H and S.

Proof. From Lemma 2.1, (f, S) and (g,H) share the (CLRSH)-property. All con-
ditions of Theorem 2.1 are fulfilled. Then exists a unique x ∈ X such that fx =
Sx = gx = Hx = x.
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By taking β(t) =
∫ t

0 η(s)ds in Lemma 2.1 and Theorem 2.1, where η : [0,∞) →

[0,∞) is a Lebesgue-integrable summable mapping such that
∫ ǫ

0 η(t)dt > 0 for ǫ > 0,
we state the following.

Corollary 2.2. Let f, S, g and H be self-mappings on a (QPMS) (X, σ) such that

(2.23)

∫ σ(fx,gy))

0

η(s)ds ≤ Λ(x, y)− α(Λ(x, y)),

where Λ(x, y) =
∫max{σ(Sx,Hy),σ(fx,Sx),σ(Hy,gy),σ(fx,Hy),σ(Sx,gy)}

0
η(s)ds. Assume that

(f, S) and (g,H) fulfill the (CLRSH)-property. Then fx = Sx = gx = Hx. Fur-
thermore, if (f, S) and (g, T ) are w-compatible, there exists only one point x ∈ X
so that fx = Sx = gx = Hx = x.

Remark 2.1. Corollary 2.2 extends the paper by Vetro et al. [11] from metric
spaces to (QPMS).
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Abstract. We generalize the notion of consistency in invertibility to Banach algebras
and prove that the set of all elements consistent in invertibility is an upper semiregu-
larity. In the case of bounded liner operators on a Hilbert space, we give a complete
answer when the set of all CI operators will be a regularity. Analogous results are
obtained for Fredholm consistent operators.
Keywords: Banach algebra; invertibility; semiregularity; Hilbert space.

1. Notations, motivations and preliminaries

For a closed subspace M of a Hilbert space H we use the symbol PM to denote
the orthogonal projection onto M. For a given operator A ∈ B(H,K), the symbols
N (A) and R(A) denote the null space and the range of A, respectively, while
n(A) = dimN (A) and d(A) = dimR(A)⊥

The notion of operators consistent in invertibility, CI for short, was introduced by
Gong and Han in [7]. We say that an operator T ∈ B(H) is consistent in invertibility
(CI) if for each A ∈ B(H), AT is invertible if and only if TA is invertible. A
characterization of CI operators is given by the next Theorem:

Theorem 1.1. An operator T ∈ B(H) is CI operator if and only if one of the
three mutually exclusive cases hold:

(i) T is invertible;

(ii) R(T ) is not closed;
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(iii) N (T ) 6= {0} and R(T ) = R(T ) 6= H.

It is easy to see that an operator T ∈ B(H) is not CI if and only if T is left invertible
but not right invertible, or right invertible but not left invertible. The CI spectrum
of T ∈ B(H) is defined by

σCI(T ) = {λ ∈ C : T − λI is not CI}

Results concerning CI operators were obtained in [8, 9] and [1, 2, 10]. It is fairly
easy to see that if A and B are CI operators, then AB is a CI operator, it would
be of interest to determine whether the set of all CI operators is a regularity. We
will prove that in general this is not the case.
The notion of consistency has been generalised, and explored in other cases, such as
Fredholm consistency (FC) ([1, 2]). Using a characterization of FC operators used
in [2] given in the following Theorem we will answer the same questions we did in
the case of CI operators in B(H):

Theorem 1.2. Let T ∈ B(H). Then T if Fredholm consistent (FC) if and only if
one of the following conditions is satisfied:

(i) T is Fredholm,

(ii) R(T ) is closed, n(T ) = d(T ) = ∞,

(iii) R(T ) is not closed.

It is easy to see that an operator T ∈ B(H) is not Fredholms consistent if and only
if T is left Fredholm, but not right Fredhlom, or it is right Fredholm, but not left
Fredholm. Some other recent results on Fredholm operators can be found in

Let us now recall the definition of a regularity (upper semiregularity) in a Banach
algebra:

Definition 1.1. [4] Let A be a Banach algebra. A non-empty subset R of A is
called a regularity if

(1) if a ∈ A and n ∈ N then a ∈ R ⇔ an ∈ R,

(2) if a, b, c, d are mutually commuting elements of A and ac + bd = 1A, then
ab ∈ R ⇔ a ∈ R and b ∈ R.

Definition 1.2. [5] Let A be a Banach algebra. A non-empty subset R of A is
called an upper semiregularity if

(1) if a ∈ A and n ∈ N then a ∈ R ⇒ an ∈ R,

(2) if a, b, c, d are mutually commuting elements ofA and ac+bd = 1A, and a, b ∈ R,
then ab ∈ R.

(3) R contains a neighborhood of the unit element 1A.

Some important examples of regularities include sets of all invertible (left invertible,
right invertible) operators, Fredholm (left Fredholm, right Fredholm) operators etc.



A Note on Operators Consistent in Invertibility 431

2. Consistency in invertibility

We introduce CI elements in Banach algebras in the same manner. Let A be a
Banach algebra, and A−1 the group of all invertible elements. We say that a ∈ A
is consistent in invertibility (CI) if for all c ∈ A

ac ∈ A−1 ⇔ ca ∈ A−1.

First we prove a lemma which gives a characterisation of CI elements similar to the
characterisation of CI operators:

Lemma 2.1. A Banach algebra element a is not CI if and only if a ∈ A−1

l
\A−1

r

or a ∈ A−1
r \ A−1

l
.

Proof. Assume a ∈ A is not CI. Then there exists an element c ∈ A such that
ac ∈ A−1 and ca 6∈ A−1, or ca ∈ A−1 and ac 6∈ A−1. If the first statement is correct,
since ac ∈ A−1 we have that a must be right invertible. If a were left invertible
as well, then c would be invertible, and ca would be invertible as well. From this
contradiction we see that a ∈ A−1

r \A−1

l
. We analogously conclude that in the other

case a ∈ A−1

l
\ A−1

r . If a ∈ A−1

l
\ A−1

r we have that a−1

l
a = 1A and aa1

l
6∈ A−1 for

an arbitrary left inverse of a, so a is not CI. We analogously conclude that a is not
CI when a ∈ A−1

r \ A−1

l
as well. ✷

Theorem 2.1. The set of all CI elements in A is an upper semiregularity.

Proof. If a, b are commuting CI elements and c ∈ A arbitrary we have that

abc is invertible ⇔ bca is invertible ⇔

⇔ cab is invertible

This stronger statement implies that conditions (1), and (2) of Definition 1.2 are
satisfied.
Since invertible elements are CI, and we know that there exists an open neighbor-
hood of 1A where all elements are invertible. We conclude that there exists an open
neighborhood of 1A where all elements are CI. This completes the proof. ✷

As a corollary of the previous Theorem we have:

Corollary 2.1. The set of all CI operators in B(H) is an upper semiregularity

Since all invertible elements in a Banach algebra are CI have that σCI(a) ⊆ σ(a),
where

σCI(a) = {λ ∈ C : λ− a is not CI}.

Recall the following Theorem from [5]:
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Theorem 2.2. [5] Let R ⊂ A be an upper semiregularity. Suppose that R satisfies
the condition

b ∈ R ∩A−1 ⇒ b−1 ∈ R.

Then σR(f(a)) ⊂ f(σR(a)) for all a ∈ A and all locally non-constant functions f
analytic on a neighborhood of σ(a) ∪ σR(a).
Further, σR(f(a)) ⊂ f(σR(a)∪σ(a)) for all functions f analytic on a neighborhood
of σR(a) ∪ σ(a).

Since σCI(a) ⊆ σ(a) (and thus σCI(a) ∪ σ(a) = σ(a)) we get that the following
Theorem holds:

Theorem 2.3. For every a ∈ A σCI(f(a)) ⊆ f(σCI(a)) for all locally non-
constant functions f analytic on a neighborhood of σ(a) ∪ σCI(a) = σ(a), and
f(σCI(a)) ⊆ f(σ(a)) for all functions f analytic on a neighborhood of σ(a).

It is now only natural to ask what further properties does the set of all bounded
linear operators (Banach algebra elements) consistent in invertibility satisfy, and
under which conditions it will be a regularity.
Remark: We from lemma 2.1 we see that

σCI(a) = (σl(a) \ σr(a)) ∪ (σr(a) \ σl(a)).

In the case A = B(H) this implies that the consistency spectrum of a bounded
linear operator can be empty. For example, self-adjoint (normal) operators on
Hilbert spaces will have an empty CI spectrum.

It would be natural to check whether the CI spectrum is closed, and from the
following example we will see that this is generally not the case.

Example 1 Define the operator T on B(l2 ⊕ l2) by

T = 2S ⊕ (I − S∗) : l2 ⊕ l2 → l2 ⊕ l2

where S is the right shift operator on l2. Let (λn)n be a sequence of complex
numbers such that

lim
n→∞

λn = 2, λn ∈ B(0, 2) \B(1, 1),

where B(λ, r) is the open ball with radius r and center λ. Recall that S − λI is
right, but not left invertible for |λ| < 1, and S − λI is left, but not right invertible
for |λ| = 1, and S − λI is invertible for |λ| > 1. We have that each λn ∈ σCI(T )
because 2S − λnI is right, but not left invertible, and (1 − λn)I − S∗ is invertible,
T is left, but not right invertible. However, since 2S− 2I is not right invertible and
I − S∗ − 2I = −(S∗ + I) is not left invertible (as the Hilbert adjoint of an operator
which is not right invertible), we see that T − 2I is neither left nor right invertible,
so T − 2I is CI. We get that σCI(T ) is not closed.

It is easy to see that T ∈ B(H) is CI if and only T n is CI for n ≥ 1 so it is
natural to investigate whether the set of all CI operators forms a regularity. The
following examples will serve as motivation for the answer:
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Example: 2. Let T and PM be operators B(l2) defined in the following way,
T = S2, where the S is the right shift operator on l2 and PM the orthogonal
projection on the subspace

M = {x = (x1, x2, . . . , xn, . . . ) ∈ l2 : x2n−1 = x2n, n ∈ N}.

Let x = (x1, x2, . . . , xn, . . . ) ∈ l2 be arbitrary, then (x1, x1, x2, x2, . . . , xn, xn, . . . ) is
an elements of M , so M is a non-trivial subspace of l2. It is easy to verify that M
is closed. It is easy to see that T commutes with PM and PM⊥ . We have that

2PM⊥ + 2PM − T = 2I − T,

which is invertible. For an x ∈ l2 we have

(2PM − T )x = (x1 + x2, x1 + x2, x3 + x4 − x1, x3 + x4 − x2, . . . ).

Since (1, 0, . . . , 0, . . . ) 6∈ R(2PM − T ) we have that 2PM − T is not right invertible.
Assume now that (2PM − T )x = 0 for some x = (x1, x2, . . . ) ∈ l2. This means that

x1 + x2 = 0,

x3 + x4 − x1 = 0,

x3 + x4 − x2 = 0,

...

From the first three equations we get that x1 = x2 = 0, similarly we conclude that
x3 = x4 = 0, and then x2k−1 = x2k = 0, for k ∈ N. It is easy to establish that
2PM −T has closed range. This means that 2PM −T is left, but not right invertible.
It is easy to check that (2I − T )−1 commutes with PM⊥ and 2PM − T . Finally we
have the following:

(2I − T )−1PM⊥ + (2I − T )−1(2PM − T ) = I,

and all the operators in question commute, PM⊥ is a CI operator since
N (PM ) = R(PM )⊥ 6= {0}, 2PM −T is not a CI operator because he is left but not
right invertible and

2PM⊥(2PM − T ) = (2PM − T )(2PM⊥) = −2TPM⊥

is neither left nor right invertible, so it is a CI operator . This means that condition
(2) in Definition (1.1) is not satisfied, so the set of all CI operators on l2 is not a

regularity.
Example 3. Any complex matrix T ∈ C

n×n is a CI operator since it is either
invertible or {0} 6= N (T ),R(T ) 6= C

n. This means that the set of all CI matrices
coincides with C

n×n (which is equivalent to saying σCI(T ) = Ø for all T ∈ C
n×n)

We can now characterize when the set of all CI operators on a Hilbert space
will be a regularity
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Theorem 2.4. The set of all CI operators in B(H) on a Hilbert space H is a
regularity of and only if H is finite dimensional.

Proof. If H is finite dimensional, it is isomorphic to C
n×n for some n ∈ N. From

the previous example we see that in this case the set of all CI operators will forms
a regularity.
Conversely, assume that H is not finite dimensional. If H is separable, then it is
isomorphic to l2 so we can conclude from Example 2 that the set of all CI operators
in B(H) is not a regularity. If H is not separable, then it contains a separable closed
subspace K. We have that H = K ⊕ K⊥. We also know that K is isomorphic to
l2. From Example 2 we have a pair of commuting operators which do not satisfy
condition 2. from Definition 1.1. Without loss of generality let us denote them by
2P⊥

M
and 2PM − T as well. Then the operators

A = 2P⊥

M ⊕ 0, B = 2PM − T ⊕ IK⊥

commute, and there exist operators C,D such that AC+BD = IH which commute
with A and B as well. Furthermore, A is a CI operator, B is not a CI operator,
but their product is a CI operator. This is in contradiction with condition 2. of
Definition 1.1, so the set of all CI operators is not a regularity. ✷

3. Fredholm consistency

As in the case of CI operators, the notion of Fredholm consistency gan be gener-
alized to Banach algebras as well. In [6] T -Fredholm elements of a Banach algebra
were introduced. If T : A → B is a bounded algebra homomorphism between com-
plex Banach algebras A and B where 1A 6= 0A(1B 6= 0B) we say that a ∈ A is T -
Fredholm (left T -Fredholm, right T -Fredholm) if and only if T (a) ∈ B−1(B−1

l
,B−1

r ).
We can now say that a ∈ A is T -Fredhom consistent (T -FC) if for each c ∈ A

ac is T − Fredholm ⇔ ca is T − Fredholm.

In a matter analogous to Lemma 2.1 and Theorems 2.1 and 3.3 we get the
following results:

Lemma 3.1. A Banach algebra element a is not T -FC if and only if a is left
T -Fredholm but not right T -Fredholm, or a is right T -Fredholm but not left T -
Fredholm.

Proof. Assume a ∈ A is not T − FC. Then there exists an element c ∈ A
such that T (ac) ∈ B−1 and T (ca) 6∈ B−1, or T (ca) ∈ B−1 and T (ac) 6∈ B−1. If
the first statement is correct, since T (ac) = T (a)T (c) ∈ B−1 we have that T (a)
must be right invertible. If T (a) were left invertible as well, then T (c) would be
invertible, and T (ca) would be invertible as well. From this contradiction we see
that T (a) ∈ B−1

r \ B−1

l
, which means that a is right T-Fredholm but not left T-

Fredholm. We analogously conclude that in the other case T (a) ∈ B−1

l
\ B−1

r . If
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a is left T-Fredholm but not right T-Fredholm we have that T (a) ∈ B−1

l
\ B−1

r we
have that T (a)−1

l
T (a) = 1B and T (a)T (a)−1

l
6∈ B−1 for an arbitrary left inverse of

T (a), so a is not T − FC. We analogously conclude that a is not T − FC when a
is left T-Fredholm but not right T-Fredholm. ✷

Corollary 3.1. Let A and B be complex Banach algebras such that 1A 6= 0A(1B 6=
0B), and T : A → B a bounded algebra homomorphism. Then, a ∈ A is T − FC if
and only if T (a) is CI.

Theorem 3.1. Let A and B be complex Banach algebras such that 1A 6= 0A(1B 6=
0B), and T : A → B a bounded algebra homomorphism. The set of all T -Fredholm
consistent elements is an upper semiregularity.

Proof. Let a, b ∈ A be commuting T-Fredholm consistent elements and c ∈ A
arbitrary. We have that

abc is T-Fredholm ⇔ bca is T-Fredholm ⇔

⇔ cab T-Fredholm.

Since invertible elements are T −FC, and we know that there exists an open neigh-
borhood of 1A where all elements are invertible. We conclude that there exists an
open neighborhood of 1A where all elements are T −FC. This completes the proof.
✷

Corollary 3.2. The set of all Fredholm consistent operators in B(H) is an upper
semiregularity.

Since invertible elements of a Banach algebra are T -FC we see that a Theorem
analogous to Theorem 2.3 will hold for the T -FC spectrum as well where

σTFC(a) = {λ ∈ C : a− λ is not T − FC}

Theorem 3.2. For every a ∈ A σTFC(f(a)) ⊆ f(σTFC(a)) for all locally non-
constant functions f analytic on a neighborhood of σ(a) ∪ σTFC(a) = σ(a), and
f(σCI(a)) ⊆ f(σ(a)) for all functions f analytic on a neighborhood of σ(a).

Again, in the case A = B(H) and when we observe Fredholm operators, self-
adjoint operators have an empty FC spectrum. The following examples will show
that the set of all Fredholm consistent operators in B(H) is not generally a regularity,
and that the FC spectrum is generally not closed:
Example 4. Let A ∈ B(l2) be defined in the following way:

Ax = (x1, 0, x2, 0, x3, 0, . . . ), x = (x1, x2, x3, . . . ) ∈ l2.
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In other words, Aen = e2n−1 where en is the n-th vector in the standard orthonormal
basis. It is easy to see that A is left invertible, but not right invertible and d(A) = ∞.
This means that A is left Fredholm but not right Fredholm so A is not Fredholm
consistent. On the other hand for

(I −A)x = (0, x2, x3 − x2, x4, x5 − x3, x6, . . . ), x = (x1, x2, x3, . . . ) ∈ l2

we have

N (I −A) = R(I −A)⊥ = {x ∈ l2 : xn = 0, n ≥ 2}.

The last part in the equation follows from the fact that for

(I −A∗)x = (0, x2 − x3, x3 − x5, x4 − x7, x5 − x9, . . . )

we have that x ∈ N (I − A∗) if

xn = x2n−1 = x4n−3 = ...

so

N (I −A∗) = {x ∈ l2 : xn = 0, n ≥ 2}.

We see n(I − A) = d(I − A) = 1 which means that I − A is Fredholm, and thus
FC. Now we define an operator T ∈ B(l2 ⊕ l2) as

T = A⊕ Il2 .

We have that T is also not Fredholm consistent and that

Il2⊕l2 − T = (Il2 −A)⊕ 0

so n(Il2⊕l2 − T ) = d(Il2⊕l2 − T ) = ∞ which means that I − T is Fredholm con-
sistent in B(l2 ⊕ l2). For (Il2⊕l2 − T )T we also have that n((Il2⊕l2 − T )T ) =
d((Il2⊕l2 − T )T ) = ∞ so this operator is Fredholm consistent in B(l2 ⊕ l2) as well.
Finally, since (Il2⊕l2 − T ) + T = Il2⊕l2 , and Il2⊕l2 − T and T trivially commute we
see that the condition 2. from Definition 1.1 isn’t satisfied from which we conclude
that the set of all Fredholm consistent operators in B(l2 ⊕ l2) is not a regularity.
Example 5. Let H be separable Hilbert space. Then H can be represented
as an orthogonal direct sum of closed infinite dimensional subspaces Mn, n ∈ N

( H =
⊕∞

n=1
Mn). To see that such subspaces exists we can do the following. Since

H is separable,let M1 be a closed infinite dimensional subspace of H with infinite
codimension. We have that M⊥

1 is also a separable infinite dimensional Hilbert
space. Let M2 be the closed subspace of M⊥

1 isomorphic to the subspace M1. Con-
tinuing this process we construct the subspaces Mn, n ∈ N. Let (λn)n be a sequence
of complex numbers that converges to 0. For each n ∈ N there exists a bounded
linear operator Tn ∈ B(Mn) such that Tn, Tn − λm, m ∈ N \ {n} are invertible
and n (Tn − λn) = ∞ and R (Tn − λn) = Mn. This means that λn ∈ σFC (Tn)
and 0, λm 6∈ σFC (Tn) , m ∈ N \ {n}. Furthermore we can select these operators in
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such a way that the family of operators Tn is uniformly bounded. We have that
T =

⊕∞

n=1
Tn is a invertible bounded linear operator on H such that

n (T − λn) = ∞, R (T − λn) = H, n ∈ N.

This means that λn ∈ σFC (T ) , n ∈ N, but 0 6∈ σFC (T ). We conclude that σFC (T )
is not closed. To see that the operators Tn indeed exists we can construct them
now. For each n ∈ N there exists rn > 0 such that λm 6∈ B(λn, rn) for m 6= n. It
follows that |rn| < |λn| and that 0 6∈ B(λn, rn). Furthermore, for each n ∈ N there
exists a subspace Kn such that Mn = Kn ⊕ K⊥

n and dimKn = dimK⊥
n = ∞. We

have that Kn is isomorphic to Mn, let us denote the isomorphism by J ′
n. Without

loss of generality we can assume that J ′
n is unitary. This isomorphism is naturally

extended to Jn ∈ B(Mn) by

Jnx =

{

J ′
nx, x ∈ Kn

0, x ∈ K⊥
n

.

We have that N (Jn) = K⊥
n , and R(Jn) = Mn. Define Tn by

Tn = rnJn + λn.

We have that Tn − λn = rnJn, so n (Tn − λn) = n (Jn) = ∞ and
R (Tn − λn) = R(Jn) = Mn, so λn ∈ σFC (Tn). Since |λn|, |λn − λm| > |rn| =
‖rnJn‖ for m 6= n we have that Tn and Tn − λm, m 6= n are invertible, and
‖Tn‖ ≤ rn +λn ≤ 1+M for n ∈ N where M is any upper bound for the convergent
sequence (λn)n which proves that the family (Tn)n is uniformly bounded.

Since σFC(T ) = Ø for all T ∈ B(H) when H is finite dimensional the set of
Fredholm consistent operators will coincide with B(H) and will thus be a regularity.
We have that the following Theorem analogous to Theorem 2.4 holds:

Theorem 3.3. The set of all Fredholm consistent operators in B(H) on a Hilbert
space H is a regularity of and only if H is finite dimensional.
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18000 Nǐs, Serbia

marko.kostadinov@pmf.edu.rs



FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 34, No 3 (2019), 439–457

https://doi.org/10.22190/FUMI1903439B

NONLINEAR SINGULAR STURM-LIOUVILLE PROBLEMS WITH

IMPULSIVE CONDITIONS

Bilender P. Allahverdiev and Hüseyin Tuna
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Abstract. In this paper, we consider a non-linear impulsive Sturm-Liouville problem
on semiinfinite intervals in which the limit-circle case holds at infinity for THE Sturm-
Liouville expression. We prove the existence and uniqueness theorems for this problem.
Keywords: Impulsive Sturm-Liouville problem; Singular point; Weyl limit-circle case;
Completely continuous operator; Fixed point theorems.

1. Introduction

The theory of differential equations with impulses describes processes that are
subjected to abrupt changes in their states at certain moments. Such processes
arise in many fields of science and technology: chemical technology, biotechnology,
theoretical physics, industrial robotics, etc. For an introduction to the basic the-
ory of differential equations with impulses see Bainov and Simeonov ([3], [4], [5]),
Benchohra, Henderson and Ntouyas ([6]), Lakshmikantham, Bainov and Simeonov
([18]) Samoilenko and Perestyuk ([31]) and the references therein.

Recently, much work has been done on the existence of solutions to impulsive
Sturm-Liouville equations; for regular impulsive Sturm-Liouville problems see [2,
7, 9, 12-15, 25-27, 30, 33], for singular impulsive Sturm-Liouville equations see [1,
10, 18-19, 21-24, 29]. However, there is no paper concerned with the existence of
solutions to singular impulsive non-linear Sturm-Liouville problems that the limit-
circle case holds at infinity. In this paper, we fill the gap by using a special way to
pose boundary conditions at infinity.

Let us consider the following nonlinear Sturm-Liouville equation

(1.1) l (y) := −(p(x)y′)′ + q(x)y = f (x, y) , x ∈ I,

Received September 12, 2018; accepted February 25, 2019
2010 Mathematics Subject Classification. Primary 34B15,34B16; Secondary 34B24,34B40
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where I := I1 ∪ I2, I1 := [a, c), I2 := (c,+∞), −∞ < a < c < +∞, and y = y (x)
is a desired solution.

Let L2(I) be a Hilbert space which is composed of all complex-valued functions
y satisfying

∫ ∞

a

|y (x)|
2
dx <∞

in relation to the inner product

(y, z) :=

∫ ∞

a

y (x) z (x)dx.

Denote by D the linear set of all functions y ∈ L2(I) such that y, py′ are locally
absolutely continuous functions on I, one-sided limits y(c±), (py′)(c±) exist and are
finite and l(y) ∈ L2(I). The operator L defined by Ly = l(y) is called the maximal
operator on L2(I).

For two arbitrary functions y, z ∈ D, we have Green’s formula

(1.2)

∫ ∞

a

l (y) zdx−

∫ ∞

a

yl (z)dx = [y, z]c− − [y, z]a + [y, z]∞ − [y, z]c+,

where [y, z]x = y(x)(pz′)(x) − (py′)(x)z(x) (x ∈ I) .

We assume that the following conditions are satisfied.

(A1) The points a and c are regular for the differential expression l. p and q
are real-valued, Lebesgue measurable functions on I and 1

p
, q ∈ L1

loc(I). The point

c is regular if 1

p
, q ∈ L1[c− ǫ, c+ ǫ] for some ǫ > 0. Moreover, the functions p and

q are such that all solutions of the the equation

(1.3) l (y) = 0

belong to L2 (I) , i.e., Weyl limit-circle case holds for the differential expression l
(see [1-3]).

(A2) The function f (x, y) is real-valued and continuous in (x, ζ) ∈ I × R, and

(1.4) |f (x, ζ)| ≤ g (x) + ϑ |ζ|

for all (x, ζ) in I × R, where g (x) ≥ 0, g ∈ L2 (I) , and ϑ is a positive constant.

If we define the operator F taking each function y(.) to the function f(., y(.)),
then the condition (4) is necessary and sufficient for F to map L2 (I) into itself (see
([17], Chapter 1)).

Denote by

u := u (x) =

{

u(1) (x) , x ∈ I1
u(2) (x) , x ∈ I2

, v := v (x) =

{

v(1) (x) , x ∈ I1
v(2) (x) , x ∈ I2

the solutions to the equation (1.3) satisfying the initial conditions

(1.5) u(1) (a) = 0, (pu(1)′) (a) = 1, v(1) (a) = −1, (pv(1)′) (a) = 0,
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and impulsive conditions

(1.6)
U (c+) = CU (c−) , U(x) :=

(

u (x)
(pu′) (x)

)

,

V (c+) = CV (c−) , V (x) :=

(

v (x)
(pv′) (x)

)

,

C ∈M2 (R) , detC = ρ > 0,

where M2 (R) denotes the 2× 2 matrices with entries from R.

Now, we introduce the Hilbert spaceH = L2 (I1)
·

+L2 (I2) with the inner product

〈y, z〉 :=

∫ c

a

y(1)z(1)dx+ γ

∫ ∞

c

y(2)z(2)dx, γ =
1

ρ
,

where

y(x) =

{

y(1)(x), x ∈ I1
y(2)(x), x ∈ I2

, z(x) =

{

z(1)(x), x ∈ I1
z(2)(x), x ∈ I2.

We setW
(i)
x :=Wx

(

u(i), v(i)
)

= u(i)(x)(pv(i)′)(x)−(pu(i)′)(x)v(i)(x) (x ∈ Ii, i=1, 2) .

Then the equality W
(1)
x = ρW

(2)
x holds. For convenience, we denote Wx :=W

(1)
x =

ρW
(2)
x . Since the wronskian of any two solutions of Equation (1.3) is constant, we

have Wx (u, v) = 1. Then, u and v are linearly independent and they form a fun-
damental system of solutions of equation (1.3). By the condition A1, we get u,
v ∈ L2 (I) and moreover, u, v ∈ D. So, the values [y, u]∞ and [y, v]∞ exist and are
finite for every y ∈ D. By using Green’s formula (1.2) and the conditions (1.5)-(1.6),
we can get

(1.7)
[y, u]∞ = y (a) +

∫∞

a
u (x) l(y (x))dx,

[y, v]∞ = (py′) (a) +
∫∞

a
v (x) l(y (x))dx.

Now, we will add to problem (1.1) the boundary conditions

(1.8)
y (a) cosα+ (py′) (a) sinα = d1,
[y, u]∞ cosβ + [y, v]∞ sinβ = d2,

and impulsive conditions

(1.9) Y (c+) = CY (c−) , Y =

(

y
py′

)

, detC = ρ > 0,

where α, β ∈ R, and d1, d2 are arbitrary given real numbers, and

(A3) ω := cosα sinβ − cosβ sinα 6= 0.

Since the function y in (1.8) satisfies Equation (1.1), we have

[y, u]∞ = y (a) +

∫ ∞

a

u (x) f (x, y (x)) dx,

[y, v]∞ = (py′) (a) +

∫ ∞

a

v (x) f (x, y (x)) dx.
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2. Green’s function

In this section, we construct an appropriate Green’s function. So, we will reduce
the boundary-value problem (1.1), (1.8), (1.9) to a fixed point problem.

Let us consider the linear boundary value problem

(2.1) −(p(x)y′)′ + q(x)y = h (x) , x ∈ I, h ∈ H,

(2.2)

y (a) cosα+ (py′) (a) sinα = 0,
[y, u]∞ cosβ + [y, v]∞ sinβ = 0, α, β ∈ R,

Y (c+) = CY (c−) , Y :=

(

y
py′

)

, detC = ρ > 0,















where y is a desired solution, u and v are solutions to the equation (1.3) under the
conditions (1.5)-(1.6).

Define

(2.3) ϕ (x) = cosαu (x) + sinαv (x) , ψ (x) = cosβu (x) + sinβv (x) ,

where Wx (ϕ, ψ) = ω. It is clear that these functions are solutions to the equation
(1.3) and are in H. Further, we have

[ϕ, u]x = ϕ (a) = − sinα, [ϕ, v]x = (pϕ)
′
(a) = cosα, (x ∈ I1),

[ψ, u]x = ψ (a) = − sinβ, [ψ, v]x = (pψ)
′
(a) = cosβ, (x ∈ I1),

[ψ, u]∞ = −ρ sinβ, [ψ, v]∞ = ρ cosβ,

Φ (c+) = CΦ (c−) , Φ(x) :=

(

ϕ (x)
(pϕ′) (x)

)

,

Ψ(c+) = CΨ(c−) , Ψ(x) :=

(

ψ (x)
(pψ′) (x)

)

.

Let us introduce the function

(2.4) G (x, t) =

{

ϕ(x)ψ(t)

ω
, if a ≤ x ≤ t <∞, x 6= c, t 6= c,

ϕ(t)ψ(x)

ω
, if a ≤ t ≤ x <∞, x 6= c, t 6= c.

G (x, t) is called the Green’s function of the boundary-value problem (2.1)-(2.2).
Since ϕ, ψ ∈ H, we have

(2.5)

∫ ∞

a

∫ ∞

a

|G (x, t)|
2
dxdt <∞,

i.e., G (x, t) is a Hilbert-Schmidt kernel.

Theorem 2.1. The function

(2.6) y (x) =

∫ c

a

G (x, t)h (t) dt+ γ

∫ ∞

c

G (x, t) h (t) dt, x ∈ I,

is the solution of the boundary-value problem (2.1)-(2.2).
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Proof. By a variation of constants formula, the general solution of the equation
(2.1) has the form

(2.7) y (x) =











































































k1ϕ
(1) (x) + k2ψ

(1) (x)

+ψ(1)
(x)

ω

∫ x

a
ϕ(1) (t)h (t) dt

+ϕ(1)
(x)

ω

∫ c

x
ψ(1) (t)h (t) dt, x ∈ I1,

k3ϕ
(2) (x) + k4ψ

(2) (x)

+ γ

ω
ψ(2) (x)

∫ x

c
ϕ(2) (t)h (t) dt

+ γ

ω
ϕ(2) (x)

∫∞

x
ψ(2) (t)h (t) dt, x ∈ I2,

where k1, k2, k3 and k4 are arbitrary constants.

By (2.7), we get

(py)′ (x) =



















































































k1
(

pϕ(1)
)′

(x) + k2(pψ
(1))′ (x)

+
(pψ(1))′(x)

ω

∫ x

a
ϕ(1) (t)h (t) dt

+
(pϕ(1))′(x)

ω

∫ c

x
ψ(1) (t)h (t) dt, x ∈ I1,

k3
(

pϕ(2)
)′

(x) + k4(pψ
(2))′ (x)

+ γ

ω

(

pψ(2)
)′

(x)
∫ x

c
ϕ(2) (t)h (t) dt

+ γ

ω

(

pϕ(2)
)′

(x)
∫∞

x
ψ(2) (t)h (t) dt, x ∈ I2.

Hence, we have

(2.8)

y (a) = k1ϕ
(1) (a) + k2ψ

(1) (a) + ϕ(1)
(a)

ω

∫ c

a
ψ(1) (t)h (t) dt

= −k1 sinα− k2 sinβ − 1

ω
sinα

∫ c

a
ϕ(1) (t) h (t) dt,

(py)
′
(a) = k1

(

pϕ(1)
)′

(a) + k2(pψ
(1))′ (a)

+ 1

ω

(

pϕ(1)
)′

(a)
∫ c

a
ψ(1) (t) h (t) dt

= k1 cosα+ k2 cosβ + 1

ω
cosα

∫ c

a
ϕ(1) (t)h (t) dt.

Substituting (2.8) into (2.2), we get

k2 (cosα sinβ − sinα cosβ) = 0, k2ω = 0,
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i.e., k2 = 0. Further, we have

[y, u]x = y(x)(pu′)(x) − (py′)(x)u(x)

=























































k1[ϕ
(1), u]x +

1

ω
[[ψ(1) (x) , u]x

∫ x

a
ϕ(1) (t)h (t) dt

+ 1

ω
[ϕ(1) (x) , u]x

∫ c

x
ψ(1) (t)h (t) dt, x ∈ I1,

k3[ϕ
(2), u]x + k4[ψ

(2), u]x

+ γ

ω
[ψ(2), u]x

∫ x

c
ϕ(2) (t)h (t) dt

+ γ
ω
[ϕ(2), u]x

∫∞

x
ψ(2) (t)h (t) dt, x ∈ I2.

Thus

[y, u]∞ = −k3ρ sinα− k4ρ sinβ −
γ

ω
ρ sinβ

∫ ∞

c

ϕ(2) (t)h (t) dt.

Similarly, we get

[y, v]x = y(x)(pv′)(x) − (py′)(x)v(x)

=







































































k1[ϕ
(1), v]x

+ 1

ω
[[ψ(1) (x) , v]x

∫ x

a
ϕ(1) (t)h (t) dt

+ 1

ω
[ϕ(1) (x) , v]x

∫ c

x
ψ(1) (t)h (t) dt, x ∈ I1,

k3[ϕ
(2), v]x + k4[ψ

(2), v]x

+ γ

ω
[ψ(2), v]x

∫ x

c
ϕ(2) (t)h (t) dt

+ γ
ω
[ϕ(2), v]x

∫∞

x
ψ(2) (t)h (t) dt, x ∈ I2,

and

[y, v]∞ = k3ρ cosα+ k4ρ cosβ

+
γ

ω
ρ cosβ

∫ ∞

c

ϕ(2) (t)h (t) dt.

From the conditions (2.2), we obtain

k3 (sinα cosβ − cosα sinβ) = 0.
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Hence, k3 = 0. Similarly, we have

Y (c+) =

(

y (c+)
(py′) (c+)

)

=

(

k4ψ
(2) (c+)

k4(pψ
(2))′ (c+)

)

+





γ

ω
ϕ(2) (c+)

∫∞

c
ψ(2) (t)h (t) dt

γ

ω

(

pϕ(2)
)′

(c+)
∫∞

c
ψ(2) (t)h (t) dt





= k4

(

ψ(2) (c+)

(pψ(2))′ (c+)

)

+
γ

ω

∫ ∞

c

ψ(2) (t)h (t) dt

(

ϕ(2) (c+)
(

pϕ(2)
)′

(c+)

)

= k4Ψ(c+) +

{

γ

ω

∫ ∞

c

ψ(2) (t)h (t) dt

}

Φ (c+)

and

Y (c−) =

(

y (c−)
(py′) (c−)

)

=

(

k1ϕ
(1) (c−)

k1
(

pϕ(1)
)′

(c−)

)

+







ψ(1)
(c−)

ω

∫ c

a
ϕ(1) (t)h (t) dt

(pψ(1))
′
(c−)

ω

∫ c

a
ϕ(1) (t)h (t) dt







= k1

(

ϕ(1) (c−)
(

pϕ(1)
)′

(c−)

)

+
1

ω

∫ c

a

ϕ(1) (t)h (t) dt

(

ψ(1) (c−)
(

pψ(1)
)′

(c−)

)

= k1Φ (c−) +

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt

}

Ψ(c−) .

By the conditions (2.2), we obtain

k4Ψ(c+) +

{

γ

ω

∫ ∞

c

ψ(2) (t)h (t) dt

}

Φ (c+)

= C

{

k1Φ (c−) +

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt

}

Ψ(c−)

}

.
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Using the conditions (2.) and (2.), we get

Φ (c−)

{

γ

ω

∫ ∞

c

ψ(2) (t)h (t) dt− k1

}

= Ψ(c−)

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt− k4

}

,

(

ϕ(1) (c−)
(pϕ(1)′) (c−)

){

γ

ω

∫ ∞

c

ψ(2) (t)h (t) dt− k1

}

=

(

ψ(1) (c−)
(pψ(1)′) (c−)

){

1

ω

∫ c

a

ϕ(1) (t)h (t) dt− k4

}

.

So, we have the following linear equation system

k4ψ
(1) (c−)− k1ϕ

(1) (c−)

=

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt

}

ψ(1) (c−)

−

{

γ

ω

∫ ∞

c

ψ(2) (t)h (t) dt

}

ϕ(1) (c−) ,

k4(pψ
(1)′) (c−)− k1(pϕ

(1)′) (c−)

=

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt

}

(pψ(1)′) (c−)

−

{

γ

ω

∫ ∞

c

ψ(2) (t)h (t) dt

}

(pϕ(1)′) (c−) ,
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i.e.,
(

ψ(1) (c−) ϕ(1) (c−)
(pψ(1)′) (c−) (pϕ(1)′) (c−)

)(

k4
−k1

)

=

(

ψ(1) (c−) ϕ(1) (c−)

(pψ(1)′) (c−) (pϕ(1)′) (c−)

)

×





1

ω

∫ c

a
ϕ(1) (t)h (t) dt

− γ

ω

∫∞

c
ψ(2) (t)h (t) dt



 .

Hence, we have the following determinant of this linear equation system
∣

∣

∣

∣

ψ(1) (c−) ϕ(1) (c−)

(pψ(1)′) (c−) (pϕ(1)′) (c−)

∣

∣

∣

∣

= −ω.

Since this determinant is different from zero, the solution of this system is unique.
If we solve this system, we have the following equalities

k1 =
γ

ω

∫ ∞

c

ψ(2) (t)h (t) dt, k4 =
1

ω

∫ c

a

ϕ(1) (t)h (t) dt.

From what has already been done, we have

y (x) =











































































ϕ(1) (x) γ
ω

∫∞

c
ψ(2) (t)h (t) dt

+ψ(1)
(x)

ω

∫ x

a
ϕ(1) (t)h (t) dt

+ϕ(1)
(x)

ω

∫ c

x
ψ(1) (t)h (t) dt, x ∈ I1,

ψ(2) (x) 1

ω

∫ c

a
ϕ(1) (t)h (t) dt

+ γ
ω
ψ(2) (x)

∫ x

c
ϕ(2) (t)h (t) dt

+ γ

ω
ϕ(2) (x)

∫∞

x
ψ(2) (t)h (t) dt, x ∈ I2,

i.e., (2.4) and (2.6) hold.

Thus we have a

Theorem 2.2. The unique solution to the equation (2.1) under the conditions
(1.8)-(1.9) is given by the formula

y (x) = w (x) + 〈G (x, .) , h(.)〉,

where

w (x) =
d1
ω
ϕ (x)−

d2
ω
ψ (x) .
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Proof. By the conditions (2.)-(2.), the function w (x) is a unique solution of the
equation (1.3) satisfying the conditions (1.8)-(1.9). By Theorem 1 the function
〈G (x, .) , h(.)〉 a unique solution to the equation (2.1) satisfying the conditions (2.2).
This finishes the proof.

From Theorem 2, the boundary-value problem (1.1), (1.8), (1.9) in H is equiv-
alent to the non-linear integral equation

(2.9) y (x) = w (x) + 〈G (x, .) , f (., y (.))〉, x ∈ I,

where the functions w (x) and G (x, t) are defined above. Hence, we shall study the
equation (2.9).

By (1.4) and (2.5), we can define the operator T : H → H by the formula

(2.10) (Ty) (x) = w (x) + 〈G (x, .) , f (., y (.))〉, x ∈ I,

where y, w ∈ H. Then the equation (2.9) can be written as y = Ty.

Now, we search the fixed points of the operator T because it is equivalent to
solving the equation (2.9).

3. The fixed points of the operator T

In this section, we investigate the fixed points of the operator T by using the
following Banach fixed point theorem:

Definition 3.1. [[16]]Let A be a mapping of a metric space R into itself. Then x
is called a fixed point of A if Ax = x. Suppose there exists a number α < 1 such
that

ρ (Ax,Ay) ≤ αρ (x, y)

for every pair of points x, y ∈ R. Then A is said to be a contraction mapping.

Theorem 3.1. [16] Every contraction mapping A defined on a complete metric
space R has a unique fixed point.

Theorem 3.2. Suppose that the conditions (A1), (A2) and (A3) are satisfied.
Further, let the function f (x, y) satisfy the following Lipschitz condition: there
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exists a constant K > 0 such that

∫ c

a

∣

∣

∣f (1)

(

x, y(1) (x)
)

− f (1)

(

x, z(1) (x)
)∣

∣

∣

2

dx

+ γ

∫ ∞

c

∣

∣

∣f (2)

(

x, y(2) (x)
)

− f (2)

(

x, z(2) (x)
)∣

∣

∣

2

dx

≤ K2

(∫ c

a

∣

∣

∣y(1) (x) − z(1) (x)
∣

∣

∣

2

dx+ γ

∫ ∞

c

∣

∣

∣y(2) (x)− z(2) (x)
∣

∣

∣

2

dx

)

= K2 ‖y − z‖
2

for all y, z ∈ H. If

(3.1) K

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt+ γ

∫ ∞

c

∫ ∞

c

|G (x, t)|
2
dxdt

)

< 1,

then the boundary-value problem (1.1), (1.8), (1.9) has a unique solution in H.

Proof. It suffices to prove that the operator T is a contraction operator. For y, z ∈
H, we have

|Ty (x)− Tz (x)|
2
= |〈G (x, .) , [f (., y (.))− f (., z (.))]〉|

2

≤ ‖G (x, .)‖
2
‖f (., y (.))− f (., z (.))‖

2

≤ K2 ‖G (x, .)‖2 ‖y − z‖2 , x ∈ I.

Thus, we get

‖Ty − Tz‖ ≤ α ‖y − z‖ ,

where

α = K

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt+ γ

∫ ∞

c

∫ ∞

c

|G (x, t)|
2
dxdt

)
1
2

< 1,

i.e., T is a contraction mapping.

Now, our next claim is that the function f (x, y) satisfies a Lipschitz condition
on a subset of H but not of the whole space.

Theorem 3.3. Suppose that the conditions (A1), (A2) and (A3) are satisfied. In
addition, let the function f (x, y) satisfy the following Lipschitz condition: there
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exist constants M , K > 0 such that

∫ c

a

∣

∣

∣f (1)

(

x, y(1) (x)
)

− f (1)

(

x, z(1) (x)
)∣

∣

∣

2

dx

+ γ

∫ ∞

c

∣

∣

∣f (2)

(

x, y(2) (x)
)

− f (2)

(

x, z(2) (x)
)∣

∣

∣

2

dx

≤ K2

(∫ c

a

∣

∣

∣y(1) (x) − z(1) (x)
∣

∣

∣

2

dx+ γ

∫ ∞

c

∣

∣

∣y(2) (x)− z(2) (x)
∣

∣

∣

2

dx

)

= K2 ‖y − z‖2

for all y and z in SM = {t ∈ H : ‖t‖ ≤M} , where K may depend on M. If

{∫ c

a

∣

∣

∣
w(1) (x)

∣

∣

∣

2

dx+ γ

∫ ∞

c

∣

∣

∣
w(2) (x)

∣

∣

∣

2

dx

}1/2

+

(∫ c

a

∫ c

a

|G (x, t)|2 dxdt+ γ

∫ ∞

c

∫ ∞

c

|G (x, t)|2 dxdt

)
1
2

× sup
y∈SM











∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)
(

t, z(1) (t)
)∣

∣

2
dt

+γ
∫∞

c

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)
(

t, z(2) (t)
)∣

∣

2
dt











1/2

≤M

and

(3.2) K

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt + γ

∫ ∞

c

∫ ∞

c

|G (x, t)|
2
dxdt

)
1
2

< 1,

then the boundary-value problem (1.1), (1.8), (1.9) has a unique solution with

∫ c

a

∣

∣

∣y(1) (x)
∣

∣

∣

2

dx+ γ

∫ ∞

c

∣

∣

∣y(2) (x)
∣

∣

∣

2

dx ≤M2.

Proof. It is clear that SM is a closed set of H. We first prove that the operator T
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maps SM into itself. For y ∈ SM we have

‖Ty‖ = ‖w (x) + 〈G (x, .) , f (., y (.))〉‖ ≤ ‖w‖ + ‖〈G (x, .) , f (., y (.))〉‖

≤ ‖w‖ +

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt + γ

∫ ∞

c

∫ ∞

c

|G (x, t)|
2
dxdt

)
1
2

× sup
y∈SM











∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)
(

t, z(1) (t)
)∣

∣

2
dt

+γ
∫∞

c

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)
(

t, z(2) (t)
)∣

∣

2
dt











1/2

≤M.

Consequently, T : SM → SM .

We can now proceed analogously to the proof of Theorem 5. So, we can get

‖Ty − Tz‖ ≤ α ‖y − z‖ , y, z ∈ SM .

If we apply the Banach fixed point theorem, then we obtain a unique solution of
the boundary-value problem (1.1), (1.8), (1.9) in SM .

4. An existence theorem without uniqueness

In this section, we get an existence theorem without uniqueness of solution. There-
fore, we will use the following Schauder fixed point theorem:

Definition 4.1. [[11]]An operator acting in a Banach space is said to be com-
pletely continuous if it is continuous and maps bounded sets into relatively compact
sets.

Theorem 4.1. [11] Let B be a Banach space and S a nonemty bounded, convex,
and closed subset of B. Assume A : B → B is a completely continuous operator. If
the operator A leaves the set S invariant, i.e., if A (S) ⊂ S, then A has at least one
fixed point in S.

A set S ⊂ H is relatively compact iff S is bounded and for every ε > 0 (i) there
exists δ > 0 such that ‖y(x+ h)− y(x)‖ < ε for all y ∈ S and all h ≥ 0 with h < δ,
(ii) there exists a number N > 0 such that

∫∞

N
|y(x)|2dx < ε for all y ∈ S ([11]).

Now, we give

Theorem 4.2. The operator T defined by (2.10) is completely continuous operator
under the conditions (A1), (A2) and (A3).
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Proof. Let y0 ∈ H. Then, we have

|(Ty) (x)− (Ty0) (x)|
2

= |〈G (x, .) , [f (., y (.))− f (., y0 (.))]〉|
2

≤ ‖G (x, .)‖
2















∫ c

a

∣

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)

(

t, y
(1)

0 (t)
)∣

∣

∣

2

dt

+γ
∫∞

c

∣

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)

(

t, y
(2)

0 (t)
)∣

∣

∣

2

dt















2

.

Thus

‖Ty − Ty0‖
2

≤ K















∫ c

a

∣

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)

(

t, y
(1)

0 (t)
)∣

∣

∣

2

dt

+γ
∫∞

c

∣

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)

(

t, y
(2)

0 (t)
)∣

∣

∣

2

dt















2

,

where

K =

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt + γ

∫ ∞

c

∫ ∞

c

|G (x, t)|
2
dxdt

)

.

We know that an operator F defined by Fy (x) = f (x, y (x)) is continuous in H
under the condition (A2) ( see [17]). Hence, for a given ǫ > 0, we can find a δ > 0
such that ‖y − y0‖ < δ implies















∫ c

a

∣

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)(t, y
(1)

0 (t))
∣

∣

∣

2

dt

+γ
∫∞

c

∣

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)(t, y
(2)

0 (t))
∣

∣

∣

2

dt















<
ǫ2

K2
.

From (4.), we get

‖Ty − Ty0‖ < ǫ,

i.e., T is continuous.

Set Y = {y ∈ H : ‖y‖ ≤ m} . By (3.3), we have

‖Ty‖ ≤ ‖w‖+











K
∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)∣

∣

2
dt

+γK
∫∞

c

∣

∣f (2)
(

t, y(2) (t)
)∣

∣

2
dt











1/2

, for all y ∈ Y.
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Furthermore, using (1.4), we get

∫ c

a

∣

∣

∣f (1)

(

t, y(1) (t)
)∣

∣

∣

2

dt+ γ

∫ ∞

c

∣

∣

∣f (2)

(

t, y(2) (t)
)∣

∣

∣

2

dt

≤

∫ c

a

[

g(1) (t) + ϑ
∣

∣

∣y(1) (t)
∣

∣

∣

]2

dt+ γ

∫ ∞

c

[

g(2) (t) + ϑ
∣

∣

∣y(2) (t)
∣

∣

∣

]2

dt

≤ 2

∫ c

a

[
(

g(1)
)2

(t) + ϑ2
∣

∣

∣
y(1) (t)

∣

∣

∣

2

]dt

+ 2γ

∫ ∞

c

[
(

g(2)
)2

(t) + ϑ2
∣

∣

∣y(2) (t)
∣

∣

∣

2

]dt

= 2(‖g‖2 + ϑ2 ‖y‖2) ≤ 2(‖g‖2 + ϑ2m2).

Thus, for all y ∈ Y, we obtain

‖Ty‖ ≤ ‖w‖ +
[

2K
(

‖g‖
2
+ ϑ2m

)]1/2

,

i.e., T (Y ) is a bounded set in H.

Moreover, for all y ∈ Y, we have

∫ c

a

∣

∣

∣(Ty(1)) (x+ h)− (Ty(1)) (x)
∣

∣

∣

2

dx

+ γ

∫ ∞

c

∣

∣

∣(Ty(2)) (x+ h)− (Ty(2)) (x)
∣

∣

∣

2

dx

= ‖〈[G (x+ h, .)−G (x, .)], f (., y (.))〉‖2

≤





∫ c

a

∫ c

a
|G (x+ h, t)−G (x, t)|

2
dxdt

+γ
∫∞

c

∫∞

c
|G (x+ h, t)−G (x, t)|2 dxdt





×











∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)∣

∣

2
dt

+γ
∫∞

c

∣

∣f (2)
(

t, y(2) (t)
)∣

∣

2
dt











2

≤ 2
(

‖g‖
2
+ ϑ2m

)





∫ c

a

∫ c

a
|G (x+ h, t)−G (x, t)|2 dxdt

+γ
∫∞

c

∫∞

c
|G (x+ h, t)−G (x, t)|

2
dxdt







454 B.P. Allahverdiev and H. Tuna

From (2.5), there exists a δ > 0 such that
∫ c

a

∣

∣

∣Ty(1) (x+ h)− Ty(1) (x)
∣

∣

∣

2

dx

+ γ

∫ ∞

c

∣

∣

∣Ty(2) (x+ h)− Ty(2) (x)
∣

∣

∣

2

dx < ǫ2,

for given ǫ > 0, all y ∈ Y and all h < δ.

Further, for all y ∈ Y, we have (N > c)
∫ ∞

N

∣

∣

∣(Ty(2)) (x)
∣

∣

∣

2

dx

≤

∫ ∞

N

∣

∣

∣w(2) (x)
∣

∣

∣

2

dx+ 2
(

‖g‖
2
+ ϑ2m

)

∫ ∞

N

‖G (x, .)‖
2
dx.

So, from (2.5), we see that for a given ǫ > 0 there exists a positive number N ,
depending only on ǫ such that

∫ ∞

N

∣

∣

∣(Ty(2)) (x)
∣

∣

∣

2

dx < ǫ2,

for all y ∈ Y.

Thus T (Y ) is a relatively compact in H , i.e., the operator T is completely
continuous.

Theorem 4.3. Suppose that the conditions (A1), (A2) and (A3) are satisfied. In
addition, let there exist constants M > 0 such that

{∫ c

a

∣

∣

∣w(1) (x)
∣

∣

∣

2

dx+ γ

∫ ∞

c

∣

∣

∣w(2) (x)
∣

∣

∣

2

dx

}1/2

+

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt+ γ

∫ ∞

c

∫ ∞

c

|G (x, t)|
2
dxdt

)

× sup
y∈SM











∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)
(

t, z(1) (t)
)∣

∣

2
dt

+γ
∫∞

c

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)
(

t, z(2) (t)
)∣

∣

2
dt











1/2

≤M,

where SM = {y ∈ H : ‖y‖ ≤M} . Then the boundary-value problem (1.1), (1.8),
(1.9) has at least one solution with

∫ c

a

∣

∣

∣
y(1) (x)

∣

∣

∣

2

dx+ γ

∫ ∞

c

∣

∣

∣
y(2) (x)

∣

∣

∣

2

dx ≤M2.



Nonlinear Singular Sturm-Liouville Problems 455

Proof. Let us define an operator T : H → H by (2.10). From theorems 6, 9 and
(4.3), we conclude that T maps the set SM into itself. It is clear that the set SM is
bounded, convex and closed. Using Theorem 8, the theorem follows.
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FIXED-CIRCLE PROBLEM ON S-METRIC SPACES WITH A

GEOMETRIC VIEWPOINT

Nihal Y. Özgür and Nihal Taş

Abstract. Recently, a new geometric approach called the fixed-circle problem has
been introduced to fixed-point theory. The problem has been studied using different
techniques on metric spaces. In this paper, we consider the fixed-circle problem on
S-metric spaces. We investigate existence and uniqueness conditions for fixed circles
of self-mappings on an S-metric space. Some examples of self-mappings having fixed
circles are also given.
Keywords: fixed-circle problem; self-mapping; S-metric space.

1. Introduction

The existence and uniqueness theorems of fixed points of self-mappings satisfying
some contractive conditions have been extensively studied since the time of Stefan
Banach (see [1, 2]). Many authors have investigated new fixed-point theorems
on metric spaces or generalizations of metric spaces. For example, Sedghi, Shobe
and Aliouche obtained Banach’s contraction principle on S-metric spaces [12]. We
studied some generalizations of Banach’s contraction principle on an S-metric space
[8] and investigated new fixed-point theorems for the following contractive condition
(which is called Rhoades’ condition [11]) (see [6, 14]):

(S25) S(Tx, Tx, T y) < max{S(x, x, y),S(Tx, Tx, x),S(Ty, T y, y),

S(Ty, T y, x),S(Tx, Tx, y)},

for each x, y ∈ X , x 6= y. We then gave the concept of diameter and obtained a
new contractive condition using this notion as follows [6]:

(S25a) S(Tx, Tx, T y) < diam{Ux ∪ Uy},

for each x, y ∈ X (x 6= y), where Ux = {T nx : n ∈ N}, Uy = {T ny : n ∈ N},
diam{Ux} < ∞ and diam{Uy} < ∞.
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Although the existence of fixed points of functions has been studied on various
metric spaces, there is no study on the existence of fixed circles. Therefore, the
fixed-circle problem arises naturally. There are some examples of functions with a
fixed circle on some special metric spaces. For example, let C be an S-metric space
with the S-metric

S(z, w, t) =
|z − t|+ |w − t|

2
,

for all z, w, t ∈ C. Let the mapping T be defined as

Tz =
1

z
,

for all z ∈ C\{0}. The mapping T fixes the unit circle CS
0,1 = {x ∈ X : S(x, x, 0) = 1}.

Recently, Özdemir, İskender and Özgür used new types of activation functions
having a fixed circle for a complex valued neural network [5]. The usage of these
types activation functions leads us to guarantee the existence of fixed points of the
complex valued Hopfield neural network (see [5] for more details).

Hence it is important to investigate some fixed-circle theorems on various metric
spaces. In [9], we obtained some fixed-circle theorems on metric spaces. We studied
some existence theorems for fixed circles with a geometric interpretation and gave
necessary conditions for the uniqueness of fixed circles. Also, we provided some
examples of self-mappings with fixed circles. On the other hand, we proved new
fixed-circle results and applied the obtained results to the discontinuity problem
and discontinuous activation functions [10].

Motivated by the above studies, our aim in this paper is to obtain some fixed-
circle theorems for self-mappings on S-metric spaces. In Section 2., we recall some
necessary definitions, lemmas and basic facts. In Section 3., we introduce the notion
of a fixed circle on an S-metric space and then obtain some existence and uniqueness
theorems for self-mappings having fixed circles via different techniques. We investi-
gate the case in which the number of fixed circles is infinitely many. Some examples
of self-mappings with fixed circles are given with a geometric viewpoint. Using
Mathematica (Wolfram Research, Inc., Mathematica, Trial Version, Champaign, IL
(2016)), we draw some figures related to the given examples.

2. Preliminaries

Definition 2.1. [12] Let X be a nonempty set and S : X3 → [0,∞) be a function
satisfying the following conditions for all x, y, z, a ∈ X .

1. S(x, y, z) = 0 if and only if x = y = z,

2. S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
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Then S is called an S-metric on X and the pair (X,S) is called an S-metric
space.

The following lemma can be considered as the symmetry condition and it will
be used in the proofs of some theorems.

Lemma 2.1. [12] Let (X,S) be an S-metric space. Then we have

S(x, x, y) = S(y, y, x).

The relationships between a metric and an S-metric was given in what follows.

Lemma 2.2. [4] Let (X, d) be a metric space. Then the following properties are
satisfied:

1. Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.

2. xn → x in (X, d) if and only if xn → x in (X,Sd).

3. {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).

4. (X, d) is complete if and only if (X,Sd) is complete.

The metric Sd was called an S-metric generated by d [7]. We know some exam-
ples of an S-metric which are not generated by any metric (see [4, 7, 14] for more
details).

On the other hand, Gupta claimed that every S-metric on X defines a metric
dS on X as follows:

dS(x, y) = S(x, x, y) + S(y, y, x),(2.1)

for all x, y ∈ X [3]. However, the function dS(x, y) defined in (2.1) does not always
define a metric because the triangle inequality is not satisfied for all elements of X
everywhere (see [7] for more details).

The notions of an open ball, a closed ball and diameter were introduced on
S-metric spaces as the following definitions.

Definition 2.2. [12] Let (X,S) be an S-metric space. The open ball BS(x0, r)
and closed ball BS [x0, r] with a center x0 and a radius r are defined by

BS(x0, r) = {x ∈ X : S(x, x, x0) < r}

and

BS [x0, r] = {x ∈ X : S(x, x, x0) ≤ r},

for r > 0 and x0 ∈ X .
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Definition 2.3. [6] Let (X,S) be an S-metric space and A be a nonempty subset
of X . The diameter of A is defined by

diam{A} = sup{S(x, x, y) : x, y ∈ A}.

If A is S-bounded, then we will write diam{A} < ∞.

Now we define the notion of a circle on an S-metric space.

Definition 2.4. Let (X,S) be an S-metric space and x0 ∈ X , r ∈ (0,∞). We
define the circle centered at x0 with the radius r as

CS
x0,r

= {x ∈ X : S(x, x, x0) = r}.

3. Some Fixed-Circle Theorems on S-Metric Spaces

In this section, we introduce the notion of a fixed circle on an S-metric space.
Then we investigate some existence and uniqueness theorems for self-mappings hav-
ing fixed circles.

Definition 3.1. Let (X,S) be an S-metric space, CS
x0,r

be a circle on X and

T : X → X be a self-mapping. If Tx = x for all x ∈ CS
x0,r

then the circle CS
x0,r

is
said to be a fixed circle of T .

3.1. The existence of fixed circles

We obtain some existence theorems for fixed circles of self-mappings.

Theorem 3.1. Let (X,S) be an S-metric space and CS
x0,r

be any circle on X. Let
us define the mapping

ϕ : X → [0,∞), ϕ(x) = S(x, x, x0),(3.1)

for all x ∈ X. If there exists a self-mapping T : X → X satisfying

S(x, x, Tx) ≤ ϕ(x) + ϕ(Tx)− 2r(3.2)

and

S(x, x, Tx) + S(Tx, Tx, x0) ≤ r,(3.3)

for all x ∈ CS
x0,r

, then CS
x0,r

is a fixed circle of T .
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Proof. Let x ∈ CS
x0,r

. Then using the conditions (3.2), (3.3), Lemma 2.1 and the
triangle inequality, we get

S(x, x, Tx) ≤ ϕ(x) + ϕ(Tx)− 2r

= S(x, x, x0) + S(Tx, Tx, x0)− 2r

≤ S(x, x, Tx) + S(x, x, Tx) + S(Tx, Tx, x0) + S(Tx, Tx, x0)− 2r

= 2S(x, x, Tx) + 2S(Tx, Tx, x0)− 2r

≤ 2r − 2r = 0

and so

S(x, x, Tx) = 0,

which implies Tx = x. Consequently, CS
x0,r

is a fixed circle of T .

Remark 3.1. 1) Notice that the condition (3.2) guarantees that Tx is not in the interior
of the circle C

S
x0,r

for x ∈ C
S
x0,r

. Similarly, the condition (3.3) guarantees that Tx is not
the exterior of the circle C

S
x0,r

for x ∈ C
S
x0,r

. Hence Tx ∈ C
S
x0,r

for each x ∈ C
S
x0,r

and so
we get T (CS

x0,r
) ⊂ C

S
x0,r

.

2) If an S-metric is generated by any metric d, then Theorem 3.1 can be used on the
corresponding metric space.

3) The converse statement of Theorem 3.1 is also true.

Now we give an example of a self-mapping with a fixed circle.

Example 3.1. Let X = R and the function S : X3
→ [0,∞) be defined by

S(x, y, z) = |x− z|+ |y − z| ,

for all x, y, z ∈ R [13]. Then (X,S) is called the usual S-metric space. This S-metric
is generated by the usual metric on R. Let us consider the circle C

S
0,2 and define the

self-mapping T1 : R → R as

T1x =

{

x if x ∈ {−1, 1}
10 otherwise

,

for all x ∈ R. Then the self-mapping T1 satisfies the conditions (3.2) and (3.3). Hence
C

S
0,2 = {−1, 1} is a fixed circle of T1.

Notice that CS
9
2
,11

= {−1, 10} is another fixed circle of T1 and so the fixed circle is not

unique for a giving self-mapping.

On the other hand, if we consider the usual metric d on R then we obtain C0,2 =
{−2, 2}. The circle C0,2 is not a fixed circle of T1.

Example 3.2. Let X = R
2 and let the function S : X3

→ [0,∞) be defined by

S(x, y, z) =
2

∑

i=1

(|xi − zi|+ |xi + zi − 2yi|) ,
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for all x = (x1, x2), y = (y1, y2) and z = (z1, z2). Then it can be easily seen that S is an
S-metric on R

2, which is not generated by any metric, and the pair
(

R
2
,S

)

is an S-metric
space.

Let us consider the unit circle C
S
0,1 and define the self-mapping T2 : R → R as

T2x =

{

x if x ∈ C
S
0,1

(1, 0) otherwise
,

for all x ∈ R
2. Then the self-mapping T2 satisfies the conditions (3.2) and (3.3). Therefore

C
S
0,1 is a fixed circle of T2 as shown in Figure 3.1.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
T2

Fig. 3.1: The fixed circle of T2.

In the following example, we give an example of a self-mapping which satisfies
the condition (3.2) and does not satisfy the condition (3.3).

Example 3.3. Let X = R and the function S : X3
→ [0,∞) be defined by

S(x, y, z) = |x− z|+ |x+ z − 2y| ,

for all x, y, z ∈ R [7]. Then S is an S-metric which is not generated by any metric and
(X,S) is an S-metric space. Let us consider the circle C

S
0,3 and define the self-mapping

T3 : R → R as

T3x =







−

7

2
if x = −

3

2
7

2
if x = 3

2

7 otherwise

,
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for all x ∈ R. Then the self-mapping T3 satisfies the condition (3.2) but does not satisfy
the condition (3.3). Clearly T3 does not fix the circle C

S
0,3.

In the following example, we give an example of a self-mapping which satisfies
the condition (3.3) and does not satisfy the condition (3.2).

Example 3.4. Let (X,S) be an S-metric space, C
S
x0,r

be a circle on X and the self-
mapping T4 : X → X be defined as

T4x = x0,

for all x ∈ X. Then the self-mapping T4 satisfies the condition (3.3) but does not satisfy
the condition (3.2). Clearly T4 does not fix the circle C

S
x0,r

.

Now we give another existence theorem for fixed circles.

Theorem 3.2. Let (X,S) be an S-metric space and CS
x0,r

be any circle on X.
Let the mapping ϕ be defined as (3.1). If there exists a self-mapping T : X → X
satisfying

S(x, x, Tx) ≤ ϕ(x) − ϕ(Tx)(3.4)

and
hS(x, x, Tx) + S(Tx, Tx, x0) ≥ r,(3.5)

for all x ∈ CS
x0,r

and some h ∈ [0, 1), then CS
x0,r

is a fixed circle of T .

Proof. Let x ∈ CS
x0,r

. On the contrary, assume that x 6= Tx. Then using the
conditions (3.4) and (3.5), we obtain

S(x, x, Tx) ≤ ϕ(x) − ϕ(Tx)

= S(x, x, x0)− S(Tx, Tx, x0)

= r − S(Tx, Tx, x0)

≤ hS(x, x, Tx) + S(Tx, Tx, x0)− S(Tx, Tx, x0)

= hS(x, x, Tx),

which is a contradiction since h ∈ [0, 1). Hence we get Tx = x and CS
x0,r

is a fixed
circle of T .

Remark 3.2. 1) Notice that the condition (3.4) guarantees that Tx is not in the exterior
of the circle C

S
x0,r

for x ∈ C
S
x0,r

. Similarly, the condition (3.5) shows that Tx can lie on
either the exterior or the interior of the circle C

S
x0,r

for x ∈ C
S
x0,r

. Hence Tx should lie on
the interior of the circle C

S
x0,r

.

2) If an S-metric is generated by any metric d, then Theorem 3.2 can be used on the
corresponding metric space.

3) The converse statement of Theorem 3.2 is also true.

Now we give some examples of self-mappings which have a fixed-circle.
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2
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Fig. 3.2: The fixed circle of T6.

Example 3.5. Let X = R and (X,S) be the usual S-metric space. Let us consider the
circle C

S
1,2 = {0, 2} and define the self-mapping T5 : R → R as

T5x =







e
x
− 1 if x = 0

2x− 2 if x = 2
3 otherwise

,

for all x ∈ R. Then the self-mapping T5 satisfies the conditions (3.4) and (3.5). Hence
C

S
1,2 is a fixed circle of T5.

On the other hand, if we consider the usual metric d on R then we have C1,2 = {−1, 3}.
The circle C1,2 is not a fixed circle of T5. But C1,1 = {0, 2} is a fixed circle of T5 on (X, d).

Example 3.6. Let X = R
2 and let the function S : X3

→ [0,∞) be defined by

S(x, y, z) =
2

∑

i=1

(|exi
− e

zi
|+ |e

xi + e
zi

− 2eyi |) ,

for all x = (x1, x2), y = (y1, y2) and z = (z1, z2). Then it can be easily checked that S

is an S-metric on R
2, which is not generated by any metric, and the pair

(

R
2
,S

)

is an
S-metric space.

Let us consider the circle C
S
x0,r

centered at x0 = (0, 0) with the radius r = 2 and define
the self-mapping T6 : R → R as

T6x =

{

x if x ∈ C
S
0,2

(ln 2, 0) otherwise
,
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for all x ∈ R
2. Then the self-mapping T6 satisfies the conditions (3.4) and (3.5). Therefore

C
S
0,2 is the fixed circle of T6 as shown in Figure 3.2.

In the following example, we give an example of a self-mapping which satisfies
the condition (3.4) and does not satisfy the condition (3.5).

Example 3.7. Let (X,S) be an S-metric space and C
S
x0,r

be a circle on X. If we consider
the self-mapping T4x = x0, then the self-mapping T4 satisfies the condition (3.4) but does
not satisfy the condition (3.5). It can be easily seen that T4 does not fix a circle C

S
x0,r

.

In the following example, we give an example of a self-mapping which satisfies
the condition (3.5) and does not satisfy the condition (3.4).

Example 3.8. Let X = R and (X,S) be an S-metric space with an S-metric defined as
in Example 3.3. Let us consider the unit circle CS

0,1 and define the self-mapping T7 : R → R

as

T7x = 1,

for all x ∈ R. Then the self-mapping T7 satisfies the condition (3.5) but does not satisfy
the condition (3.4). It can be easily shown that T7 does not fix the unit circle C

S
0,1.

Let IX : X → X be the identity map defined as IX(x) = x for all x ∈ X . Notice
that the identity map satisfies the conditions (3.2) and (3.3) (resp. (3.4) and (3.5))
in Theorem 3.1 (resp. Theorem 3.2) for any circle. Now we determine a condition
which excludes the IX from Theorem 3.1 and Theorem 3.2. For this purpose, we
give the following theorem.

Theorem 3.3. Let (X,S) be an S-metric space, T : X → X be a self mapping
having a fixed circle CS

x0,r
and the mapping ϕ be defined as (3.1). The self-mapping

T satisfies the condition

(IS) S(x, x, Tx) ≤
ϕ(x) − ϕ(Tx)

h
,

for all x ∈ X and some h > 2 if and only if T = IX .

Proof. Let x ∈ X be an arbitrary element. Then using the inequality (IS), Lemma
2.1 and triangle inequality, we obtain

hS(x, x, Tx) ≤ ϕ(x) − ϕ(Tx)

= S(x, x, x0)− S(Tx, Tx, x0)

≤ 2S(x, x, Tx) + S(Tx, Tx, x0)− S(Tx, Tx, x0)

= 2S(x, x, Tx)

and so

(h− 2)S(x, x, Tx) ≤ 0.
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Since h > 2 it should be S(x, x, Tx) = 0 and so Tx = x. Consequently, we obtain
T = IX .

Conversely, it is clear that the identity map IX satisfies the condition (IS).

Remark 3.3. 1) If a self-mapping T , which has a fixed circle, satisfies the conditions
(3.2) and (3.3) (resp. (3.4) and (3.5)) in Theorem 3.1 (resp. Theorem 3.2) but does not
satisfy the condition (IS) in Theorem 3.3 then the self-mapping T cannot be an identity
map.

2) If an S-metric is generated by any metric d, then Theorem 3.3 can be used on the
corresponding metric space.

3.2. The uniqueness of fixed circles

We investigate the uniqueness conditions of fixed circles given in the existence
theorems. For any given circles CS

x0,r
and CS

x1,ρ
on X , we notice that there exists

at least one self-mapping T of X such that T fixes the circles CS
x0,r

, CS
x1,ρ

. Indeed
let us define the mappings ϕ1, ϕ2 : X → [0,∞) as

ϕ1(x) = S(x, x, x0)

and

ϕ2(x) = S(x, x, x1),

for all x ∈ X . If we define the self-mapping T8 : X → X as

T8x =

{

x if x ∈ CS
x0,r

∪ CS
x1,ρ

α otherwise
,

for all x ∈ X , where α is a constant satisfying S(α, α, x0) 6= r and S(α, α, x1) 6= ρ,
it can be easily seen that the self-mapping T8 : X → X satisfies the conditions (3.2)
and (3.3) in Theorem 3.1 (resp. (3.4) and (3.5) in Theorem 3.2) for the circles CS

x0,r

and CS
x1,ρ

using the mappings ϕ1 and ϕ2, respectively. Hence T8 fixes both of the

circles CS
x0,r

and CS
x1,ρ

. In this way, the number of fixed circles can be extended to
any positive integer n using the same arguments.

In the following example, the self-mapping T9 has two fixed circle.

Example 3.9. Let X = R and (X,S) be an S-metric space with the S-metric defined in
Example 3.3. Let us consider the circles CS

0,2, C
S
0,4 and define the self-mapping T9 : R → R

as

T9x =

{

x if x ∈ {−2,−1, 1, 2}
α otherwise

,

for all x ∈ X where α ∈ X. Then the conditions (3.2) and (3.3) are satisfied by T9 for the
circles CS

0,2 and C
S
0,4, respectively. Consequently, C

S
0,2 and C

S
0,4 are the fixed circles of T9.
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Now we investigate the uniqueness conditions for the fixed circles in Theorem
3.1 using Rhoades’ contractive condition on S-metric spaces.

Theorem 3.4. Let (X,S) be an S-metric space and CS
x0,r

be any circle on X. Let
T : X → X be a self-mapping satisfying the conditions (3.2) and (3.3) given in
Theorem 3.1. If the contractive condition

S(Tx, Tx, T y) < max{S(x, x, y),S(Tx, Tx, x),S(Ty, T y, y),
S(Ty, T y, x),S(Tx, Tx, y)},

(3.6)

is satisfied for all x ∈ CS
x0,r

, y ∈ X \ CS
x0,r

by T , then CS
x0,r

is a unique fixed circle
of T .

Proof. Suppose that there exist two fixed circles CS
x0,r

and CS
x1,ρ

of the self-mapping

T , that is, T satisfies the conditions (3.2) and (3.3) for each circles CS
x0,r

and CS
x1,ρ

.

Let x ∈ CS
x0,r

and y ∈ CS
x1,ρ

be arbitrary points with x 6= y. Using the contractive
condition (3.6), we obtain

S(x, x, y) = S(Tx, Tx, T y) < max{S(x, x, y),S(Tx, Tx, x),S(Ty, T y, y),

S(Ty, T y, x),S(Tx, Tx, y)}

= S(x, x, y),

which is a contradiction. Hence it should be x = y. Consequently, CS
x0,r

is the
unique fixed circle of T .

The following example shows that the circle CS
x0,r

is not necessarily unique in
Theorem 3.2.

Example 3.10. Let (X,S) be an S-metric space and Cx1,r1 ,· · ·, Cxn,rn be any circles
on X. Let us define the self-mapping T10 : X → X as

T10x =







x if x ∈

n
⋃

i=1

Cxi,ri

x0 otherwise

,

for all x ∈ X, where x0 is a constant in X. Then it can be easily checked that the
conditions (3.4) and (3.5) are satisfied by T10 for the circles Cx1,r1 ,· · ·, Cxn,rn , respectively.
Consequently, the circles Cx1,r1 ,· · ·, Cxn,rn are fixed circles of T10. Notice that these circles
do not have to be disjoint.

Now we give the following uniqueness theorem for the fixed circles in Theorem
3.2 using the notion of diameter on S-metric spaces.

Theorem 3.5. Let (X,S) be an S-metric space, CS
x0,r

be any circle on X, Ux =
{T nx : n ∈ N}, Uy = {T ny : n ∈ N}, diam{Ux} < ∞ and diam{Uy} < ∞. Let
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T : X → X be a self-mapping satisfying the conditions (3.4) and (3.5) given in
Theorem 3.2. If the contractive condition

S(Tx, Tx, T y) < diam{Ux ∪ Uy},(3.7)

is satisfied for all x ∈ CS
x0,r

, y ∈ X \CS
x0,r

by T , then CS
x0,r

is the unique fixed circle
of T .

Proof. Assume that there exist two fixed circles CS
x0,r

and CS
x1,ρ

of the self-mapping

T , that is, T satisfies the conditions (3.4) and (3.5) for each circles CS
x0,r

and CS
x1,ρ

.

Let x ∈ CS
x0,r

and y ∈ CS
x1,ρ

be arbitrary points with x 6= y. Using the contractive
condition (3.7), we obtain

S(x, x, y) = S(Tx, Tx, T y) < diam{Ux ∪ Uy} = S(x, x, y),

which is a contradiction. Hence it should be x = y. Consequently, CS
x0,r

is the
unique fixed circle of T .

3.3. Infinity of fixed circles

We give a new approach to obtain fixed-circle results. To do this, let us denote
by RS(x, y) the right side of the inequality (S25). Using the number RS(x, y), we
obtain the following theorem. This theorem generates many (finite or infinite) fixed
circles for a given self-mapping.

Theorem 3.6. Let (X,S) be an S-metric space, T : X → X be a self-mapping
and r = inf {S(Tx, Tx, x) : Tx 6= x}. If there exists a point x0 ∈ X satisfying

S(x, x, Tx) < RS(x, x0)(3.8)

for all x ∈ X when S(Tx, Tx, x) > 0 and

S(Tx, Tx, x0) = r(3.9)

for all x ∈ CS
x0,r

, then CS
x0,r

is a fixed circle of T . The self-mapping T also fixes the
closed ball BS [x0, r].

Proof. Let x ∈ CS
x0,r

and Tx 6= x. Then using the inequality (3.8) and Lemma 2.1,
we get

S(x, x, Tx) < RS(x, x0)

= max

{

S(x, x, x0),S(Tx, Tx, x),S(Tx0, T x0, x0),
S(Tx0, T x0, x),S(Tx, Tx, x0)

}

.
(3.10)

At first, using the inequality (3.10) and Lemma 2.1, we show Tx0 = x0. Suppose
that Tx0 6= x0. For x = x0, we obtain

S(x0, x0, T x0) < RS(x0, x0)

= max

{

S(x0, x0, x0),S(Tx0, T x0, x0),S(Tx0, T x0, x0),
S(Tx0, T x0, x0),S(Tx0, T x0, x0)

}

= S(Tx0, T x0, x0) = S(x0, x0, T x0),
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a contradiction. It should be Tx0 = x0. Then by the inequality (3.10), the condition
(3.9), definition of r and Lemma 2.1, we have

S(x, x, Tx) < max

{

S(x, x, x0),S(Tx, Tx, x),S(x0, x0, x0),
S(x0, x0, x),S(Tx, Tx, x0)

}

= max {r,S(Tx, Tx, x)} = S(Tx, Tx, x) = S(x, x, Tx),

a contradiction. Therefore we get Tx = x, that is, CS
x0,r

is a fixed circle of T .

Finally we prove that T fixes the closed ball BS [x0, r]. To do this, we show that
T fixes any circle CS

x0,ρ
with ρ < r. Let x ∈ CS

x0,ρ
and Tx 6= x. From the similar

arguments used in the above, we have Tx = x.

We give the following example.

Example 3.11. Let X = R be the usual S-metric space. Let us define the self-mapping
T : R → R as

Tx =

{

x if |x| < 3
x+ 2 if |x| ≥ 3

,

for all x ∈ R. The self-mapping T satisfies the conditions of Theorem 3.6 with x0 = 0.
Indeed, we get

S(x, x, Tx) = 2 |x− Tx| = 4 > 0,

for all x ∈ R such that |x| ≥ 3. Then we have

RS(x, 0) = max {S(x,x, 0),S(Tx,Tx, x),S(0, 0, 0),S(0, 0, x),S(Tx, Tx, 0)}

= max {2 |x| , 4, 0, 2 |x| , 2 |x+ 2|}

= max {2 |x| , 2 |x+ 2|}

and so

S(x,x, Tx) < RS(x, 0).

Therefore the condition (3.8) is satisfied. We also obtain

r = min {S(Tx,Tx, x) : Tx 6= x} = 4.

It can be easily seen that the condition (3.9) is satisfied by T . Consequently, T fixes the
circle C

S
0,4 = {x ∈ R : |x| = 2} and the closed ball BS [0, 4] = {x ∈ R : |x| ≤ 2}.

Remark 3.4. 1) Notice that the condition (3.9) guarantees that Tx ∈ C
S
x0,r

for each
x ∈ C

S
x0,r

and so T (CS
x0,r

) ⊂ C
S
x0,r

.

2) The self-mapping T defined in Example 3.11 has other fixed circles. Theorem 3.6
gives us some of these circles.

3) A self-mapping T can fix infinitely many circles (see Example 3.11).

The converse statement is not always true as seen in the following example.

Example 3.12. Let x0 ∈ X be any point. If we define the self-mapping T : X → X as

Tx =

{

x if x ∈ BS [x0, µ]
x0 if x /∈ BS [x0, µ]

,

for all x ∈ X with µ > 0, then T does not satisfies the condition (3.8), but T fixes every
circle C

S
x0,ρ

with ρ ≤ µ.
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5. N. Özdemir, B. B. İskender and N. Y. Özgür: Complex valued neural network with
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6. N. Y. Özgür and N. Taş: Some fixed point theorems on S-metric spaces. Mat. Vesnik
69 (1) (2017), 39–52.
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Abstract. In this study, we describe the classical Bernoulli-Euler elastic curve in a
manifold by the property that the velocity vector field of the curve is harmonic. Then,
a condition is obtained for the elastic curve in a manifold. Finally, we give an example
which provides the condition mentioned in this paper and illustrate it with a figure.
Keywords: Energy; energy of a unit vector field; elastic curve.

1. Introduction

The history of the elastica or the elastic curve is very old and many researchers
have worked on this issue, for example [6, 11]. One can study a bent thin rod
and consider the energy it stores. The classical Euler-Bernoulli model assigns a
numerical value to this energy, which is proportional to

∫ s

0
k2(u)du. The elastica is

the critical point for this total squared curvature functional on regular curves with
given boundary conditions [8].

In [1] the author calculated the energy of the Frenet vector fields in Rn, showing
that the energy of the velocity vector field was E(V1(s)) =

1

2

∫ s

a
k21(u)du. By means

of this result, we have seen that the speed vector field of the Bernoulli-Euler elastic
curve is harmonic.

In this paper, using the above result, we give a condition for elastica on a manifold.

Definition 1.1. Let (M, g) be a Riemann manifold and α : I → M, be a unit speed
curve.

If {Ei}
r
i=1 is an orthonormal frame along α and

E1 =
dα

ds
,
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▽α
∂
∂s

E1 = k1E2,

▽α
∂
∂s

Ei = −ki−1Ei−1 + kiEi+1, ∀i = 2, ..., r − 1

▽α
∂
∂s

Er = −kr−1Er−1,

where k1, ..., kr−1 are positive functions with a real value on I, then α is said to be
an r-th order Frenet curve. These functions are called the curvature functions of
the curve α.

Proposition 1.1. The connection map K : T (T 1M) → T 1M verifies the following
conditions.

1) π◦K = π◦dπ and π◦K = π◦π̃ , where π̃ : T (T 1M) → T 1M is the tangent
bundle projection.

2) For ω∈TxM and a section ξ : M → T 1M, we have

K(dξ(ω)) = ∇ωξ

where T 1M is the unit tangent bundle and ∇ is the Levi-Civita covariant derivative
[3].

Definition 1.2. For η1, η2∈Tξ(T
1M), we define

gS(η1, η2) =< dπ(η1), dπ(η2) > + < K(η1),K(η2) > .(1.1)

This gives a Riemannian metric on tangent bundle TM . As mentioned, gS is called
the Sasaki metric. The metric gs makes the projection π : T 1M → M a Riemannian
submersion [3, 10].

Definition 1.3. Let f : (M,<,>) → (N, h) be a differentiable map between
Riemannian manifolds. The energy of f is given by

E(f) =
1

2

∫

M

(

n
∑

a=1

h(df(ea), df(ea))υ(1.2)

where υ is the canonical volume form in M and {ea} is a local basis of the tangent
space (see [12, 4], for example).

By a (smooth) variation of f we mean a smooth map f : M×(−ǫ, ǫ) → N, (x, t) →
ft(x) (ǫ > 0) such that f0 = f . We can think of {ft} as a family of smooth mappings
which depend ’smoothly’ on a parameter t ∈ (−ǫ, ǫ).

Definition 1.4. A smooth map f : (M, g) → (N, h) is said to be harmonic if

d

dt
E(ft;D)|t=0 = o

where E(f ;D) = 1

2

∫

D
(
∑n

a=1
h(df(ea), df(ea))υg, for all compact domains D and all

smooth variations ft of f supported in D, [2].
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Definition 1.5. Let α : [a, b] → Rn be a regular curve. Elastica is defined for the
curve α over the each point on a fixed interval [a, b] as a minimizer of the bending
energy:

EB =
1

2

∫ b

a

k21(s)ds,(1.3)

with some boundary conditions [5, 7].

The right side of Equation (1.3) is the energy of the velocity vector field according
to [1]. By combining this resultant with the definition 1.4 we can give the following
definition

2. Elastica in a Manifold

Definition 2.1. A curve on a manifold is called a classical Bernoulli-Euler elastic

curve if the velocity vector field of the curve is harmonic.

Theorem 2.1. Let M be a Riemann manifold, α be r-th order Frenet curve in M
and α(a) = p, α(b) = q. If α is classical elastic curve, then the following equation
is satisfied,

∫ b

a

λ(s)k1(s)k
′

1(s)ds = 0(2.1)

where k1 is the 1th curvature function and λ is the real-valued function on [a, b].

Proof . Let α : I → M be the r-th order Frenet curve C on ϕ(U) ⊂ M and
α = ϕ ◦ γ, γ = (γ1, ..., γm), γ : I → U ⊂ Rm;ϕ : U → M. Let ({Ei}

r
i=1) be the

Frenet frame field on α.

We define the λ and vi functions to create a curve family between two fixed points
on the manifold. The functions are: λ : [a, b] ⊂ I → R, λ(s) = (s − a)(b − s),
λ(a) = 0, λ(b) = 0 and λ(s) 6= 0 for all s ∈ (a, b), of class C2 and

λ(s) E1(s) = (v1(s), v2(s), ..., vn(s)). vi : [a, b] → R.

Since {ϕ1(γ(s)), ..., ϕm(γ(s))} is a local basis of the tangent space, where ϕ1, ..., ϕm

are first-order partial derivatives, we have

λ(s)E1(s) = Σm
i=1vi(s)ϕi(γ(s)); where vi : [a, b] → R.(2.2)

Let the collection of the curve be

αt(s) = ϕ(γ1(s) + tv1(s), ..., γm(s) + tvm(s)),(2.3)
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for t = 0, α0(s) = α(s) and

(ϕ−1 ◦ αt)(s) = γt(s) = (γ1(s) + tv1(s), ..., γm(s) + tvm(s)).

From (2.2) we get λ(a)E1(a) = Σm
i=1vi(a)ϕi(γ(a)). Since λ(a) = 0 we have vi(a) = 0

and

γt(a) = (γ1(a) + tv1(a), ..., γm(a) + tvm(a) = (γ1(a), ..., γm(a)) = γ(a).

Similarly, we get γt(b) = γ(b). Using these results in (2.3) we obtain

αt(a) = (ϕ ◦ γt)(a) = α(a) = p and αt(b) = (ϕ ◦ γt)(b) = α(b) = q.

These results show that αt is a curve segment from p to q on M . Take this collection
αt(s) = α(s, t) for all curves. The expression for the energy of the velocity vector
field E1t of α

t from p to q on M becomes E(E1t).

Let TCt be the tangent bundle. So we have E1t : Ct → TCt, where TCt =
∪j∈ITαt(j)Ct, Ct = αt(I) and Tαt(j)Ct is the straight line through the point αt(j)
in the E1t direction. Let π : TCt → Ct be the bundle projection. By using Equation
(1.2) we calculate the energy of E1t as

E(E1t) =
1

2

∫ b

a

gS(dE1t(E1t(α(s, t)), dE1t (E1t(α(s, t)))ds(2.4)

where ds is the element arc length. From (1.1) we have

gS(dE1t(E1t), dE1t(E1t)) =< dπ(dE1t(E1t)), dπ(dE1t (E1t)) >

+ < K(dE1t(E1t)),K(dE1t(E1t)) > .

Since E1t is a section, we have d(π)◦d(E1t) = d(π◦E1t) = d(idCt
) = idTCt

. By
Proposition 1.1, we also have that

K(dE1t(E1t)) = ∇α
E1t

E1t = E
′

1t
=

∂E1t

∂s
,

giving
gS(dE1t(E1t), dE1t(E1t)) =< E1t , E1t > + < E

′

1t
, E

′

1t
> .

Using these results in (2.4) we get

E(E1t) =
1

2

∫ b

a

(< E1t , E1t > + < E
′

1t
, E

′

1t
>)ds(2.5)

By Definition 1.4, if E1t is a harmonic, then t = 0 should be the critical point of

E(E1t). Supposing that
∂E(E1t)

∂t |t=0
= 0, from (2.5) we obtain:

∂E(E1t)

∂t
=

∂

∂t
[
1

2

∫ b

a

(< E1t , E1t > + < E
′

1t
, E

′

1t
>)ds]

=
1

2
[

∫ b

a

∂

∂t
[(< E1t , E1t > + <

∂E1t

∂s
,
∂E1t

∂s
>]ds.
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Since < E1t , E1t >= 1 we have ∂
∂t

< E1t , E1t >= 0 and we get

∂E(E1t)

∂t
=

1

2

∫ b

a

∂

∂t
<

∂E1t

∂s
,
∂E1t

∂s
> ds =

∫ b

a

<
∂2E1t

∂s∂t
,
∂E1t

∂s
> ds.(2.6)

We can write

∂

∂s
<

∂E1t

∂t
,
∂E1t

∂s
>=<

∂2E1t

∂s∂t
,
∂E1t

∂s
> + <

∂E1t

∂t
,
∂2E1t

∂s2
> .

Thus, we can deduce,

<
∂2E1t

∂s∂t
,
∂E1t

∂s
>=

∂

∂s
<

∂E1t

∂t
,
∂E1t

∂s
> − <

∂E1t

∂t
,
∂2E1t

∂s2
>(2.7)

Substituting (2.7) in (2.6), for, t = 0, we have

∂E(E1t)

∂t |t=0

=

∫ b

a

[
∂

∂s
<

∂E1t

∂t
(s, 0),

∂E1k

∂s
(s, 0) > − <

∂E1t

∂t
(s, 0),

∂2E1t

∂s2
(s, 0) >]ds

and

∂E(E1t)

∂t |t=0

= <
∂E1t

∂t
(s, 0),

∂E1t

∂s
(s, 0) >|ba(2.8)

−

∫ b

a

<
∂E1t

∂t
(s, 0),

∂2E1t

∂s2
(s, 0) > ds.

From (2.2) and (2.3), we obtain,

∂α

∂t
(s, t) = λ(s)E1t(s).(2.9)

and

∂α

∂s
(s, t)|t=0

= α
′

(s) = E1(s).(2.10)

Now we calculate the partial derivatives of (2.10) with respect to s and t; using
Frenet formulas, we get

∂E1t

∂s
(s) =

∂2α

∂s2
(s, t)|t=0

= α
′′

(s) = E
′

1(s) = k1(s)E2(s)(2.11)

and

∂E1t

∂t
(s, t) =

∂2α

∂s∂t
(s, t) =

∂2α

∂t∂s
(s, t).

From (2.9), we have

∂E1t

∂t
(s, t)|t=0

=
∂E1t

∂t
(s, 0) = λ

′

(s)E1(s) + λ(s)k1(s)E2(s).(2.12)
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It follows from (2.11) and (2.12) that

<
∂E1t

∂t
(s, 0),

∂E1t

∂s
(s, 0) >= λ(s)k21(s).

Considering the candidate function λ(a) = λ(b) = 0, we get:

<
∂E1t

∂t
(s, 0),

∂E1t

∂s
(s, 0) >|ba= λ(b)k21(b)− λ(a)k21(a) = 0.(2.13)

From (2.11), we get

∂2E1t

∂s2
(s, 0) = −k21(s)E1(s) + k

′

1(s)E2(s) + k1(s)k2(s)E3(s)(2.14)

Therefore, (2.12) and (2.14) gives

<
∂E1t

∂t
(s, 0),

∂2E1t

∂s2
(s, 0) >= [−λ(s)k21(s)]

′

+ 3λ(s)k1(s)k
′

1(s)(2.15)

Substituting (2.13) and (2.15) in (2.8) yields

∂E(E1t)

∂t |t=0

= −

∫ b

a

([−λ(s)k21(s)]
′

+ 3λ(s)k1(s)k
′

1(s))ds = 0

and

∂E(E1t)

∂t |t=0

= [λ(s)k21(s)] |
b
a −3

∫ b

a

λ(s)k1(s)k
′

1(s)ds = 0

We are looking the candidate function λ(a) = λ(b) = 0,

which given [λ(s)k21(s)] |
b
a= 0 and

∂E(E1t)

∂t |t=0

= −3

∫ b

a

λ(s)k1(s)k
′

1(s)ds = 0

This completes the proof of the theorem. �

Example 1. Let ϕ : R2 → R3, ϕ = (x, y, 1

3
xy), ϕ(R2) = M and α(s) = (3s, s2, s3).

If we can choose λ : [−10, 10] → R, λ(s) = 102 − s2 then λ(−10) = 0λ(10) = 0 and
λ(s) 6= 0 for all s ∈ (−10, 10). We calculate

k1(s) =
6
√
s4 + 9s2 + 1

(
√
9s4 + 4s2 + 9)3

,

k
′

1(s) = 6

2s3+9s
√
s4+9s2+1

(
√
9s4 + 4s2 + 9)3 − 3

√
s4 + 9s2 + 1(

√
9s4 + 4s2 + 9)2(35s3 + 8s)

(9s4 + 4s2 + 9)3
,
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Fig. 2.1:

and

∂E(Tk)

∂k |k=0

= −

∫ 10

−10

(102 − s2)k1(s)k
′

1(s)ds = 0.

Thus α is an elastica on M , Figure 2.1.

Conclusion. In this paper, we have determined the classical Bernoulli-Euler elastic
curve that is the harmonic of the velocity vector field of the curve on a manifold.
We have obtained the collection of curves passing through p and q points using λ
and vi functions on the manifold. We have also proposed a novel condition to be
the classical Bernoulli-Euler elastic curve in the collection of curves. In the end, we
have given an example of the elastic curve satisfying the novel condition on a two-
dimensional manifold and shown the graphs of both the manifold and the elastic
curve.
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Abstract. Let G be a group and S be an inverse-closed subset of G which does not
contain the identity element of G. The Cayley graph of G with respect to S, Cay(G, S),
is a graph with the vertex set G and the edge set {{g, sg} | g ∈ G, s ∈ S}. In this
paper, we compute the number of walks of any length between two arbitrary vertices of
Cay(G,S) in terms of complex irreducible representations of G. Using our main result,
we give exact formulas for the number of walks of any length between two vertices
in complete graphs, cycles, complete bipartite graphs, Hamming graphs and complete
transposition graphs.
Keywords: Cayley graph; Hamming graphs; complete transposition graphs.

1. Introduction

Let G be a finite group and S be an inverse-closed subset of G not containing the
identity element of G. The Cayley graph on G with respect to S, Cay(G,S), is a
graph with the vertex set G and the edge set {{g, sg} | g ∈ G, s ∈ S}. Cay(G,S) is
an undirected loop-free regular graph of valency |S|. Many famous regular graphs
can be represented as Cayley graphs. For example, cycles, complete graphs, Ham-
ming graphs and complete transposition graphs are Cayley graphs. Some chemical
graphs are Cayley graphs as well. For instance, the Buckyball, a soccer ball like
molecule which consists of 60 carbon atoms, is a Cayley graph on the alternating
group A5 on 5 symbols with the connection set {(12345), (54321), (12)(23)} [5, p.
209]. Also, the honeycomb toroidal graph is a Cayley graph on a generalized di-
hedral group [1, Theorem 3.4]. Since Cayley graphs possess many properties such
as low degree, low diameter, symmetry, low congestion, high connectivity, high
fault tolerance, and efficient routing algorithms, in the past several years there has
been a spurt of research on using Cayley graphs in constructions of interconnection
networks. For more details see [7].

A walk of length r from vertex x to vertex y in a graph Γ is a sequence of
vertices (v0, v1, . . . , vr) such that v0 = x, vr = y and vi−1 is adjacent to vi for all

Received October 29, 2018; accepted March 12, 2019
2010 Mathematics Subject Classification. Primary 05C25; Secondary 05C30
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1 ≤ i ≤ r. If x = y then the walk is called a closed walk of length r at vertex x.
The number of walks in a graph is often necessary in, for instance, network analysis,
epidemiology (requiring slow diffusion of viruses) and network design (aiming for
fast data propagation) [3]. Also walks in molecular graphs and their counts for a
long time have found applications in theoretical chemistry [6]. Furthermore, using
counting closed walks, many non-Cayley vertex-transitive graphs are constructed
[10, 11, 12, 13]. So it seems that computing the number of walks in Cayley graphs is
important in graph theory. In this paper, we give an exact formula for the number
of walks of any length between two vertices of a Cayley graph on a group G in
terms of irreducible representations of G. For the representation group’s theoretic
and graph theoretic terminology not defined here, we refer the reader to [9] and [5],
respectively.

2. Main Results

Let G be a finite group and C[G] be the complex vector space of dimension |G|
with basis {eg | g ∈ G}. We identify C[G] with the vector space of all complex-
valued functions on G. Thus a function ϕ : G → C corresponds to the vector
ϕ =

∑

g∈G ϕ(g)eg and vice versa. In particular, the vector eg, where g ∈ G, of the
standard basis corresponds to the function eg, where

eg(h) =

{

1 h = g
0 h 6= g.

Let A = [ax,y]x,y∈G be the adjacency matrix of Γ = Cay(G,S), S = S−1 ⊆
G \ {1}, where

ax,y =

{

1 xy−1 ∈ S
0 xy−1 /∈ S

.

Then viewing A as a linear map on C[G], we have

Aex =
∑

y∈G

ay,xey =
∑

y∈G,yx−1∈S

ey =
∑

s∈S

esx.(2.1)

Let ωr(Γ;x, y) be the number of walks of length k from the vertex x to the
vertex y in a graph Γ. We denote this by ωr(x, y) when there is no ambiguity.
Recall that for a graph Γ with adjacency matrix A, ωr(Γ;x, y) is the xy-entry of Ar

[5, Lemma 8.1.2]. In particular, ωr(Γ) :=
∑

x∈V (Γ) ωr(Γ;x, x), the total number of
closed walks of length r, is the trace of A which is equal to the sum of rth powers of
the adjacency eigenvalues of Γ [5, p. 165]. Let us start with an important lemma:

Lemma 2.1. Let A be the adjacency matrix of Γ = Cay(G,S). Then

Arex =
∑

y∈G

ωr(x, y)ey.
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Proof. We use induction on r. Since by (2.1), Aex =
∑

s∈S esx, and

ω1(x, y) =

{

1 yx−1 ∈ S
0 yx−1 /∈ S,

the induction holds for r = 1. Now let r ≥ 2 and the result hold for r − 1. Since
there exists a walk of length r from x to y if and only if there exists a walk of length
r − 1 of x to z where yz−1 ∈ S, we have

ωr(x, y) =
∑

s∈S

ωr−1(x, s
−1y).(2.2)

Now we have

Arex = A(Ar−1ex)

= A
(

∑

y∈G

ωr−1(x, y)ey

)

(by induction hypothesis)

=
∑

y∈G

ωr−1(x, y)Aey

=
∑

y∈G

ωr−1(x, y)
(

∑

s∈S

esy

)

(by (2.1))

=
∑

z∈G

∑

s∈S

ωr−1(x, s
−1z)ez

=
∑

z∈G

ωr(x, z)ez, (by (2.2))

which completes the proof.

Lemma 2.2. Let A be the adjacency matrix of Γ = Cay(G,S). Then

Arex =
∑

s1,...,sr∈S

esrsr−1...s1x.

Proof. We prove the result by induction. By 2.1, we have Aex =
∑

s∈S esx
which proves the result for r = 1. Let r ≥ 2 and the result holds for r − 1. Then

Arex = A(Ar−1ex)

= A
(

∑

s1,...,sr−1∈S

esr−1sr−2...s1x

)

(by induction hypothesis)

=
∑

s1,...,sr−1∈S

Aesr−1sr−2...s1x

=
∑

s1,...,sr−1∈S

∑

sr∈S

esr(sr−1...s1x) (by (2.1))

=
∑

s1,...,sr∈S

esrsr−1...s1x,
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which completes the proof.

Let Irr(G) = {ρ1, . . . , ρm} be the set of all irreducible inequivalentC-representations
of G. Let dk and ̺(k) be the degree and a unitary matrix representation of ρk,
k = 1, . . . ,m, respectively. We keep these notations throughout the paper. In
the following lemma, which seems to be well-known, the authors constructed an
orthogonal basis for C[G] using the matrix representations ̺(k), 1 ≤ k ≤ m.

Lemma 2.3. ([2, Lemma 1]) Let ̺
(k)
ij (g) be the ijth entry of ̺(k)(g), 1 ≤ i, j ≤ dk,

and ¯̺
(k)
ij =

∑

g∈G ̺
(k)
ij (g)eg. Then

(i) { ¯̺
(k)
ij | 1 ≤ k ≤ m, 1 ≤ i, j ≤ dk} form an orthogonal basis for C[G],

(ii) ρreg(g)¯̺
(k)
ij =

∑dk

l=1 ̺
(k)
li (g)¯̺

(k)
lj , for all g ∈ G and 1 ≤ i, j ≤ dk, 1 ≤ k ≤ m,

where ρreg is the left regular representation of G,

(iii) C[G] =
⊕m

k=1

⊕dk

j=1 W
(k)
j , where W

(k)
j = 〈 ¯̺

(k)
ij | 1 ≤ i ≤ dk〉 which is a

ρreg-invariant subspace of C[G] of dimension dk.

Now we are ready to prove our main result. Let us denote the ij entry of a
matrix X by [X ]ij . Then we have the following theorem.

Theorem 2.1. Let Γ = Cay(G,S), 1 /∈ S = S−1 and Irr(G) = {ρ1, . . . , ρm}.
Then

ωr(x, y) =
1

|G|

m
∑

k=1

dk
∑

i,j=1

dk

[

(
∑

s∈S

̺(k)(s))r
]

ij

[

̺(k)(xy−1)
]

ji
.

Proof. First, recall that the adjacency matrix A of Γ can be viewed as a linear

map on C[G] and by Lemma C[G] =
⊕m

k=1

⊕dk

j=1 W
(k)
j , where W

(k)
j = 〈 ¯̺

(k)
ij |

1 ≤ i ≤ dk〉 which is a ρreg-invariant subspace of C[G] of dimension dk. Since

Arex ∈ C[G], there exist complex numbers α
(k)
ij , 1 ≤ i, j ≤ dk such that

Arex =

m
∑

k=1

dk
∑

i,j=1

α
(k)
ij ¯̺

(k)
ij .(2.3)

On the other hand, α
(k)
ij =

〈Arex, ¯̺
(k)
ij

〉

〈 ¯̺
(k)
ij

, ¯̺
(k)
ij

〉
, where 〈u, v〉 denotes the usual inner product
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of u and v in complex field vector spaces. Furthermore,

〈Arex, ¯̺
(k)
ij 〉 = 〈

∑

s1,...,sr∈S

esrsr−1...s1x,
∑

g∈G

̺
(k)
ij (g)eg〉 (by Lemma 2.2)

=
∑

s1,...,sr∈S

〈esrsr−1...s1x,
∑

g∈G

̺
(k)
ij (g)eg〉

=
∑

s1,...,sr∈S

∑

g∈G

̺
(k)
ij (g)〈esrsr−1...s1x, eg〉

=
∑

s1,...,sr∈S

̺
(k)
ij (srsr−1 . . . s1x)

=
∑

s1,...,sr∈S

[

̺(k)(sr) . . . ̺
(k)(s1)̺

(k)(x)
]

ij
(since ̺(k) is a homomorphism)

=
[

∑

s1,...,sr∈S

̺(k)(sr) . . . ̺
(k)(s1)̺

(k)(x)
]

ij

=
[

(
∑

sr∈S

̺(k)(sr)) . . . (
∑

s1∈S

̺(k)(s1))̺
(k)(x)

]

ij

=
[

(
∑

s∈S

̺(k)(s))r̺(k)(x)
]

ij
.

Also

〈 ¯̺
(k)
ij , ¯̺

(k)
ij 〉 = 〈

∑

g∈G

̺
(k)
ij (g)eg,

∑

h∈G

̺
(k)
ij (h)eh〉

=
∑

g∈G

̺
(k)
ij (g)

∑

h∈G

̺
(k)
ij (h)〈eg, eh〉

=
∑

g∈G

̺
(k)
ij (g)̺

(k)
ij (g)

=
∑

g∈G

̺
(k)
ji (g−1)̺

(k)
ij (g) (since ̺(k) is unitary)

=
|G|

dk
(by Schur’s relations).

Hence α
(k)
ij = dk

|G|

[

(
∑

s∈S ̺(k)(s))r̺(k)(x)
]

ij
. Now from the equality (2.3), Lemma

2.1 and this fact that ¯̺
(k)
ij =

∑

g∈G ̺
(k)
ji (g−1)eg, we have

ωr(x, y) =
1

|G|

m
∑

k=1

dk
∑

i,j=1

dk

[

(
∑

s∈S

̺(k)(s))r
]

ij

[

̺(k)(xy−1)
]

ji
,

which completes the proof.

Keeping the notations of Theorem 2.1, since ̺(k)(1) = Idk
, we have the following

direct consequence.



486 M. Arezoomand

Corollary 2.1.

ωr(Γ : x, x) =
1

|G|

m
∑

k=1

dkTr[(
∑

s∈S

̺(k)(s))r ],

where Tr[X ] denotes the trace of matrix X. In particular,

ωr(Γ) =

m
∑

k=1

dkTr[(
∑

s∈S

̺(k)(s))r].

Corollary 2.2. ([15, Theorem 2]) Let Γ = Cay(G,S) and 1 /∈ S = S−1 be a union
of conjugacy classes of G. Then

ωr(x, y) =
1

|G|

m
∑

k=1

(
∑

s∈S χk(s))
rχk(xy

−1)

dr−1
k

.

In particular, if G is abelian then

ωr(x, y) =
1

|G|

|G|
∑

k=1

(
∑

s∈S

χk(s))
rχk(xy

−1).

Proof. First, note that S is a union of conjugacy classes if and only if for all
g ∈ G we have g−1Sg = S. Thus for all g ∈ G, we have

̺(k)(g−1)(
∑

s∈S

̺(k)(s))̺(k)(g) =
∑

s∈S

̺(k)(g−1sg)

=
∑

s∈S

̺(k)(s) (since g−1Sg = S).

Hence by Schur’s Lemma,
∑

s∈S ̺(k)(s) = 1
dk
Tr(

∑

s∈S ̺(k)(s))Idk
=

∑
s∈S χk(s)

dk
Idk

.
Now the result follows from Theorem 2.1.

Let G = 〈a〉 ∼= Zn be a cyclic group of order n. Then Irr(G) = {χi | i =
0, . . . , n− 1}, where χk(a

r) = exp(2πikr/n).

Corollary 2.3. (See also [14]) Let Kn be a complete graph with n vertices. Then

ωr(Kn;x, y) =

{

1
n
((n− 1)r − (−1)r) x 6= y

n−1
n

((n− 1)r−1 − (−1)r−1) x = y.

Proof. Let G = 〈a〉 be a cyclic group of order n and S = G \ {1}. Then for all
g ∈ G, g−1Sg = S and Kn = Cay(G,S). Hence, by Corollary 2.2,

ωr(Kn;x, y) =
1

n

n−1
∑

k=0

(
∑

s∈S

χk(s))
rχk(xy

−1).
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On the other hand

∑

s∈S

χk(s) =

{

−1 k 6= 0
n− 1 k = 0

Let x = al and y = al
′

. Then χk(xy
−1) = exp(2k(l − l′)πi/n), k = 0, . . . , n− 1. It

is clear that if x = y then
∑n−1

k=0 (
∑

s∈S χk(s))
rχk(xy

−1) = (n− 1)r + (n− 1)(−1)r.
Since z + z2 + . . .+ zn−1 = −1 whenever z is a nth root of unity, we conclude that
if x 6= y then

∑n−1
k=0 (

∑

s∈S χk(s))
rχk(xy

−1) = (n − 1)r − (−1)r, which completes
the proof.

Corollary 2.4. Let Cn be an n-cycle. Then Cn = Cay(G,S) where G = 〈a〉 and
S = {a, a−1}. Furthermore,

ωr(Cn; a
l, al

′

) =
2r

n

n−1
∑

k=0

cosr(
2πk

n
) cos(

2πk(l − l′)

n
).

Proof. Let χk ∈ Irr(G). Then χk(a) + χk(a
−1) = 2 cos(2πk

n
). Also χk(xy

−1) =

cos(2πk(l−l′)
n

) + i sin(2πk(l−l′)
n

). Furthermore,
∑n−1

k=0 cos(
2πk
n

)r sin(2πk(l−l′)
n

) = 0.
Now the result follows immediately from Corollary 2.2.

Corollary 2.5. Let Kn,n be the complete bipartite graph with 2n vertices, where
n ≥ 3. Then Kn,n = Cay(G,S), where G = 〈a〉 ∼= Z2n and S = {a, a3, . . . , a2n−1}.

ωr(Kn,n; a
l, al

′

) =
nr + (−n)r(−1)l−l′

2n
.

Proof. Let wk = exp(πik/n). Then irreducible characters of G are χk, k =
0, . . . , 2n− 1, where χk(a

l) = wl
k. For k 6= 0, n we have wk +w3

k + . . .+w2n−1
k = 0.

Thus

∑

s∈S

χk(s) =







0 k 6= 0, n
n k = 0
−n k = n

.

Let x = al and y = al
′

. Then χk(xy
−1) = wl−l′

k which completes the proof.

Recall that the Hamming graph H(n,m) is the graph whose vertex set is the
Cartesian product of n copies of a set with m elements, where two vertices are
adjacent if they differ in precisely one coordinate. H(n, 2) = Qn is the familiar
n-dimensional hypercuble. It is well-known that Γ = Cay(G1 × . . .×Gn, S) where
Gi = 〈a〉, i = 1, . . . , n, is of order m and S is the set of all elements of G1× . . .×Gn

with exactly one non-identity coordinate. In the following example, we compute
the number of walks between any two vertices in the Hamming graphs.
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Corollary 2.6. Let Γ = H(n,m). Then

ωr(Γ;x, y) =
1

mn

∑

0≤j1,...,jn≤m−1

(

n(m−1)−mc(j1, . . . , jn)
)r

τ (r1−s1)j1+...+(rn−sn)jn ,

where x = (ar1 , . . . , arn), y = (as1 , . . . , asn) and c(j1, . . . , jn) is the number of non-
zero coordinates of (j1, . . . , jn).. In particular,

ωr(Qn;x, y) =
1

2n

∑

0≤j1,...,jn≤1

(

n− 2c(j1, . . . , jn)
)r

τ (r1−s1)j1+...+(rn−sn)jn ,

where x = (ar1 , . . . , arn) and y = (as1 , . . . , asn).

Proof. Let χ ∈ Irr(G1× . . .×Gn) and g = (ai1 , . . . , ain) ∈ G1× . . .×Gn. Then
there exist (j1, . . . , jn), where 0 ≤ ji ≤ m−1, such that χ(g) = τ i1j1+...+injn , where
τ = exp(2πi/m). Hence every irreducible character of G1 × . . . × Gn completely
determined by an n-tuple (j1, . . . , jn), where 0 ≤ ji ≤ m − 1. Let us denote the
corresponding character of this tuple by χ(j1,...,jn).

Let x = ai 6= 1 and x(j) be a 1 × n vector that its only non-identity element
is x at the jth position. Let s ∈ S. Then s = (ai)(k) for some 1 ≤ i ≤ m − 1
and 1 ≤ k ≤ n. Hence χ(j1,...,jn)(s) = τ ijk which implies that

∑

s∈S χ(j1,...,jn)(s) =
∑n

k=1

∑m−1
i=1 τ ijk . On the other hand,

m−1
∑

i=1

(τ jk )i =

{

m− 1 jk = 0
−1 jk 6= 0

.

Let c(j1, . . . , jn) be the number of non-zero coordinates of (j1, . . . , jn). Then
∑

s∈S χ(j1,...,jn)(s) =
n(m− 1)−mc(j1, . . . , jn). Now, by Corollary 2.2,

ωr(x, y) =
1

mn

∑

0≤j1,...,jn≤m−1

(

n(m− 1)−mc(j1, . . . , jn)
)r

τ (r1−s1)j1+...+(rn−sn)jn ,

where x = (ar1 , . . . , arn) and y = (as1 , . . . , asn). This completes the proof.

Recall that a partition of a positive integer n is a sequence λ = (λ1, . . . , λm) of
positive integers such that λ1 ≥ λ2 ≥ . . . ≥ λm and

∑m

i=1 λi = n. We write λ ⊢ n to
indicate that λ is a partition of n. Since the inequivalent irreducible representations
of the symmetric group Sn on n letters are conveniently by partitions of n, we write
ρλ, χλ and dλ for the irreducible representation, the character and the degree of
the representation associated with λ ⊢ n.

For λ = (λ1, . . . , λm) ⊢ n, put li = λi +m− i, 1 ≤ i ≤ m. If m = 1 then dλ = 1
and whenever m > 1, by [4, equality (4.11)] we have

dλ =
n!

l1!l2! . . . lm!

∏

i<j

(li − lj).(2.4)

Furthermore,
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(1) if τ ∈ Sn is a transposition, then by [8, equality (5.1)],

χλ(τ) =
M2(λ)

n(n− 1)
dλ,(2.5)

(2) if τ ∈ Sn is a 3-cycle, then by [8, equality (5.2)]

χλ(τ) =
M3(λ) − 3n(n− 1)

2n(n− 1)(n− 2)
dλ,(2.6)

(3) if τ is a product of two disjoint transpositions, then by [8, equality (5.5)]

χλ(τ) =
M2(λ)

2 − 2M3(λ) + 4n(n− 1)

n(n− 1)(n− 2)(n− 3)
dλ,(2.7)

where

M2(λ) =

m
∑

j=1

(

(λj − j)(λj − j + 1)− j(j − 1)
)

and

M3(λ) =

m
∑

j=1

(

(λj − j)(λj − j + 1)(2λj − 2j + 1) + j(j − 1)(2j − 1)
)

.

Corollary 2.7. Let Γ = Cay(Sn, S), be the complete transposition graph, where S
is the set of all transpositions of {1, . . . , n}. Then for all x ∈ Sn, we have

ωr(x, x) =
1

n!2r

∑

λ⊢n

d2λM2(λ)
r.

Furthermore, if x 6= y be two non-disjoint transpositions then

ωr(x, y) =
1

n!2r+1n(n− 1)(n− 2)

∑

λ⊢n

d2λM2(λ)
r(M3(λ) − 3n(n− 1)),

and if they are disjoint, then

ωr(x, y) =
1

n!2rn(n− 1)(n− 2)(n− 3)

∑

λ⊢n

d2λM2(λ)
r(M2(λ)

2 − 2M3(λ) + 4n(n− 1)).

Proof. Since S is the set of all transpositions of Sn, it is a conjugacy class

of Sn with n(n−1)
2 elements. On the other hand, by Equality (2.5), for any λ =

(λ1, . . . , λm) ⊢ n we have

∑

s∈S

χλ(s) = |S|χλ((1, 2)) =
M2(λ)

2
dλ.

Let x, y ∈ Sn. If x = y then xy−1 = 1 and χλ(xy
−1) = χλ(1) = dλ. If x 6= y and

they are not disjoint transpositions then xy−1 is a 3-cycle. Now the result follows
immediately from Corollary 2.2 and equalities (2.6) and (2.7).
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10. R. Jajcay and J. Širǎn:, A construction of vertex-transitive non-Cayley graphs,
Australas. J. Combin. 10 (1994) 105–114.
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Abstract. In this note, we derive some approximation properties of the generalized
Bernstein-Kantorovich-type operators based on two nonnegative parameters consid-
ered by A. Kajla [Appl. Math. Comput. 2018]. We establish a Voronovskaja-type
asymptotic theorem for these operators. The rate of convergence for differential func-
tions whose derivatives are of bounded variation is also derived. Finally, we show the
convergence of the operators to certain functions by illustrative graphics using Mathe-
matica software.
Keywords: Approximation; Bernstein-Kantorovich type operators; convergence.

1. Introduction

For f ∈ C(I), with I = [0, 1], the classical Bernstein polynomials are defined as
follows:

Bn(f ;x) =

n
∑

k=0

pn,k(x)f

(

k

n

)

,

where pn,k(x) =

(

n

k

)

xk(1 − x)n−k is the Bernstein basis.

Also for f : I → R an integrable function, the classical Bernstein-Kantorovich
operators are defined by

Mn(f ;x) = n

n
∑

k=0

pn,k(x)

∫ (k+1)/n

k/n

f(t)dt, x ∈ [0, 1], n ∈ N.

The above operators Mn can also be written as follows:

Mn(f ;x) =

n
∑

k=0

pn,k(x)

∫ 1

0

f

(

k + t

n

)

dt.(1.1)
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Stancu [31] introduced the Bernstein-type operators involving two parameters r, s ∈
N ∪ {0}, as follows:

(Sn,r,s) f(x) =

n−sr
∑

µ=0

pn−sr,µ(x)

s
∑

k=0

ps,k(x)f

(

µ+ kr

n

)

.(1.2)

For r = s = 0, these operators reduces to Bernstein operators Bn(f ;x).
Abel and Heilmann [1] investigated the complete asymptotic expansion of Bernstein-
Durrmeyer operators. Gonska and Paltanea [16] presented genuine Bernstein-Durrmeyer
operators based on one parameter family of linear positive operators and study the
simultaneous approximation for these operators. Cárdenas-Morales and Gupta [12]
derived a two-parameter family of Bernstein-Durrmeyer-type operators based on
the Polya distribution and gave a Voronovskaja-type asymptotic theorem. In [9],
Agrawal et al. introduced the Kantorovich-type generalization of Luaps operators
and obtained the local and global approximation properties of these operators. Abel
et al. [2] considered the Durrmeyer-type modification of the operators (1.2) defined
by

Sn,r,s(f ;x) =

n−sr
∑

µ=0

pn−sr,µ(x)

s
∑

k=0

ps,k(x)(n + 1)

∫ 1

0

pn,µ+kr(t)f(t)dt.(1.3)

The authors studied a complete asymptotic expansion and derived some basic ap-
proximation theorems for these operators. Gupta et al. [18] considered the Dur-
rmeyer variant of Baskakov operators based on the inverse Pòlya-Eggenberger distri-
bution and studied the local and global approximation properties. Many researchers
have contributed to this area of approximation theory [cf. [3–8,10,11,13–15,17–20,
22, 24–30] etc.] and the references therein.

For f ∈ C(I), Kajla [23] defined the following Stancu-Kantorovich-type opera-
tors based on two nonnegative parameters:

Kn,r,s(f ;x) =

n−sr
∑

µ=0

pn−sr,µ(x)

s
∑

k=0

ps,k(x)

∫ 1

0

f

(

µ+ kr + t

n

)

dt.(1.4)

The approximation behaviour of Kn,r,s was examined in the paper [23].
In this article, we prove the Voronovskaja-type asymptotic theorem for these op-
erators. The rate of convergence for differential functions whose derivatives are of
bounded variation is also obtained. Finally, we show the convergence of the opera-
tors by illustrative graphics in Mathematica software to certain functions.

Let ei(x) = xi, i = 0, 1, 2 · · ·

Lemma 1.1. [23] For the operators Kn,r,s(f ;x), we have

(i) Kn,r,s(e0;x) = 1;
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(ii) Kn,r,s(e1;x) = x+
1

2n
;

(iii) Kn,r,s(e2;x) = x2 +
x(1 − x)

n

(

1 +
sr(r − 1)

n

)

+
x

n
+

1

3n2
;

(iv) Kn,r,s(e3;x) = x3 +
3x(3 − 2x)

2n
+

x(7 − 9x) + 6rsx2(r − 1)(1− x) + 4x3

2n2

+

1− 2rsx

(

(5 + 9x− 4x2)− 3r(1− x2)− 2r2(1 − 3x+ 8x2)

)

4n3
;

(v) Kn,r,s(e4;x) = x4 +
x4

5n4

[

55n2 − 30n3 + 30n2rs − 30(−1 + r)rs − 30n2r2s +

15(r − 1)r2(s − 2)s − 15(r − 1)r2s(s + 2) + 10n(−3 + (r − 1)r(7 + 4r)s)

]

+

x3

5n4

[

40n3 − 80n− 120n2 − 30n2rs+ 80(r− 1)rs+ 30n22r2s+ 50(r− 1)r2s−

30n(r−1)rs(2r+5)−30r3s(r−1)(s−2)+15r2s2(r−1)+15r2s2(r−1)(s+2)

]

+
x2

5n4

[

75n2− 75n− 75rs(r− 1)− 65r2s(r− 1)− 5r3s(r− 1)+ 20nrs(r− 1)+

15r3s(s− 2)− 15r2s2(r − 1)

]

+
x

5n4

[

30n+ 25rs(r − 1) + 15r2s(r − 1) + 5r3s(r − 1)

]

+
1

5n4
.

Let exi (t) = (t− x)i, i = 1, 2, 4.

Lemma 1.2. [23] For the operators Kn,r,s(f ;x), we get

(i) Kn,r,s(e
x
1(t);x) =

1

2n
;

(ii) Kn,r,s(e
x
2(t);x) =

x(1 − x)

n

(

1 +
sr(r − 1)

n

)

+
1

3n2
.

Lemma 1.3. [23] For f ∈ C(I), we have

‖Kn,r,s(f ;x)‖ ≤ ‖f‖.

Remark 1.1. For every x ∈ I, we have

lim
n→∞

n Kn,r,s(e
x
1(t);x) =

1

2
,

lim
n→∞

n Kn,r,s(e
x
2(t);x) = x(1− x),

lim
n→∞

n
2
Kn,r,s(e

x
4(t);x) = 3x2(1− x)2.
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Lemma 1.4. For n ∈ N, we obtain

Kn,r,s(e
x
2(t);x) ≤

Xr,s x(1 − x)

n
,

where Xr,s is a positive constant depending only on r, s.

Theorem 1.1. [23] Let f ∈ C(I). Then lim
n→∞

Kn,r,s(f ;x) = f(x), uniformly in I.

2. Voronovskaja type theorem

The aim of this section, we prove the Voronvoskaja-type theorem for the operators
Kn,r,s.

Theorem 2.1. Let f ∈ C(I). If f ′′ exists at a point x ∈ I, then we have

lim
n→∞

n [Kn,r,s(f ;x)− f(x)] =
1

2
f ′(x) +

x(1 − x)

2
f ′′(x).

Proof. By Taylor’s formula of f , we get

f(t) = f(x) + f ′(x)(t − x) +
1

2
f ′′(x)(t− x)2 +̟(t, x)(t− x)2,(2.1)

where lim
t→x

̟(t, x) = 0. By applying the linearity of the operator Kn,r,s, we obtain

Kn,r,s(f ;x)− f(x) = Kn,r,s((t− x);x)f ′(x) + 1

2
Kn,r,s((t− x)2;x)f ′′(x)

+Kn,r,s(̟(t, x)(t − x)2;x).

Now, applying the Cauchy-Schwarz property, we can get

nKn,r,s(̟(t, x)(t − x)2;x) ≤
√

Kn,r,s(̟2(t, x);x)
√

n2Kn,r,s((t− x)4;x).

From Theorem 1.1, we have lim
n→∞

Kn,r,s(̟
2(t, x);x)= ̟2(x, x) = 0, since ̟(t, x) →

0 as t → x, and Remark 1.1 for every x ∈ I, we may write

lim
n→∞

n2Kn,r,s

(

(t− x)4;x
)

= 3x2(1− x)2.(2.2)

Hence,

nKn,r,s(̟(t, x)(t − x)2;x) = 0.

Applying Remark 1.1, we get

lim
n→∞

nKn,r,s (t− x;x) =
1

2
,

lim
n→∞

nKn,r,s

(

(t− x)2;x
)

= x(1− x).(2.3)

Collecting the results from the above theorem is completed.
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3. Rate of convergence

DBV (I) denotes the class of all absolutely continuous functions f defined on I,
having on I a derivative f

′

equivalent to a function of bounded variation on I. We
notice that the functions f ∈ DBV (I) possess a representation

f(x) =

∫ x

0

g(t)dt+ f(0)

where g ∈ BV (I), i.e., g is a function of bounded variation on I.

The operators Kn,r,s(f ;x) also admit the integral representation

Kn,r,s(f ;x) =

∫ 1

0

Wn,r,s(x, t)f(t)dt,(3.1)

where the kernel Wn,r,s(x, t) is given by

Wn,r,s(x, t) =

n−sr
∑

µ=0

pn−sr,µ(x)

s
∑

k=0

ps,k(x)χn,k(t),

where χn,k(t) is the characteristic function of the interval [k/n, (k + 1)/n] with
respect to I.

Lemma 3.1. For a fixed x ∈ (0, 1) and sufficiently large n, we have

(i) βn,r,s(x, y) =

∫ y

0

Wn,r,s(x, t)dt ≤
Xr,s x(1 − x)

n(x− y)2
, 0 ≤ y < x,

(ii) 1− βn,r,s(x, z) =

∫ 1

z

Wn,r,s(x, t)dt ≤
Xr,s x(1− x)

n(x− y)2
n(z − x)2, x < z < 1.

Proof. (i) Using Lemma 1.2 we get

βn,r,s(x, y) =

y
∫

0

Wn,r,s(x, t)dt ≤

∫ y

0

(

x− t

x− y

)2

Wn,r,s(x, t)dt

= Kn,r,s((t− x)2;x)(x− y)−2 ≤
Xr,s x(1 − x)

n(x− y)2
.

As the proof of (ii) is similar, the details are omitted.

Theorem 3.1. Let f ∈ DBV (I). Then for every x ∈ (0, 1) and sufficiently large
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n, we have

|D∗(1/n)
n (f ;x)− f(x)| ≤

|f ′(x+) + f ′(x−)|

4n
+

√

Xr,s x(1 − x)

n

|f ′(x+)− f ′(x−)|

2

+
Xr,s (1− x)

n

[
√
n]

∑

k=1

x
∨

x−(x/k)

(f ′

x) +
x
√
n

x
∨

x−(x/
√
n)

(f ′

x)

+
Xr,s x

n

[
√
n]

∑

k=1

x+((1−x)/k)
∨

x

(f ′

x) +
(1 − x)
√
n

x+((1−x)/
√
n)

∨

x

(f ′

x),

where
∨b

a(f
′
x) denotes the total variation of f ′

x on [a, b] and f ′
x is defined by

f ′

x(t) =







f ′(t)− f ′(x−), 0 ≤ t < x
0, t = x

f ′(t)− f ′(x+) x < t < 1.
(3.2)

Proof. Since Kn,r,s(1;x) = 1, by using Lemma 1.1, for every x ∈ (0, 1) we get

Kn,r,s(f ;x)− f(x) =

∫ 1

0

Wn,r,s(x, t)(f(t) − f(x))dt

=

∫ 1

0

Wn,r,s(x, t)

∫ t

x

f ′(u)dudt.(3.3)

For any f ∈ DBV (I), by (3.2) we can write

f ′(u) = f ′

x(u) +
1

2
(f ′(x+) + f ′(x−)) +

1

2
(f ′(x+)− f ′(x−))sgn(u− x)

+δx(u)[f
′(u)−

1

2
(f ′(x+) + f ′(x−))],(3.4)

where

δx(u) =

{

1 , u = x
0 , u 6= x.

Obviously,

∫ 1

0

(∫ t

x

(

f ′(u)−
1

2
(f ′(x+) + f ′(x−))

)

δx(u)du

)

Wn,r,s(x, t)dt = 0.

By (3.1) and a straightforward calculation we have

∫ 1

0

(∫ t

x

1

2
(f ′(x+) + f ′(x−))du

)

Wn,r,s(x, t)dt =
1

2
(f ′(x+) + f ′(x−))

∫ 1

0

(t− x)Wn,r,s(x, t)dt

=
1

2
(f ′(x+) + f ′(x−))Kn,r,s((t− x);x)
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and
∣

∣

∣

∣

∫ 1

0

Wn,r,s(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))sgn(u − x)du

)

dt

∣

∣

∣

∣

≤
1

2
| f ′(x+)− f ′(x−) |

∫ 1

0

|t− x|Wn,r,s(x, t)dt

≤
1

2
| f ′(x+)− f ′(x−) | Kn,r,s(|t− x|;x)

≤
1

2
| f ′(x+)− f ′(x−) |

(

Kn,r,s((t− x)2;x)

)1/2

.

Applying the lemmas 1.2 and 1.4 and using (3.3),(3.4) we obtain the following
estimate

|Kn,r,s(f ;x)− f(x)| ≤
1

4n
|f ′(x+) + f ′(x−)|

+
1

2
|f ′(x+)− f ′(x−)|

√

Xr,s x(1 − x)

n

+

∣

∣

∣

∣

∫ x

0

(∫ t

x

f ′

x(u)du

)

Wn,r,s(x, t)dt

+

∫ 1

x

(∫ t

x

f ′

x(u)du

)

Wn,r,s(x, t)dt

∣

∣

∣

∣

.(3.5)

Let

An,r,s(f
′

x, x) =

∫ x

0

(∫ t

x

f ′

x(u)du

)

Wn,r,s(x, t)dt,

Bn,r,s(f
′

x, x) =

∫ 1

x

(∫ t

x

f ′

x(u)du

)

Wn,r,s(x, t)dt.

To complete the proof, it is sufficient to estimate the termsAn,r,s(f
′
x, x) andBn,r,s(f

′
x, x).

Since
∫ b

a
dtβn,r,s(x, t) ≤ 1 for all [a, b] ⊆ [0, 1], using integration by parts and apply-

ing Lemma 3.1 with y = x− (x/
√
n), we have

|An,r,s(f
′

x, x)| =

∣

∣

∣

∣

∫ x

0

(∫ t

x

f ′

x(u)du

)

dtβn,r,s(x, t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0

βn,r,s(x, t)f
′

x(t)dt

∣

∣

∣

∣

≤

(∫ y

0

+

∫ x

y

)

|f ′

x(t)| |βn,r,s(x, t)|dt

≤
Xr,s x(1 − x)

n

∫ y

0

x
∨

t

(f ′

x)(x − t)−2dt+

∫ x

y

x
∨

t

(f ′

x)dt

≤
Xr,s x(1 − x)

n

∫ y

0

x
∨

t

(f ′

x)(x − t)−2dt+
x
√
n

x
∨

x−(x/
√
n)

(f ′

x).
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By the substitution of u = x/(x− t), we obtain

Xr,s x(1− x)

n

∫ x−(x/
√
n)

0

(x− t)−2

x
∨

t

(f ′

x)dt =
Xr,s (1− x)

n

∫

√
n

1

x
∨

x−(x/u)

(f ′

x)du

≤
Xr,s (1− x)

n

[
√
n]

∑

k=1

∫ k+1

k

x
∨

x−(x/k)

(f ′

x)du

≤
Xr,s (1− x)

n

[
√
n]

∑

k=1

x
∨

x−(x/k)

(f ′

x).

Thus,

|An,r,s(f
′

x, x)| ≤
Xr,s (1− x)

n

[
√
n]

∑

k=1

x
∨

x−(x/k)

(f ′

x) +
x
√
n

x
∨

x−(x/
√
n)

(f ′

x).(3.6)

Using integration by parts and applying Lemma 3.1 with z = x+ ((1− x)/
√
n), we

have
|Bn,r,s(f

′

x, x)|

=

∣

∣

∣

∣

∫

1

x

(
∫ t

x

f
′

x(u)du

)

Wn,r,s(x, t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ z

x

(∫ t

x

f
′

x(u)du

)

dt(1− βn,r,s(x, t)) +

∫

1

z

(∫ t

x

f
′

x(u)du

)

dt(1− βn,r,s(x, t))

∣

∣

∣

∣

=

∣

∣

∣

∣

[ ∫ t

x

f
′

x(u)(1− βn,r,s(x, t))du

]z

x

−

∫ z

x

f
′

x(t)(1− βn,r,s(x, t))dt

+

∫

1

z

(
∫ t

x

f
′

x(u)du

)

dt(1− βn,r,s(x, t))

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ z

x

f
′

x(u)du(1− βn,r,s(x, z))−

∫ z

x

f
′

x(t)(1− βn,r,s(x, t))dt

+

[ ∫ t

x

f
′

x(u)du(1− βn,r,s(x, t))

]1

z

−

∫

1

z

f
′

x(t)(1− βn,r,s(x, t))dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ z

x

f
′

x(t)(1− βn,r,s(x, t))dt+

∫

1

z

f
′

x(t)(1− βn,r,s(x, t))dt

∣

∣

∣

∣

≤

Xr,s x(1− x)

n

∫

1

z

t
∨

x

(f ′

x)(t− x)−2
dt+

∫ z

x

t
∨

x

(f ′

x)dt

=
Xr,s x(1− x)

n

∫

1

x+((1−x)/
√

n)

t
∨

x

(f ′

x)(t− x)−2
dt+

(1− x)
√

n

x+((1−x)/
√

n)
∨

x

(f ′

x).
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By the substitution of v = (1− x)/(t− x), we get

|Bn,r,s(f
′

x, x)| ≤

Xr,s x(1− x)

n

∫

√

n

1

x+((1−x)/v)
∨

x

(f ′

x)(1− x)−1
dv +

(1− x)
√

n

x+((1−x)/
√

n)
∨

x

(f ′

x)

≤

Xr,s x

n

[
√

n]
∑

k=1

∫ k+1

k

x+((1−x)/v)
∨

x

(f ′

x)dv +
(1− x)
√

n

x+((1−x)/
√

n)
∨

x

(f ′

x)

=
Xr,s x

n

[
√

n]
∑

k=1

x+((1−x)/k)
∨

x

(f ′

x) +
(1− x)
√

n

x+((1−x))/
√

n
∨

x

(f ′

x).(3.7)

Collecting the estimates (3.5)-(3.7), we get the required result. This completes the
proof of the theorem.

4. Numerical Examples.

Example 4.1. In Figure 1, for n = 10, r = 1, s = 1, the comparison of convergence of

Kn,r,s(f ;x) (yellow) and Bernstein-Kantorovich Mn(f ; x) (blue) operators to f(x) = e
x3

(red) is illustrated. It is observed that the Kn,r,s(f ; x) gives a better approximation to
f(x) than Bernstein-Kantorovich Mn(f ;x) operators for n = 10, r = 1, s = 1.

Figure 1.The convergence of M10(f ;x) and K10,1,1(f ;x) to f(x)

Example 4.2. In Figure 2, for n = 50, r = 1, s = 1, the comparison of convergence
of Kn,r,s(f ; x) (yellow) and Bernstein-Kantorovich Mn(f ;x) (blue) operators to f(x) =
x
2 sin

(

2x

π

)

(red) is illustrated. It is observed that the Kn,r,s(f ;x) gives a better approxi-
mation to f(x) than Bernstein-Kantorovich Mn(f ;x) operators for n = 50, r = 1, s = 1.
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Figure 2.The convergence of M50(f ;x) and K50,1,1(f ;x) to f(x)

REFERENCES

1. U. Abel and M. Heilmann, The complete asymptotic expansion for Bernstein-

Durrmeyer operators with Jacobi weights, Mediterr. J.Math. 1 (2004) 487-499.

2. U. Abel, M. Ivan and R. Paltanea, The Durrmeyer variant of an operator defined by

D.D. Stancu, Appl. Math. Comput. 259 (2015) 116-123.

3. T. Acar, A. Aral and S. A. Mohiuddine, Approximation by bivariate (p, q)-Bernstein-
Kantorovich operators, Iran. J. Sci. Technol. Trans. Sci. 42 (2018) 655-662.
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Abstract. In this paper, we study nearly Kenmotsu manifolds with a Ricci soliton and
we obtain certain conditions about curvature tensors.
Keywords: Contact manifold, Nearly Kenmotsu Manifold, Ricci Solitons.

1. Introduction and Preliminaries

Ricci solitons ∂
∂t
g = −2S reflected on the modulo diffeomorphisms and scales

from the space of the metrics are fixed points of the Ricci flow and mostly explosive
limits for the Ricci flow in compact manifolds. Generally, physicists have studied
Ricci solitons in relation with string theory. In particular, in differential geometry
we use a Ricci soliton as a special type of the Riemannian metric. Such metrics
builds from the Ricci flow only by symmetries of the flow so they can be viewed
as generalizations of Einstein metrics. A Ricci soliton (g, V, λ) on a Riemannian
manifold (M, g) is a generalization of the Einstein metric such that [12]

£V g + 2S + 2λg = 0(1.1)

where S is a Ricci tensor and £V is the Lie derivative along the vector field V on
M and λ is a real number.

Depending on whether λ is negative, zero or positive, a Ricci soliton is named
shrinking, steady or expanding, respectively. In addition, if the vector field V is
the gradient of a potential function −f , then the metric g is called a gradient Ricci
soliton. We can regulate the (1.1) as

∇∇f = S + λg.(1.2)

Received November 27, 2018; accepted January 03, 2019
2010 Mathematics Subject Classification. Primary 53D10; Secondary 53D15
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Ricci solitons firstly become more important after Perelman applied Ricci soli-
tons to solve the long standing Poincare conjecture posed in 1904. [19] In particular,
after Sharma had studied the Ricci solitons in contact geometry, Ricci flows in con-
tact geometry gained a significant attention. They have been studied extensively
ever since. The geometry of Ricci solitons in contact metric manifolds have been
studied by authors such as Bagewadi, Bejan and Crasmareanu, Blaga, Hui et al.,
Chen, Deshmukh et al., Nagaraja and Premalatta, Tripathi and many others. In
[11], Ricci solitons in K-contact manifolds were studied by Sharma. Ghosh, Sharma
and Cho [11] studied gradient Ricci solitons in non-Sasakian (k, µ)-contact mani-
folds. In addition, in [21], Tripathi showed gradient Ricci solitons, compact Ricci
solitons in N(k)-contact metric manifolds and (k, µ)-manifolds. Recently in [1], B.
Barua and U. C. De focused on some properties of Ricci solitons in Riemannian
manifolds.

Einstein solitons are open examples of Ricci solitons, where g is an Einstein
metric and X is a Killing vector field. On a compact manifold, a Ricci soliton has a
constant curvature, especially in dimension 2 and in dimension 3 [12, 13]. For details
about these studies, we refer the reader to Chow and Knopf [8] and Derdzinski [10].
An important result by Perelman shows that on a compact manifold, the Ricci
soliton is a gradient Ricci soliton.

Based on these studies, in this paper we review Ricci solitons (R.S) and gradient
Ricci solitons (G.R.S) in a nearly Kenmotsu manifold. The paper progresses as
follows. After some preliminary information and definitions in Section 2, we consider
the case that in a nearly Kenmotsu manifold, if g admits a (R.S) in the form of
(g, V, λ) and V is point-wise collinear with ξ, then the manifold is an η-Einstein
manifold. Furthermore, we show that if a nearly Kenmotsu manifold admits a
compact (R.S), then the manifold is Einstein. Finally, in the last section, we prove
that when an η-Einstein nearly Kenmotsu manifold admits a (G.R.S), the manifold
transforms into an Einstein manifold under certain conditions.

Let M be an n-dimensional nearly Kenmotsu manifold with the (φ, ξ, η, g) struc-
ture that φ is a (1, 1) type tensor field, ξ is a contravariant vector field, η is a 1-form
and g is a Riemannian metric. Then by definition, it satisfies the following relation
[15]

η(ξ) = 1, φ2 = −I + η ⊗ ξ,(1.3)

φξ = 0, ηφ = 0, ∇Xξ = X − η(X)ξ,(1.4)

η(X) = g(ξ,X), g(φX, φY ) = g(X,Y )− η(X)η(Y ),(1.5)

(∇Xη)(Y ) = Ω(Y,X), Ω(X,Y ) = Ω(Y,X) (Ω(Y,X) = g(φY,X)),(1.6)

(∇ZΩ)(X,Y ) = {g(X,Z) + η(X)η(Z)}η(Y ) + {g(Y, Z) + η(Y )η(Z)}η(X)(1.7)

for any vector fields X,Y and Z on M , where the ⊗ is the tensor product and I
shows the identity map on TpM .

In an n-dimensional nearly Kenmotsu manifold with (φ, ξ, η, g) structure, the
following relations hold.

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X), S(X, ξ) = −(n− 1)η(X),(1.8)
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R(ξ, Y )X = −g(Y,X)ξ + η(X)Y, R(Y,X)ξ = η(Y )X − η(X)Y,(1.9)

φ(R(X,φY )Z) = R(X,Y )Z + 2{η(Y )X − η(X)Y }η(Z) + 2{g(X,Z)η(Y )(1.10)

−g(Y, Z)η(X)}+Ω(X,Z)φ(Y )− Ω(Y, Z)φX + g(Y, Z)X − g(X,Z)Y,

where R is the curvature tensor and S is the Ricci tensor with respect to g. If the
Ricci tensor S satisfies the condition

S = ag + bη ⊗ η,(1.11)

then an n-dimensional nearly Kenmotsu manifold is said to be η-Einstein. In the
Ricci tensor equation, a and b are smooth functions on M .

In an η-Einstein nearly Kenmotsu manifold, the Ricci tensor S and Ricci oper-
ator Q are shown in the form below.

S(X,Y ) =

[

r

n− 1
− 1

]

g(X,Y ) +

[

r

n− 1
− n

]

η(X)η(Y )(1.12)

QX =

[

r

n− 1
− 1

]

X +

[

r

n− 1
− n

]

η(X)ξ.(1.13)

2. (R.S) on Nearly Kenmotsu Manifolds

Suppose that a nearly Kenmotsu manifold admits a (R.S). Considering the
properties of nearly Kenmotsu manifolds with (R.S), we know that ∇g = 0. Since
λ in the (R.S) equation is a constant, we can specify that ∇λg = 0. Because of
this, it is easy to say that £V g + 2S is parallel.

It was proved in [16] that if a nearly Kenmotsu manifold with a symmetric
parallel (0, 2) type tensor, then the tensor is a constant multiple of the metric
tensor. As a result of this theorem, we can say that £V g+2S is a constant multiple
of metric tensors g, i.e., and £V g + 2S = ag, such that a is constant.

From the above equations, we can write £V g + 2S + 2λg as (a + 2λ)g. Then
using (R.S), we get λ = −a/2.

Based on these results we can write the following proposition.

Proposition 2.1. In a nearly Kenmotsu manifold, depending on whwther a is
positive or negative, (R.S) with the form of (g, λ, V ) is shrinking or expanding.
Particularly, let V be point-wise collinear with ξ i.e. V = bξ, where b is a function
on a nearly Kenmotsu manifold. Then

(£V g + 2S + 2λg)(X,Y ) = 0,(2.1)

which adds up to

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0,
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or,

bg((∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) = 0.

Using (1.4), we get

2bg(X,Y )−2bη(X)η(Y )+(Xb)η(Y )+(Y b)η(X)+2S(X,Y )+2λg(X,Y ) = 0.(2.2)

Then putting Y = ξ in (2.2) we obtain

(Xb) + η(X)ξb+ 2(1− n)η(X) + 2λη(X)

or,

(Xb) = (1− n− λ)η(X).(2.3)

We know that in a nearly Kenmotsu manifold dη = 0 and from (2.3) we get

Xb = 0

if

λ = 1− n.

Theorem 2.1. If in a nearly Kenmotsu manifold, the metric g is a (R.S) and V
is point-wise collinear with ξ, then V is a constant multiple of ξ on condition that
λ = 1− n. Especially, if we take V = ξ. Then

(£V g + 2S + 2λg)(X,Y ) = 0,

implies that

g(∇Xξ, Y ) + g(∇Y ξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0.(2.4)

Substituting X = ξ, we get λ = −(n − 1) < 0. Because it is negative, we can
say that the (R.S) is shrinking.

Particularly, if the manifold is a nearly Kenmotsu manifold, then we have

(∇Xη)(Y ) = g(φX, φY ) = g(X,Y )− η(X)η(Y ).(2.5)

Hence using (2.3), (2.5) Equation (2.2) becomes

S(X,Y ) = (n− 2)g(X,Y ) + η(X)η(Y ),(2.6)

that is, it is an η−Einstein manifold. In addition, we have the following theorem.

Theorem 2.2. If in a nearly Kenmotsu manifold the metric g is a (R.S) and V
is point-wise collinear with ξ, then the manifold is an η-Einstein manifold.
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Conversely, if we have a nearly Kenmotsu η-Einstein manifold M with the fol-
lowing form in which γ and δ constants

S(X,Y ) = δg(X,Y ) + γη(X)η(Y ),(2.7)

then taking V = ξ in (2.1) and using the above equation, we obtain

(£ξg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y )(2.8)

= 2(1 + λ+ δ)g(X,Y ) + 2(γ − 1)η(X)η(Y ).

From Equation (2.8) it follows that M with a (R.S) with the form of (g, ξ, λ) such
that λ = γ − δ.

So we have the following theorem.

Theorem 2.3. If a nearly Kenmotsu Manifold is η-Einstein, then the manifold
admits a (R.S) of type (g, ξ, (γ − δ)).

Again, as a result of some adjustments, we get from (2.6)

r = (n− 1)2 = constant.

By the last equation, the scalar curvature is constant.

In [11] Sharma proved that a compact Ricci soliton with a constant scalar cur-
vature is Einstein. Therefore, from this theorem, we give the following result.

Corollary 2.1. Let M be a nearly Kenmotsu manifold with a compact (R.S), then
the manifold is Einstein.

3. (G.R.S) on Nearly Kenmotsu Manifolds

If the vector field V is the gradient of a potential function −f , then g is called
a gradient Ricci Soliton and we can regulate (1.1) as

∇∇f = S + λg.(3.1)

This can be written as
∇Y Df = QY + λY,(3.2)

where D shows the gradient operator of g. From (3.2) it is clear that

R(X,Y )Df = (∇XQ)Y − (∇Y Q)X.(3.3)

This implies that

g(R(ξ, Y )Df, ξ) = g((∇ξQ)Y, ξ)− g((∇Y Q)ξ, ξ).(3.4)
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Now using (1.13) and (1.4) we have

(∇Y Q)(X) =

[

r

1− n
− n

]

(−2η(X)η(Y )ξ + g(X,Y )ξ + η(X)Y ).(3.5)

Then clearly
g((∇XQ)ξ − (∇ξQ)X, ξ) = 0.(3.6)

Then we have from (3.4)
g(R(ξ,X)Df, ξ) = 0.(3.7)

From (1.9) and (3.7) we get

g(R(ξ, Y )Df, ξ) = −g(Y,Df) + η(Df)η(Y ) = 0.

Hence
Df = η(Df)ξ = g(Df, ξ)ξ = (ξf)ξ.(3.8)

Using (3.8) in (3.2) we get

S(X,Y ) + λg(X,Y ) = Y (ξf)η(X) + ξfg(φX, φY ).(3.9)

Putting X = ξ in (3.9) and using (2.3) we get

Y (ξf) = (1− n+ λ)η(Y ).(3.10)

With this equation, it is clear that if λ = n− 1.

So from here, ξf = constant. Then using (3.8) we have

Df = (ξf)ξ = cξ.

Particularly, taking a frame field ξf = 0, we get from (3.8), f = constant. There-
fore, Equation (3.1) can be shown as

S(X,Y ) = (1− n)g(X,Y ),

that is M is an Einstein manifold.

Theorem 3.1. If an η-Einstein nearly Kenmotsu manifold admits a (G.R.S) then
the manifold transforms to an Einstein manifold provided λ = 1 − n and with the
frame field ξf = 0.
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Abstract. In this study, a new weighted version of the inverse Rayleigh distribution
based on two different weight functions is introduced. Some statistical and reliability
properties of the introduced distribution including the moments, moment generating
function, entropy measures (i.e., Shannon and Rényi) and survival and hazard rate
functions are derived. The maximum likelihood estimators of the unknown parameters
cannot be obtained in explicit forms. So, a numerical method has been required to
compute maximum likelihood estimates. Finally, the daily mean wind speed data set
has been analysed to show the usability of the new weighted inverse Rayleigh distribu-
tion.
Keywords: New weighted inverse Rayleigh distribution; Shannon entropy; hazard rate
function; Fisher information matrix; wind speed data.

1. Introduction

The accuracy of procedures in the statistical analysis depends on the suitable-
ness of a distribution used in modeling a data set. Therefore, many statistical
distributions have been proposed in the literature because it is very important to
determine the distribution which provides the best fit to a data set.

One of the widely-used statistical distributions in the context of reliability stud-
ies is the inverse Rayleigh (IR) distribution introduced by Trayer [24]. Sherina and
Oluyede [25] stated that the distribution of lifetimes of several types of experimental
units can be modeled by the IR distribution. Various extensions of this distribution
have been proposed in the literature: transmuted IR distribution [1], modified IR
distribution [10], kumaraswamy IR distribution [21] and beta IR distribution [12].

On the other hand, the theory of weighted distributions introduced by Rao [17]
and Fisher [3] provides a unifying approach to deal with the problems of model
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specification and data interpretation (see [9]). There are more studies on weighted
distributions and their applications in various fields including ecology and reliability
(see [6], [7], [16], [14], [15], [19], [13] and [4] among the others). Fatima and Ahmad
[8] also introduced a weighted IR (WIR) distribution with a single weight function
w (x) = xk where k ≥ 0, and they studied several of its properties.

The objective of the paper is to introduce a new weighted version of IR dis-
tribution obtained by using two different weight functions and to discuss its basic
characteristics.

The rest of the paper is organized as follows. The newWIR (NWIR) distribution
is introduced in Section 2. Some of its statistical and reliability properties are given
in Section 3. Equations of maximum likelihood estimates of parameters and a Fisher
information matrix are obtained in Section 4. In Section 5, an application of the
distribution to real data is presented. Finally, the paper ends with a conclusion.

2. The New Weighted Inverse Rayleigh Distribution

Suppose that X is a non-negative random variable with its probability density
function (pdf), and w(x) is weight function where E (w (x)) < ∞. The pdf of
weighted distribution of X can be defined as

(2.1) fw(x) =
w (x) f(x)

E (w (x))
.

It should be noted that a general class of weight functions w (x) can be defined by

w (x) = xiejxF k (x) (1− F (x))
l
,

see [23]. Weight functions can be determined for a different combination of i, j,
k and l values. If we take w (x) = xi, then the obtained distribution is called
size-biased distribution, and it is length-biased distribution for i = 1.

Let X be a random variable with the IR distribution having the scale parameter
λ. The pdf and cumulative density function (cdf ) of the IR distribution are given
by

f(x) = 2λx−3e−λx−2

, x > 0, λ > 0,

F (x) = e−λx−2

, x > 0, λ > 0,

respectively. Now, substituting the multiplication of weighted functions, w1 (x) =

x−α and w2 (x) = e−αx−2

, and pdf of IR distribution in (2.1), the pdf of the NWIR
distribution is defined by

fw(x) =
w1 (x)w2 (x) f(x)

E (w1 (x)w2 (x))
(2.2)

=
2 (α+ λ)

α
2 +1

Γ
(

α
2 + 1

) x−(α+3)e−(α+λ)x−2

, x > 0, λ > 0, α > 0,
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where

E (w1 (x)w2 (x)) =

∞
∫

0

2λx−(α+3)e−(α+λ)x−2

dx

=
λΓ
(

α
2 + 1

)

(α+ λ)
α
2 +1

< ∞.

It should be noted that the following transformation is applied in order to calculate
E (w1 (x)w2 (x))

(2.3) u = (α+ λ) x−2 =⇒ x =

√

α+ λ

u
=⇒ du = −2 (α+ λ) x−3dx.

The corresponding cdf of the NWIR distribution is

Fw (x) =
Γ
(

α
2 + 1, α+λ

x2

)

Γ
(

α
2 + 1

)(2.4)

= 1−
γ
(

α
2 + 1, α+λ

x2

)

Γ
(

α
2 + 1

) .

Here Γ
(

α
2 + 1, α+λ

x2

)

is an upper incomplete Gamma function defined by

Γ (a, x) =

∞
∫

x

ta−1e−tdt.

Γ (a, x) = Γ (a)− γ (a, x) ,

where γ (a, x) is a lower incomplete Gamma function as

γ (a, x) =

x
∫

0

ta−1e−tdt.

In FIG. 2.1, different pdf and cdf plots of the NWIR distribution are presented for
the selected values of parameters α and λ. Now, let Y = (α+ λ)X−2, where X has
the NWIR distribution with parameters α and λ. The pdf of the random variable
Y becomes

f (y) =
1

Γ
(

α
2 + 1

)y
α
2 e−y

for y > 0. Thus, the random variable Y has a Gamma distribution shown as
Y ∼ Gamma

(

α
2 + 1, 1

)

.
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(a) Probability density function
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Fig. 2.1: Plots of the pdf and cdf of the NWIR distribution where α = 2, λ = 1
(green line); α = 2, λ = 2 (blue line); α = 5, λ = 3 (red line)

3. Statistical and Reliability Properties

In this section we consider some statistical and reliability properties of the NWIR
distribution.

3.1. r th moments

If a random variable X has the NWIR distribution with a scale parameter λ and
shape parameter α, then the r th moment of the NWIR distributed random variable
X is obtained as

E (Xr) =

∞
∫

0

2 (α+ λ)
α
2 +1

Γ
(

α
2 + 1

) xr−α−3e−(α+λ)x−2

dx.

In order to calculate E (Xr), using the transformation in (2.3), we obtain

E (Xr) = (α+ λ)
r
2
Γ
(

α−r
2 + 1

)

Γ
(

α
2 + 1

) .

Hence, from the r th moment of the NWIR distribution, the first four moments can
be easily calculated to obtain the mean, variance, coefficient of skewness and the
coefficient of kurtosis of the NWIR distribution as follows

E (X) = (α+ λ)
1
2

Γ
(

α+1
2

)

Γ
(

α
2 + 1

) ,

E
(

X2
)

=
2 (α+ λ)

α
,

E
(

X3
)

= (α+ λ)
3
2
Γ
(

α−3
2 + 1

)

Γ
(

α
2 + 1

) ,
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and

E
(

X4
)

= (α+ λ)2
Γ
(

α−4
2 + 1

)

Γ
(

α
2 + 1

) .

3.2. Moment generating function

The moment generating function of the NWIR distribution is given as follows.
formula

MX (t) = E
(

etx
)

=

∞
∫

0

etx
2 (α+ λ)

α
2 +1

Γ
(

α
2 + 1

) x−(α+3)e−(α+λ)x−2

dx.

By applying the Maclaurin series etx =
∞
∑

n=0

(tx)n

n! and setting the transformation in

(2.3), we finally get

MX (t) =
1

Γ
(

α
2 + 1

)

∞
∑

n=0

tn

n!
(α+ λ)

n
2 Γ

(

α− n

2
+ 1

)

.

3.3. Quantile function

The quantile function of the NWIR distribution is obtained by

(3.1) xq = F−1
w (q) , 0 < q < 1,

where F−1
w (q) is the inverse of cdf in (2.4). The median of the NWIR distributed

random variable X can be found by putting q = 0.5 in (3.1). F−1
w (q) can be

computed numerically via some mathematical and statistical software packages since
it does not have a closed-form expression. Moreover, the equation in (3.1) can be
used in order to generate a random number from the proposed distribution.

3.4. Mode

Now, the natural logarithm of the fw(x) in (2.2) is given by

(3.2) ln fw(x) ∝ − (α+ 3) lnx− (α+ λ) x−2.

Using the differentiating equation (3.2) with respect to x, we obtain as

(3.3)
d

dx
ln fw(x) = − (α+ 3)x−1 + 2 (α+ λ) x−3.
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If the equation (3.3) is equal to 0 and solve for x, then the mode of the NWIR
distribution has the following expression

XM =

√

2 (α+ λ)

α+ 3

for α > 0 and λ > 0. Note that fw(x) is increasing when x ∈ (0, XM ) and is
decreasing when x ∈ (XM ,∞) .

3.5. Shannon entropy

The statistical entropy introduced by Shannon [22] is defined as a measure of
the information content associated with the outcome of a random variable (see [2]).
The Shannon entropy of the NWIR distribution is expressed by

IS (α, λ) = −E (ln fw (x))(3.4)

= ln

(

Γ
(

α
2 + 1

)

2 (α+ λ)
α
2 +1

)

+ (α+ 3)E (lnx)

+ (α+ λ)E
(

x−2
)

.

To calculate E (lnx), if we use the transformation in (2.3), then we have

E (lnx) =
1

2Γ
(

α
2 + 1

)

∞
∫

0

u
α
2 (ln (α+ λ)− lnu) e−udu(3.5)

=
1

2

(

ln (α+ λ)−Ψ
(α

2
+ 1
))

,

where Ψ is a digamma function with

Ψ (r) =
d

dr
ln Γ (r) =

Γ
′

(r)

Γ (r)
, r > 0

defined as the logarithmic derivative of the Gamma function. It is also well known
that the derivative of Γ (r) is

Γ
′

(r) =

∞
∫

0

tr−1 (ln t) e−tdt.

Substituting E
(

x−2
)

=
α
2 +1

α+λ
and (3.5) into (3.4), Shannon entropy of the NWIR

distribution IS (α, λ) becomes

IS (α, λ) = ln

(

Γ
(

α
2 + 1

)

2 (α+ λ)
α
2 +1

)

+
(α

2
+ 1
)

+
(α− 3)

2

(

ln (α+ λ)−Ψ
(α

2
+ 1
))

.
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3.6. Rényi entropy

Rényi entropy considered by Rényi [18] is a generalization of the Shannon en-
tropy. The Rényi entropy of the NWIR distribution is expressed by

IR (δ) =
1

1− δ
ln

∞
∫

0

f δ
w (x) dx

=
1

1− δ
ln

∞
∫

0

(

2 (α+ λ)
α
2 +1

Γ
(

α
2 + 1

) x−(α+3)e−(α+λ)x−2

)δ

dx

=
1

1− δ



δ ln
2 (α+ λ)

α
2 +1

Γ
(

α
2 + 1

) + ln

∞
∫

0

x−δ(α+3)e−δ(α+λ)x−2

dx



 ,

where δ 6= 1 and δ > 0. By using the transformation in (2.3), we obtain that

IR (δ) =
1

1− δ

(

ln 2δ−1 +

(

1− δ

2

)

ln (α+ λ)− δ ln Γ
(α

2
+ 1
)

)

+
1

1− δ

(

ln Γ

(

δ (α+ 3)− 1

2

)

−
δ (α+ 3)− 1

2
ln δ

)

.

3.7. Survival and hazard rate functions

The survival and hazard rate functions of the NWIR distribution are defined by

S (x) = 1− Fw (x)

=
γ
(

α
2 + 1, α+λ

x2

)

Γ
(

α
2 + 1

) ,

and

H (x) =
fw (x)

S (x)

=
2 (α+ λ)

α
2 +1

γ
(

α
2 + 1, α+λ

x2

)x−(α+3)e−(α+λ)x−2

for x > 0, respectively. In FIG. 3.1, the graphs of the survival and hazard rate
functions, which are plotted against different values of the parameters α and λ, are
demonstrated.

Then, to determine the behavior of the hazard rate function of the NWIR dis-
tribution, the lemma established by Glaser [5] is used. Now, we define

η (x) = −
f

′

w (x)

fw (x)

= (α+ 3)x−1 − 2 (α+ λ)x−3,
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and

η
′

(x) = − (α+ 3)x−2 + 6 (α+ λ) x−4,

where f
′

w (x) is derivative of pdf of the NWIR distribution with respect to x. Thus,

η
′

(x) = 0 provides when x0 =
√

6(α+λ)
α+3 for λ > 0, α > 0. Note that, η

′

(x) > 0 and

η
′

(x0) = 0 when 0 < x < x0 and η
′

(x) < 0 when x > x0. Therefore, the hazard
rate function of the NWIR distribution is an upside down bathtub shape (see [19]
and [23]).

(a) Survival function
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(b) Hazard rate function
0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

Fig. 3.1: Plots of the survival and hazard rate functions of the NWIR distribution
where α = 2, λ = 1 (green line); α = 2, λ = 2 (blue line); α = 5, λ = 3 (red line)

3.8. Order statistics

Let X(1), X(2), . . . , X(n) be order statistics of a random sample X1, X2, . . . , Xn

from the NWIR distribution. It is well known that the pdf of r th order statistic
X(r) (r = 1, 2, . . . , n) is given as:

(3.6) fr:n (x;α, λ) = r

(

n

r

)

f (x) (F (x))r−1 (1− F (x))n−r .

Applying the binomial series expansion of (1− F (x))
n−r

in (3.6), we get

(3.7) fr:n (x;α, λ) =

n−r
∑

k=0

r

(

n

r

)(

n− r

k

)

(−1)k f (x) (F (x))r+k−1 .

After substituting (2.2) and (2.4) into (3.7), if we put the binomial series expansion

of (F (x))
r+k−1

in (3.7), then we have
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fr:n (x;α, λ) =

n−r
∑

k=0

r+k−1
∑

t=0

2 (−1)
r+2k−1

(3.8)

×

[

r

(

n

r

)(

n− r

k

)(

r + k − 1

t

)]

×

[

(α+ λ)
α
2 +1

γr+k−1
(

α
2 + 1, α+λ

x2

)

Γr+k
(

α
2 + 1

)

]

×
[

x−(α+3)e−(α+λ)x−2
]

.

Thus, the pdf s of the smallest order statistic X(1) and largest order statistic X(n)

can be obtained by writing the r = 1 and r = n in (3.8), respectively.

4. Estimation

Let {X1, X2, . . . , Xn} be a random sample from the NWIR distribution. The
log-likelihood function of the sample is

lnL (α, λ | x) = n ln 2 + n
(α

2
+ 1
)

ln (α+ λ) − n lnΓ
(α

2
+ 1
)

(4.1)

− (α+ 3)

n
∑

i=1

lnxi − (α+ λ)

n
∑

i=1

x−2
i .

By differentiating (4.1) with respect to parameters α and λ, we have normal equa-
tions as

∂ lnL (α, λ | x)

∂α
=

n

2
ln (α+ λ) + n

(

α
2 + 1

)

α+ λ
−

n

2
Ψ
(α

2
+ 1
)

(4.2)

−
n
∑

i=1

lnxi −
n
∑

i=1

x−2
i = 0

∂ lnL (α, λ | x)

∂λ
= n

(

α
2 + 1

)

α+ λ
−

n
∑

i=1

x−2
i = 0,(4.3)

where Ψ
(

α
2 + 1

)

= d
dα

ln Γ
(

α
2 + 1

)

=
Γ
′
(α

2 +1)
Γ(α

2 +1)
. Note that the solution of the equa-

tions in (4.2)-(4.3) gives maximum likelihood estimators α̂ and ̂λ of parameters α
and λ. However, they do not have a closed form solution, and we must use nu-
merical methods to solve them. Now, to give asymptotically a lower bound for the
covariance matrix of α̂ and ̂λ, the Fisher information matrix is provided as a minus
expected value of the second-order partial derivatives of the log-likelihood function
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under the regularity conditions, see [11]. It is defined by

In (α, λ) =





−E
(

∂2 lnL(α,λ|x)
∂α2

)

−E
(

∂2 lnL(α,λ|x)
∂α∂λ

)

−E
(

∂2 lnL(α,λ|x)
∂λ∂α

)

−E
(

∂2 lnL(α,λ|x)
∂λ2

)



 ,

and the elements of the matrix are obtained as follows

E

(

∂2 lnL (α, λ | x)

∂α2

)

=
n

(α+ λ)
− n

(

λ
2 + 1

)

(α+ λ)
2 −

n

4
Ψ

′
(α

2
+ 1
)

E

(

∂2 lnL (α, λ | x)

∂λ2

)

= −n

(

α
2 + 1

)

(α+ λ)
2

E

(

∂2 lnL (α, λ | x)

∂α∂λ

)

= n

(

λ
2 − 1

)

(α+ λ)
2 ,

where Ψ
′ (α

2 + 1
)

is first derivative of Ψ
(

α
2 + 1

)

with respect to α. Therefore,
maximum likelihood estimators of parameters α and λ have asymptotically normal
distribution with mean vector 0 and the covariance matrix I−1

n (α, λ) as

√
n
(

α̂− α, ̂λ− λ
)

→ N2

(

0,I−1
n (α, λ)

)

,

where I−1
n (α, λ) is inverse of In (α, λ).

5. An Application

In this section, we consider a real data set, which is the daily mean wind speed
data for March, taken in 2015 from the Turkish Meteorological Services for Sinop,
Turkey, to demonstrate the practicability of the proposed distribution over the IR
and WIR (proposed by Fatima and Ahmad [8]) distributions, see Table 5.1.

Table 5.1: The daily mean wind speed data

2.8 1.8 3.2 5.0 2.4 4.8 2.9 2.9
2.3 3.2 2.3 2.0 1.9 3.3 4.4 6.7
4.3 1.9 2.2 3.3 2.1 4.0 2.0 3.1
3.8 3.1 3.2 3.4 2.8 2.1 3.1

The Kolmogorov-Smirnov (K-S ) test, which is the one of the widely used good-
ness of fit tests, has been applied to verify that distributions fit to the real data set.
The results of the K-S test indicate that the NWIR, WIR and IR distributions are
suitable for modeling the data set since the computed K-S test values are less than
theoretical K-S test value (K-S 0.05;31 = 0.24), see Table 5.2.
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Then, we determined which distribution better fits the real data set using model
evaluating tests, i.e., the root mean square error (RMSE ), the coefficient of deter-
mination (R2), ln-likelihood (lnL) and the Akaike information criterion (AIC ).

The tests results demonstrate that the NWIR distribution gives a better fit to
the data set compared to the WIR and IR distributions because it has minimum
RMSE and AIC and maximum R2 and lnL values among the other distributions
(see Table 5.2 and FIG. 5.1). Additionally, it was observed that there is no difference
between the fitting performances of theWIR and IR distributions for the wind speed
data (see FIG. 5.1).

Table 5.2: The ML estimates of parameters and results of the K-S test, RMSE, R2,
lnL and AIC for the wind speed data

Distribution α̂ λ̂ K-S RMSE R2 lnL AIC
NWIR 3.7934 17.1586 0.0971 0.0532 0.9687 -41.2814 86.5629
WIR 0.0100 7.1969 0.2398 0.1162 0.6691 -48.7263 101.4525
IR - 7.2331 0.2393 0.1158 0.6729 -48.6648 101.3290
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Fig. 5.1: Fitted plots and histogram for the data

6. Conclusion

In this study, a new weighted IR distribution based on two different weight func-
tions has been introduced. Moments, the moment generating function, survival and
hazard rate functions, order statistics and entropy measures of the new distribution
have been derived. The estimating equations have been provided in order to obtain
ML estimates of the individual parameters, and the Fisher information matrix has
been derived in order to obtain approximate confidence intervals of the parameters.
The relationship between the NWIR distribution and the Gamma distribution has
also been proved.
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The applicability and superiority of the proposed distribution over the WIR and
IR distributions have been illustrated with real data. Therefore, the NWIR distri-
bution can be considered as an alternative model for the statistical data analysis in
wind speed studies and other fields.

REFERENCES

1. A. Ahmad , S. P. Ahmad and A. Ahmed: Transmuted inverse Rayleigh distribu-

tion: a generalization of the inverse Rayleigh distribution. Mathematical Theory and
Modeling 4(7) (2014), 90–98.

2. S. F. Bush: Nanoscale Communication Networks. Artech House, 2010.

3. R. A. Fisher: The effects of methods of ascertainment upon the estimation of frequen-

cies. Annals of Eugenics 6 (1934), 13–25.

4. M. E. Ghitany , F. Alqallaf , D. K. Al-Mutairi and H. A. Husain: A two-

parameter weighted Lindley distribution and its applications to survival data. Mathe-
matics and computers in Simulation 81(6) (2011), 1190–1201.

5. R. E. Glaser: Bathtub and related failure rate characterizations. Journal of American
Statistical Association 75 (1980), 667–672.

6. R. C. Gupta and J. P. Keating: Relations for reliability measures under length

biased sampling. Scandinavian Journal of Statistics 13 (1986), 49–56.

7. R. C. Gupta and S. N. Kirmani: The role of weighted distributions in stochastic

modeling. Communications in Statistics-Theory and methods 19(9) (1990), 3147–3162.

8. K. Fatima and S. P. Ahmad: Weighted inverse Rayleigh distribution. International
Journal of Statistics and Systems 12(1) (2017), 119–137.

9. J. X. Kersey: Weighted inverse Weibull and beta-inverse Weibull distribution. Geor-
gia Southern University, 2010.

10. M. S. Khan: Modified inverse Rayleigh distribution. International Journal of Com-
puter Applications 87(13) (2014), 28–33.

11. A. Klein and G. Mélard: Computation of the Fisher information matrix for time

series models. Journal of Computational and Applied Mathematics 64(1–2) (1995),
57–68.

12. J. Leao , H. Saulo , M. Bourguignon , R. Cintra , L. Rgo and G. Cordeiro: On

some properties of the beta inverse Rayleigh distribution. Chilean Journal of Statistics
4(2) (2013), 111–131.

13. V. Leiva , A. Sanhueza and J. M. Angulo: A length-biased version of the

Birnbaum-Saunders distribution with application in water quality. Stochastic Environ-
mental Research and Risk Assessment 23(3) (2009), 299–307.

14. B. O. Oluyede: On inequalities and selection of experiments for length biased dis-

tributions. Probability in the Engineering and Informational Sciences 13(2) (1999),
169–185.

15. A. K. Nanda and K. Jain: Some weighted distribution results on univariate and

bivariate cases. Journal of Statistical Planning and Inference 77(2) (1999), 169–180.

16. G. P. Patil: Encountered data, statistical ecology, environmental statistics, and

weighted distribution methods. Environmetrics 2(4) (1991), 377–423.



The New Weighted Inverse Rayleigh Distribution 523

17. C. R. Rao: On discrete distributions arising out of methods of ascertainment. The
Indian Journal of Statistics, Series A, 27 (1965), 311–324.
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Abstract. Two different random environment INAR models of higher order, precisely
RrNGINARmax(p) and RrNGINAR1(p), are presented as a new approach to modeling
non-stationary nonnegative integer-valued autoregressive processes. The interpretation
of these models is given in order to better understand the circumstances of their ap-
plication to random environment counting processes. The estimation statistics, defined
using the Conditional Least Squares (CLS) method, is introduced and the properties
are tested on the replicated simulated data obtained by RrNGINAR models with dif-
ferent parameter values. The obtained CLS estimates are presented and discussed.
Keywords: Random environment; INAR(p); RrNGINAR; negative binomial thinning;
geometric marginals; conditional least squares.

1. Introduction

One of the latest and most significant approaches to the modeling of count processes
was designed by introducing integer-valued autoregressive (INAR) models almost
simultaneously by [7] and [2]. This breakthrough in the analysis of integer-valued
time series was a consequence of using a new thinning operator. Namely, the de-
terministic part of a process random variable was calculated using the realization
of a Bernoulli counting sequence limited by the process realization in the preceding
moment. This way of modeling was simply more natural and intuitively justified,
so it led to much better results in fitting the counting processes than other models
known at that time. This was followed by many modifications and generalizations.
Some authors considered the thinning operator ([3], [6], [17, 18] and [13]), while
others focused on marginal distributions ([8], [1], [4] and [5]). Also, as an alter-
native to the NGINAR(1) process from [13], a zero-inflated NGINAR(1) process
was considered, which is given in [14]. In order to obtain more suitable models for
processes of higher correlation between distant elements, INAR models of higher
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2010 Mathematics Subject Classification. Primary 62M10
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order were introduced. The most operative approach was developed in [16], where
Xn as a process value at time n was defined using p possible preceding random
values Xn−i, for i ∈ {1, 2, . . . , p}, each with a certain probability. This inspired the
construction of models presented in [10] and [9]. So, the evolution of INAR models
continued.

All the models listed above corresponded only to stationary counting processes.
In many applications, this was found as a frequent limitation. Recently, random
environment INAR models, whose marginal distribution depends on random circum-
stances, have been introduced (more details about these models are given below).
However, the conditional least squares (CLS) estimators of random environment
INAR models parameters have not been considered so far. Therefore, in this pa-
per, we obtain CLS estimators and test them on the simulated values from the
corresponding random INAR model.

Using as a starting point some ideas from [15], [11] defined the r-states random
environment integer-valued autoregressive process of order 1, denoted as (RrINAR(1)).
It is given by

Xn(Zn) =

Xn−1(Zn−1)
∑

i=1

Ui + εn(Zn−1, Zn), n ∈ N,

where

Xn(Zn) =

r
∑

z=1

Xn(z)I{Zn=z},

εn(Zn−1, Zn) =

r
∑

z1=1

r
∑

z2=1

εn(z1, z2)I{Zn−1=z1,Zn=z2},

{Ui}, i ∈ N, is a counting sequence of independent and identically distributed
(i.i.d.) random variables generating a thinning operator, {Zn}, n ∈ N0 is an r-
states random environment process defined as a Markov chain taking values in
Er= {1, 2, . . . , r}. Further, {εn(i, j)}, n ∈ N0, i, j ∈ Er, are sequences of i.i.d. ran-
dom variables, for which {Zn}, {εn(1, 1)}, {εn(1, 2)}, . . . , {εn(r, r)}, are mutually
independent, for all n ∈ N0, and Zm and εm(i, j) are independent of Xn(l), for
n < m and any i, j, l ∈ Er. In order to obtain more efficient INAR modeling, a new
random environment INAR(1) process with one-step-ahead determined marginal
distribution was introduced in [11]. As can be seen, this process is non-stationary,
which makes it more applicable in practice. Adapting the process to more dynamical
counting data, the authors specify geometric marginals and the negative binomial
thinning operator α∗, which was utilized for construction of the NGINAR(1) model
introduced in [13]. This resulted in the r-states random environment INAR(1)
process with determined (zn–guided) geometric marginal distribution based on the
negative binomial thinning operator (RrNGINAR(1)) given by

(1.1) Xn(zn) = α ∗Xn−1(zn−1) + εn(zn−1, zn), n ∈ N,
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where α ∈ (0, 1), the counting sequence {Ui}, i ∈ N, incorporated in α∗, makes a
sequence of i.i.d. random variables with the probability mass function (pmf) given
by

P (Ui = u) =
αu

(1 + α)u+1
, u ∈ N0,

and finally the process pmf is defined as

(1.2) P (Xn(zn) = x) =
µx
zn

(1 + µzn)
x+1

, x ∈ N0,

where µzn ∈ {µ1, µ2, . . . , µr} and r∈ N.

1.1. Interpretation of the random environment INAR processes of

higher order

Continuing the efforts towards the optimal fitting of the counting processes, models
of higher order were introduced in [12]. Two approaches were used, which we discuss
in what follows.

Definition 1. Let zn be the realization of a random environment process {Zn} at
the moment n > 0. We say that {Xn(zn)}n∈N0 is an INAR process with r-states
random environment guided geometric marginals based on the negative binomial
thinning operator of maximal order p (RrNGINARmax(p)), p ∈ N, if the random
variable Xn(zn) is defined as

(1.3) Xn(zn) =























α ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ
(pn)

1 ,

α ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)

2 ,
...

...

α ∗Xn−pn
(zn−pn

) + εn(zn−pn
, zn), w.p. φ

(pn)
pn ,

for n > 1, where

pn =

{

p, p∗n ≥ p,
p∗n, p∗n < p,

p∗n = max {i ∈ {1, 2, . . . , n} : zn−1 = zn−2 = · · · = zn−i} and the following condi-
tions are satisfied:

1. φ
(pn)

i > 0, i ∈ {1, 2, . . . , pn},
∑pn

i=1
φ
(pn)

i = 1,

2. α ∈ (0, 1) and the counting sequence {Ui}i∈N of the negative binomial thinning
operator α∗ has pmf P (Ui = u) = αu

(1+α)u+1 , u ∈ {0, 1, 2, . . .},

3. P (Xn(zn) = x) =
µx
zn

(1+µzn )x+1 , x ∈ {0, 1, 2, . . .}, where µzn ∈ {µ1, µ2, . . . , µr},

µi > 0, i ∈ {1, 2, . . . , r} and r ∈ N is the number of states of the random environ-
ment process {Zn},

4. for fixed i, j ∈ Er = {1, 2, .., r}, {εn(i, j)}n∈N is a sequence of i.i.d. random
variables,
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5. {Zn}, {εn(1, 1)}, {εn(1, 2)}, . . . , {εn(r, r)} are mutually independent sequences
of random variables,

6. Xn(l) is independent of Zm and εm(i, j), for 0 ≤ n < m and any i, j, l ∈ Er.

Definition 2. Let zn be the realization of a random environment process {Zn} at
the moment n > 0. We say that {Xn(zn)}n∈N0 is an INAR process with r-states
random environment guided geometric marginals based on the negative binomial
thinning operator of order p (RrNGINAR1(p)) if the random variable Xn(zn) is
defined as

Xn(zn) =























α ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ
(pn)

1 ,

α ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)

2 ,
...

...

α ∗Xn−pn
(zn−pn

) + εn(zn−pn
, zn), w.p. φ

(pn)
pn ,

for n > 1, where

pn =

{

p, p∗n ≥ p,
1, p∗n < p,

p∗n = max {i ∈ {1, 2, . . . , n} : zn−1 = zn−2 = · · · = zn−i} and conditions 1 − 6 from
Definition 1 are satisfied.

Since the distribution parameter values of the processes may vary over time, it
could happen that each of the equations (1.3) and (2), at a certain moment, contains
differently distributed Xn random variables, which would make the models pretty
complicated to work with. In order to avoid this, each of these models is defined
with the ability of changing the number of possibilities (possible expressions) on
the right side of the equation. So, the process introduced by Definition 1 has a
fully variable order, possibly taking all the values from 1 to p. When the process
random state changes, then the order of the process becomes equal to 1 and then
starts rising successively, until it reaches p (when the process takes shape of the
model of fixed order), or the state changes again. However, for the process given by
Definition 2, the order takes one of two possible values. Namely, every time the state
changes, the order becomes equal to 1 and it remains the same until there is a series
of enough (p) previous process elements corresponding to the same state, when the
order becomes equal to p. By virtue of these qualities, these processes are the most
suitable for counting, for example, some elements of the observed unstable system or
some random events recorded in a variable environment. In each case, certain area
conditions or random circumstances may affect the dynamics of the interactions
in the observed populations, which further affects the values of counts. So, the
finite number of possible combinations of circumstances in which the population is
observed is represented by the finite number (r) of random states and is modeled
by the Markov process {Zn}. Its realization {zn} directly determines the value
of the selected marginal distribution. Hence, while being in the same state zn,
the process behaves as a stationary one with the marginal parameter value µzn .
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Nevertheless, its non-stationarity comes from changing its mean parameter value
µzn , which is directly guided by {zn}. So, the counting process is basically piece-
by-piece stationary, where each piece is as long as the random process {Zn} remains
in the same state, i.e. the population circumstances do not change.

2. Conditional least squares estimators

Let {Xn(zn)} be the RrNGINARmax(p) or RrNGINAR1(p) time series model.
In order to apply Theorem 2 from [12] we have to suppose conditions from that
theorem. Let µ1 > 0, µ2 > 0, . . . , µr > 0 and let us suppose that 0 ≤ α ≤

min
{

µl

1+µk
, k, l ∈ Er

}

, zn = j and zn−1 = i, for i, j ∈ Er. Now, recalling the men-

tioned theorem, the conditional expectation of the random variable Xn for given
Xn−1, Xn−2, ..., Xn−pn

is

E(Xn|Hn−1) = µj − αµi + α

pn
∑

l=1

φ
(pn)

l Xn−l,

whereHn−1 represents σ-algebra generated byXn−1, Xn−2, .... Now, if we define

new parameters as θ
(zn)

l = αφ
(pn)

l , for l ∈ {1, 2, ..., pn}, then α =
∑pn

l=1
θ
(pn)

l and
consequently

E(Xn|Hn−1) = µj − αµi + θ
(pn)

1 Xn−1 + θ
(pn)

2 Xn−2 + ...+ θ(pn)
pn

Xn−pn

= µj −

pn
∑

l=1

θ
(pn)

l µi + θ
(pn)

1 Xn−1 + θ
(pn)

2 Xn−2 + ...+ θ(pn)
pn

Xn−pn
.

Let k ∈ Er, pn = p and Jk = {n ∈ N|Xn, Xn−1, ..., Xn−pk
∈ U (k)}, where U (k)

represents the process subsample which consists of all the elements corresponding
to the same state k. In conducting the conditional least squares (CLS) estimation,
the aim is to minimize the following sum of squares
(2.1)

Q
(k)

N (a) =
∑

n∈Jk

(

Xn − µj −

p
∑

l=1

θ
(p)

l µi − θ
(p)
1 Xn−1 − θ

(p)
2 Xn−2 − ...− θ(p)p Xn−p

)2

,

with respect to the vector a = (θ
(p)

1
, θ

(p)

2
, ..., θ

(p)
p , µk)

′. This is achieved by solving
the system ∂QN

∂θ
(p)
1

= 0, ∂QN

∂θ
(p)
2

= 0, ..., ∂QN

∂θ
(p)
p

= 0, ∂QN

∂µk
= 0. Since the summation in the

previous expression is over the set Jk, it holds that Xn, Xn−1, ..., Xn−p ∈ U (k) and
zn = zn−1 = ... = zn−p = k. So, considering the process on the subsample U (k), we
deal with the CGINAR(p) model introduced in [10]. Therefore, the corresponding
results and equations obtained for the CGINAR(p) model can be used here. Thus,
we have

(2.2) µk,p =
1

1−
∑p

i=1
θ
(k)

i,p

(

X
(0)

−

p
∑

i=1

θ
(k)

i,p X
(i)

)

,
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where

X
(i)

=
1

|Jk|

∑

n∈Jk

Xn−j, j ∈ {0, 1, ..., p}.

Replacing (2.2) in (2.1) the system becomes

(2.3)

p
∑

j=1

θ
(p)

j γ̂∗(|l − j|) = γ̂∗(l), l = 1, 2, ..., p,

where

γ̂∗(|l − j|) =
1

|Jk|

∑

n∈Jk

Xn−lXn−j −X
(l)
X

(j)
.

Solving it gives us ̂θ
(p)

j =
D∗

j

D∗ , j = 1, 2, ..., p, where D∗
j and D∗ are the appropriate

determinants from Kramer’s method. Substituting the last equations in (2.2) we
get

µ̂CLS
k =

1

1−
∑p

i=1

D∗
i

D∗





1

|Jk|

∑

n∈Jk

Xn −

p
∑

j=1

D∗
i

D∗
·

1

|Jk|

∑

n∈Jk

Xn−j



 .

Therefore,

α̂(k),CLS =

∑p

j=1
D∗

j

D∗
,(2.4)

̂φ
(k),CLS

i,p =
D∗

i
∑p

j=1
Dj

, i ∈ {1, 2, ..., p}.

Finally, using the preceding results for each k ∈ {1, 2, . . . , r}, it is only left to calcu-
late the weighted thinning parameter and the weighted probabilities, respectively,
as

α̂CLS =

∑r

k=1
|Jk|α̂

(k),CLS

∑r

k=1
|Jk|

,(2.5)

̂φCLS
i,p =

∑r

k=1
|Jk|̂φ

(k),CLS

i,p
∑r

k=1
|Jk|

,(2.6)

which represent the required estimators.

Based on Lemma 6, from [10], the estimators α̂CLS , µ̂CLS
k and ̂φCLS

i,p are asymp-
totically almost surely equivalent to the corresponding Yule-Walker estimators. So,
the strong consistence of the Yule-Walker estimators, proved in [12], implies the
strong consistence of the here observed CLS estimators.



Conditional Least Squares Estimation of the Parameters 531

3. Simulation results

In this section we try to confirm the correctness of the introduced CLS estimators.
With that in mind, we have simulated 100 replicates of realizations of the processes
RrNGINARmax(p) and RrNGINAR1(p), each of size 10000. Parameter values for
α, p, r,µ,pmat and φ are chosen and then the corresponding models are simulated.
The transition probability matrix of the random environment process is denoted by
pmat, and µ is a vector of means. In the case of RrNGINARmax(p) model, the pnth

row, pn ∈ {2, . . . , p}, of the matrix φ contains probabilities φ
(pn)

i , i ∈ {1, 2, . . . , pn}
and in the case of RrNGINAR1(p) model, the last row represents probabilities

φ
(p)

i , i ∈ {1, 2, . . . , p}. The simulated realization of random environment process,
{zn}, is obtained using pmat and then the sequence {pn} is specified based on the
corresponding definition. We have considered six different cases of chosen parameter
values and presented all the results in the appropriate tables. Also, we have decided
for the same parameter values as in the case of Yule-Walker parameter estimation
discussed in [12]. There are three tables. In the first one we have p = 2, r = 2,
in the second p = 3, r = 2 and in the last p = 3, r = 3. In the first table, for
r = p = 2 we considered different choices of other parameters. The larger α gives

better estimates for probabilities φ
(pn)

i . The higher diagonal values of pmat ensures
longer subsamples and, consequently, better results. Also, the higher values of p
and r implies more subsamples and, therefore, a larger number of them and smaller
sizes, which gives us worse results for the same samples size. Finally, for the small
sample sizes it is possible to have very small subsamples and to get bad results.

Table 3.1: r = 2, p = 2

True values µ = (1, 2), α = 0.3, φ =

[

1 0
0.6 0.4

]

, pmat =

[

0.8 0.2
0.2 0.8

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2

500 1.0100 1.9964 0.3359 0.6900 0.3100 0.2963 0.6207 0.3793

SE 0.1195 0.2214 0.1751 0.2451 0.2451 0.1557 0.3836 0.3836

1000 1.0119 1.9976 0.3307 0.6248 0.3752 0.2896 0.6127 0.3873

SE 0.0797 0.1373 0.1176 0.1364 0.1364 0.1187 0.1229 0.1229

5000 1.0024 2.0047 0.3026 0.6048 0.3952 0.2978 0.5984 0.4016

SE 0.0354 0.0600 0.0478 0.0595 0.0595 0.0565 0.0579 0.0579

10000 1.0016 2.0072 0.3020 0.5990 0.4010 0.2956 0.6029 0.3971

SE 0.0249 0.0429 0.036 0.0386 0.0386 0.0406 0.0393 0.0393
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Table 3.2: r = 2, p = 2

True values µ = (1, 2), α = 0.15, φ =

[

1 0
0.5 0.5

]

, pmat =

[

0.8 0.2
0.2 0.8

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2

500 0.99609 2.0089 0.1735 -0.3945 1.3945 0.1679 0.2434 0.7566

SE 0.1014 0.1588 0.1451 15.064 15.064 0.1389 2.2148 2.2148

1000 0.9977 2.0143 0.1475 0.5418 0.4582 0.1547 0.3885 0.6115

SE 0.0666 0.1259 0.0966 0.4849 0.4849 0.0878 0.9751 0.9751

5000 1.0045 1.9993 0.1505 0.4970 0.5030 0.1508 0.4893 0.5107

SE 0.0360 0.0618 0.037 0.1008 0.1008 0.0384 0.1113 0.1113

10000 1.0024 1.9981 0.1494 0.5039 0.4961 0.1514 0.4964 0.5036

SE 0.0252 0.0425 0.027 0.0702 0.0702 0.0297 0.0682 0.0682

Table 3.3: r = 2, p = 2

True values µ = (1, 2), α = 0.3, φ =

[

1 0
0.6 0.4

]

, pmat =

[

0.5 0.5
0.5 0.5

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2

500 0.9957 2.0003 0.3322 0.7480 0.252 0.3075 0.6919 0.3081

SE 0.0996 0.1919 0.1192 2.8876 2.8876 0.0988 0.5416 0.5416

1000 0.9928 2.0004 0.3108 0.6208 0.3792 0.3036 0.6556 0.3444

SE 0.0732 0.1345 0.0892 0.5292 0.5292 0.0837 0.3017 0.3017

5000 1.0019 2.0008 0.3037 0.5973 0.4027 0.2976 0.5931 0.4069

SE 0.0414 0.06231 0.0380 0.0894 0.0894 0.0387 0.0818 0.0818

10000 0.9993 2.0030 0.3020 0.5904 0.4096 0.2985 0.5929 0.4071

SE 0.0245 0.0418 0.0264 0.0702 0.0702 0.0284 0.0633 0.0633

Table 3.4: r = 2, p = 2

True values µ = (4, 5), α = 0.5, φ =

[

1 0
0.6 0.4

]

, pmat =

[

0.7 0.3
0.3 0.7

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2

500 3.9973 5.0266 0.5277 0.6094 0.3906 0.5151 0.6108 0.3892

SE 0.4207 0.5014 0.1589 0.1595 0.1595 0.1364 0.1420 0.1420

1000 3.9776 5.0367 0.5166 0.5973 0.4027 0.5109 0.5927 0.4073

SE ] 0.3344 0.3312 0.1009 0.0975 0.0975 0.1100 0.0935 0.0935

5000 3.9923 5.0179 0.4960 0.5944 0.4056 0.5031 0.5867 0.4133

SE 0.1340 0.1635 0.0559 0.0417 0.0417 0.0638 0.0513 0.0513

10000 3.9947 5.0157 0.4997 0.5931 0.4069 0.5050 0.5935 0.4065

SE 0.0985 0.1157 0.0398 0.0285 0.0285 0.0428 0.0391 0.0391
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Table 3.5: r = 2, p = 3

True values µ = (1, 2), α = 0.3, φ =





1 0 0
0.6 0.4 0
0.5 0.3 0.2



, pmat =

[

0.8 0.2
0.2 0.8

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 φ̂CLS
3,1 φ̂CLS

3,2 φ̂CLS
3,3 α̂CLS φ̂CLS

3,1 φ̂CLS
3,2 φ̂CLS

3,3

500 1.0025 1.9650 0.3139 0.5793 0.4207 0.6083 0.2945 0.0972 0.3022 0.0761 0.3122 0.6118

SE 0.1186 0.1981 0.171 1.5608 1.5608 0.7284 0.2673 0.7066 0.1032 3.5502 1.1115 3.6095

1000 1.0023 2.0057 0.3094 0.6659 0.3341 0.5140 0.3125 0.1735 0.2958 0.5485 0.2607 0.1908

SE 0.0808 0.1338 0.0988 0.5715 0.5715 0.1731 0.1701 0.1455 0.0735 0.2608 0.2818 0.1948

5000 0.9951 2.0011 0.3058 0.6155 0.3845 0.4902 0.3026 0.2072 0.2985 0.4941 0.3095 0.1964

SE 0.0335 0.0652 0.0477 0.1239 0.1239 0.0669 0.0610 0.0677 0.0347 0.0729 0.0751 0.0591

100000.9995 2.0019 0.3009 0.5924 0.4076 0.4970 0.2972 0.2058 0.2983 0.4943 0.3113 0.1944

SE 0.0257 0.0461 0.0329 0.0787 0.0787 0.0506 0.0460 0.0514 0.0248 0.0500 0.0503 0.0434

Table 3.6: r = 3, p = 3

True values µ = (1, 1.5, 2), α = 0.3, φ =





1 0 0
0.6 0.4 0
0.5 0.3 0.2



, pmat =





0.7 0.2 0.1
0.1 0.7 0.2
0.1 0.2 0.7





n µ̂CLS
1 µ̂CLS

2 µ̂CLS
3 α̂CLS φ̂CLS

2,1 φ̂CLS
2,2 φ̂CLS

3,1 φ̂CLS
3,2 φ̂CLS

3,3 α̂CLS φ̂CLS
3,1 φ̂CLS

3,2 φ̂CLS
3,3

500 0.9749 1.5187 2.0151 0.3331 0.9811 0.0189 0.9537 0.3139 -0.2675 0.3027 0.5286 0.2473 0.2241

SE 0.1527 0.1659 0.2519 0.1341 2.1042 2.1042 2.8729 1.6246 4.3460 0.0990 0.5116 0.8627 0.7784

1000 0.9886 1.5182 1.9855 0.3143 0.7626 0.2374 0.4260 0.6499 -0.0759 0.3010 0.5560 0.2774 0.1666

SE 0.1051 0.1161 0.1819 0.1000 0.8830 0.8830 0.7415 2.3627 1.9789 0.0638 0.5080 0.4014 0.5072

5000 1.0025 1.5043 1.9918 0.3047 0.6003 0.3997 0.5133 0.2923 0.1944 0.3018 0.5003 0.3050 0.1947

SE 0.0516 0.0572 0.0785 0.0458 0.1328 0.1328 0.1031 0.0999 0.0982 0.0271 0.0970 0.1020 0.1070

10000 1.0038 1.4999 1.9961 0.2988 0.5984 0.4016 0.4998 0.2970 0.2032 0.3032 0.4955 0.3087 0.1958

SE 0.0335 0.0390 0.0562 0.0290 0.0874 0.0874 0.0572 0.0635 0.0561 0.0191 0.0714 0.0678 0.0629
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4. Conclusion

Varying the sizes of the simulated samples, we have noticed quite a similar behavior
of the here obtained estimates compared to those obtained by the Yule-Walker
statistics, thus confirming the asymptotical equivalence mentioned at the end of
Section 2. Also, the convergence of the obtained estimations to the real parameter
values, which is easy to observe in all the following tables, confirms the strong
consistency of the conditional least squares estimators.

Some negative values for ̂φCLS
3,3 are obtained when the sample size is small, which

is induced by the model properties. Namely, φ3,3 represents the probability that
Xn(zn) will depend on Xn−3(zn−3). In this case φ3,3 = 0.2, so the portion of

the data from which we can obtain ̂φCLS
3,3 is approximately 0.2. However, another

”reduction” of the data occurs since all estimators are defined on the subsamples
with the same state. So, in this case, the subsample is too small to get a good
result. By enlarging the data size, ̂φCLS

3,3 converge to the true value. This effect of
the small subsample also results in the large values of standard deviations for the
small sample size.
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10. Nastić, A.S., Ristić, M.M., Bakouch, H.S.: A combined geometric INAR(p)

model based on negative binomial thinning, Mathematical and Computer Modelling
(2012) 55, 1665–1672.
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Faculty of Sciences and Mathematics

Department of Mathematics
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Abstract. We obtain a list of all simple classes of singularities of curves (irreducible
and reducible) in real spaces of any dimension) with respect to the quasi equivalence
relation.
Keywords: Singularities; curve; quasi equivalence relation.

1. Introduction

Motivated by the importance of the locus of points on a hypersurface where a
given vector field is not transversal to it, Vladimir Zakalyukin introduced a new
equivalence relation on projections of hypersurfaces which he named quasi equiva-
lence [9]. The relation is more rough than the standard group of diffeomorphisms
preserving a given projection [8]. The difference between the A-equivalence relation
and the quasi relation is illustrated as follows: Let Λ be the graph of a map f from
R

m to R
n and let π be a trivial fibration structure. If p1 and p2 are two points

on Λ lying on the same fibre of the projection then they are mapped by π to the
same image. This property persists for the A-equivalent maps fi,i = 1, 2. However,
this is not the case for the quasi equivalence as p1 and p2 might be mapped by
a diffeomorphism to different fibres and hence they are mapped by π to different
images.

The locus of the points on the hypersurface where a given vector field is not
transversal to it is of importance. One of the possible and interesting applications
for the quasi-projection equivalence relation is used in partial differential equations
(PDE) with boundary value problems. Consider the characteristic method solving
the simplest Cauchy problem for first order linear PDE:

∑

ai(x)
∂u
∂xi

= 0, where
u(x) is an unknown function with x ∈ R

m and ai(x) are given functions. The
problem includes the boundary hypersurface S ⊂ R

m and the boundary values

Received December 27, 2018; accepted February 28, 2019
2010 Mathematics Subject Classification. 58K05.58K40.53A15.
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U |S = U0. Generically, the characteristic vector field v = ai
∂

∂xi
is tangent to S

at some points which are called characteristic. Outside the set K of characteristic
points, the problem has a unique local solution. So the geometry of the set K is
an essential feature of the problem. If we rectify the vector field getting, say ∂

∂x1
,

then the problem of classifying K is exactly to find critical points of the projection
of S along parallel rays. Similarly, in many other complicated PDE boundary
value problems, mainly in continuum mechanics, the generalisation of the Neumann
boundary condition is used.

In [3], the first steps in the study of the quasi-equivalence of projections of
graphs of maps were taken within the approach similar to the one introduced by
Zakalyukin [9]. Two cases were investigated there: maps from R to R

2 and maps
from R

2 to R
2 (see [6] and [8] for the corresponding results for the A-equivalence).

In the current paper, we consider irreducible and reducible curve singularities in
a linear real space of any dimension and give the list of stably simple classes with
respect to the quasi equivalence (see [2] and [5] for the corresponding results for the
A-equivalence).

The paper is organized as follows. In Section 2 we review the definition of the
quasi-equivalence relation of the projections of hypersurfaces and recall the main
results from [9] which are needed in the next sections. In Section 3 we introduce
the main definition of the quasi-equivalence of maps from R

m to R
n and derive an

algebraic expression for the respective tangent space to a quasi class of mapping.
Then, we recall the classification of quasi-simple singularities of maps from R

2 to R
2

from [3], giving detailed proofs. After that, we classify quasi-stably simple classes
of irreducible curves in R

n . Finally, in Section 4 we classify stably simple reducible
curve singularities with respect to the quasi-equivalence relation.

2. Quasi projections of hypersurfaces

Consider germs of subvarieties V in the space R
p = {(x, y) : x ∈ R

m, y ∈ R
n},

equipped with the trivial fibration structure, given by the projection π : Rm×Rn −→
R

n, (x, y) 7→ y. When the distinction between x and y is not crucial, we will be
using the notation w = (x, y) for the whole set of coordinates on R

p.

Consider germs of C∞ functions f : (Rp, 0)→ R and denote by Cw the ring of
all such germs at the origin and by Mw the maximal ideal in Cw.

Definition 2.1. [9] A point b ∈ V is called critical if the fiber containing b is not
transversal to V at b. In particular, b can be a singular point of V .

Definition 2.2. [9] Two subvarieties V0 and V1 in R
p are called pseudo equivalent

if there exists a diffeomorphism Φ : Rp → R
p, such that:

1. Φ(V1) = V0.
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2. The set of critical points of V1 is mapped by Φ onto the set of critical points
of V0.

3. The derivative of Φ at any critical point of V1 maps the direction of the
projection to that at the image of the point.

In the current section we consider only the case of analytic hypersurfaces V
given by a single equation f = 0. Also, we assume the fibers are one dimensional
x ∈ R, m = 1.

Now, suppose that all germs of hypersurfaces in a smooth family Vt =
{

ft = 0
}

are pseudo-equivalent to V0 =
{

f0 = 0
}

, ht(ft ◦ θt) = f0, t ∈ [0, 1], with respect
to a smooth family Φt : (R

p, 0)→ (Rp, 0) of germs of diffeomorphisms such that
Φ0 = idRp , h0 = 1 and t ∈ [0, 1]. Therefore, the respective homological equation is

−
∂ft
∂t

= ftAt +
∂ft
∂x

Ẋ(t) +
n
∑

i=1

∂ft
∂yi

Ẏi(t),

where the vector field

vt = Ẋ(t)
∂

∂x
+

n
∑

i=1

Ẏi(t)
∂

∂yi

generates the phase flow Φt and At ∈ Cw.

Let Jft be the ideal in Cw generated by ∂ft
∂x

and ft. Denote by Rad(Jft) the
radical of Jft . Recall that the radical of an ideal is the set of all elements in Cw,
vanishing on the set of common zeros of germs from that ideal. Denote by IJft
and IRad(Jft) the integral of Jft and Rad(Jft), consisting of all function germs ϕ
such that the partial derivative of ϕ with respect to x belongs to Jft and Rad(Jft),
respectively.

Proposition 2.3. [9] The components of vt satisfy the following

Ẋ(t) ∈ Cw and Ẏi(t) ∈ IRad(Jft).

In general, the radical of an ideal behaves badly when the ideal depends on
a parameter (see [4]). Therefore, we modify the pseudo-equivalence relation since
it does not satisfy the properties of a geometrical subgroup of equivalences in J.
Damon sense and hence the versatility theorem can fail [7]. Namely, we replace
Rad(Jft) by the ideal Jft itself in the equivalence definition.

Definition 2.4. [9] Two subvarieties V0 = {f0 = 0} and V1 = {f1 = 0} in R
p are

called quasi equivalent if there is a family of smooth functions ht which depends
continuously on parameter t ∈ [0, 1] and a continuous piece-wise smooth family of
diffeomorphisms Φt : R

p → R
p also depending on t ∈ [0, 1] such that:
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1. ht(ft ◦ Φt) = f0 , Φ0 = idRp , h0 = 1.

2. The set of critical points of Vt is mapped by Φt onto the set of critical points
of V0.

3. The components of the vector field vt generating Φt on each segment of
smoothness satisfy the following: Ẋ(t) ∈ Cw and Ẏi(t) ∈ IJft .

Remarks 2.5.

1. The module IJft is defined precisely as the set of elements of the form

ei +

∫ x

0

(ftai +
∂ft
∂x

bi)dx,

where ai, bi ∈ Cx,y and ei ∈ Cy.

2. If two subvarieties are equivalent with respect to the standard projection
equivalence then they are quasi-equivalent, since functions independent of
x are in IJf for any f.

The classification of simple classes of quasi-projections of hypersurfaces in low
dimensions is given by the following theorems, the proof of which is based on the
classification of V.V. Goryunov [8].

Theorem 2.6. [9] For n = 1 the list of simple classes is the same as for the

standard group of foliation-preserving diffeomorphisms of the plane acting on the

germs of curves:

Ak : f = xk+1 + y, k > 0,
Bk : f = x2 ± yk, k > 2,
Ck : f = xy + xk, k > 3,
F4 : f = x3 + y2.

Theorem 2.7. [9] For n = 2 the list of simple quasi-projections of regular hyper-

surface singularities consists of

˜Ak : f = xk+1 + y1x+ y2, k ≥ 0,
˜Bk : f = x3 + yk1x+ y2, k ≥ 2,
˜Ck : f = xk+1 + y21x+ y2, k ≥ 3,
˜F4 : f = x4 + y21x+ y2.

The list of simple quasi projections of singular hypersurfaces is

A∗

k, k > 0, D∗

ℓ , ℓ > 4, E∗

s , s = 6, 7, 8 : f = x2 + g(y1, y2)

where g is one of the standard simple ADE function germs in y,

A∗∗
2 : f = x3 + y1x+ y22 ,

A
(k)
2 : f = x3 + yk1x+ y21 + y22 , k ≥ 2.
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3. Quasi equivalence relation of maps from R
m to R

n

Consider a C∞ map germ F : (Rm, 0) → R
n, x = (x1, . . . , xm) 7→ y =

(y1, . . . , yn), yi = fi(x), where fi : (Rm, 0) → R is a smooth function-germ. De-
note by C

m
n the space of all such maps. Since C

m
n is a vector space, sometimes its

elements will be written as column vectors:

f = (f1, f2, . . . , fn)
t
=











f1
f2
...
fn











.

Let ΛF be the graph of F , that is ΛF =
{

(x, y) : yi = fi(x), i = 1, 2, . . . , n
}

⊂ R
p.

Definition 3.1. Two map germs F0 and F1 are called quasi equivalent if there
exists a diffeomorphism germ Φ : (Rp, 0)→ (Rp, 0), such that Φ(ΛF1) = ΛF0 and
the derivative of Φ preserves the direction of the projection at the points which lie
on ΛF1 .

Remarks 3.2.

1. The quasi-equivalence is an equivalence relation.

2. Clearly, if two map germs F0 and F1 are A-equivalent then they are quasi-
equivalent.

Denote by QF the quasi-equivalence class of a map germ F and call it a quasi

orbit. Then, the tangent space TQF to QF has the following description.

Lemma 3.3. TQF is the set of all expressions of the form













∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xm

...
...

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xm























Ẋ1

Ẋ2

...

Ẋm











+











Ẏ1
Ẏ2
...

Ẏn











,

where
∂Ẏi
∂xj

=
n
∑

r=1

Air

∂fr
∂xj

, and Ẋ1, Ẋ2, . . . , Ẋm ∈ Cx,

with Air ∈ Cx for all i and j.
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Proof. Introduce a family Φt of diffeomorphism germs depending on a param-
eter t ∈ [0, 1] of the form

Φt : (R
m × R

n, 0)→ (Rm × R
n, 0), w 7→

(

X1(t), . . . , Xm(t), Y1(t), . . . , Yn(t)
)

,

such that Φ0 = idRm×Rn . Let Vt =
m
∑

i=1

Ẋi
∂

∂xi
+

n
∑

i=1

Ẏi
∂

∂yi
be the vector field gener-

ating Φt, where Ẋi =
∂Xi

∂t
and Ẏi =

∂Yi

∂t
. Let a1 = ∂

∂x1
, a2 = ∂

∂x2
, . . . , am = ∂

∂xm
be

the basis of the vector space Rm. Then, the family of the vector fields Φ∗
t preserves

the direction of the projection if the following relation is satisfied

(3.1) Φ∗

t (ai) =

m
∑

j=1

λjaj ,

where λj ∈ Cw and also depending on t ∈ [0, 1]. Let V0 =
m
∑

i=1

Ẋi(0)
∂

∂xi
+

n
∑

i=1

Ẏi(0)
∂

∂yi
,

where Ẋi(0) =
∂Xi

∂t

∣

∣

t=0
and Ẏi(0) =

∂Yi

∂t

∣

∣

t=0
.

If we differentiate (3.1) with respect to t and substitute t = 0 then we obtain

(3.2) [V0, ai] =

m
∑

j=1

λ(0)jaj ,

where [., .] is the Lie bracket and λi(0) =
∂λi

∂t

∣

∣

t=0
. In fact, (3.2) is equivalent to

(3.3) −

(

m
∑

r=1

∂Ẋr(0)

∂xi

∂

∂xr
+

n
∑

s=1

∂Ẏs(0)

∂xi

∂

∂ys

)

=

m
∑

j=1

λ(0)jaj.

Therefore, (3.3) implies that Ẋr(0) ∈ Cw and ∂Ẏs(0)
∂xi

= 0, for all r and s.

Now assume that all map germs in a smooth family Ft depending on t ∈ [0, 1]
are quasi equivalent to F0, with respect to Φt. Then, from Definition 3.1 we see

that derivatives ∂Ẏs(0)
∂xi

belong to the radical of the ideal defining the graph Λ0 of
F0. Therefore,

∂Ẏs(0)

∂xi
∈ Rad(I),

where I is the ideal generated by yj − fj , j = 1, 2, . . . , n. Note that Rad(I) = I.
Hence, we have

(3.4)
∂Ẏs(0)

∂xi
=

n
∑

j=1

(yj − fj)Bsj ,
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where Bsj ∈ Cw.

Denote by I2 the square of the ideal I. Using the Hadamard Lemma, we can
always write

(3.5) Ẏs(0) = ˜Ys +

n
∑

j=1

(yj − fj)Asj + ψ,

where ˜Ys ∈ Cx, Asj ∈ Cw and ψ ∈ I2. Differentiation of (3.5) with respect to xi

and using (3.5) followed by the restriction of ∂Ẏs(0)
∂xi

to the surface by setting yj = fj
yield that

∂ ˜Ys
∂xi

=
n
∑

j=1

∂fj
∂xi

˜Asj

where ˜Asj ∈ Cx, as required.

Following [1], we call a map germ F : (Rm, 0) → R
n simple if its sufficiently

small neighbourhood in the space of all map germs from (Rm, 0) to R
n contains

only a finite number of quasi-equivalence classes.

3.1. Classification of simple mappings

We start this subsection with recalling the classification of simple singularities
of quasi-mappings from R

2 to R
2 from [3], giving details of proofs of main results.

After that, we classify simple irreducible curve singularities in R
m with respect to

the quasi-stably equivalence relation.

3.1.1. Simple quasi classes of mappings from R
2 to R

2

Classification of simple quasi-singularities of mappings from R
2 to R

2 is as fol-
lows.

Theorem 3.4. [3] Let a map germ F : (R2, 0)→ R
2, (x1, x2) 7→ (y1, y2), be simple

with respect to the quasi-equivalence relation. Then, F is quasi-equivalent to one of

the following:

Notation Normal form Restrictions
˜Ak (x2, x

k+1
1 + x1x2) k ≥ 0,

˜Bk (x2, x
3
1 + xk2x1) k ≥ 2

˜Ck (x2, x
k+1
1 + x21x2) k ≥ 2

˜F4 (x2, x
4
1 + x22x1)

A±

2 (x21 ± x
2
2, x1x2)

A3 (x1x2, x
2
1 + x32)
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To prove Theorem 3.4, we need the following auxiliary results.

We first treat the case when the co-rank of F is one. In this case and up to the
A-equivalence relation, we will assume that F has the form

(

x2, f
)

, where f ∈ M
2
x.

Let Ft : (R
2, 0) → R

2, (x1, x2) 7→ (x2, ft), be a family of quasi-equivalent map
germs at the origin, preserving the first component, where t ∈ [0, 1] and ft ∈
M

2
x. Consider the family of regular germs Vt =

{

(x1, y1, y2) : y1 = x2, y2 = ft
}

,
equipped with trivial fibration structure π : Rx1 × R

2
y → R

2
y.

Lemma 3.5. The quasi classifications of (x2, ft) reduces to the classifications of

(Vt, π) with respect to the quasi-equivalence relation, introduced in Definition 2.4.

Proof. Note that the Ẏi summands in TQFt
satisfy the following

(3.6)
∂Ẏi
∂x1

=
∂ft
∂x1

Bi

and

(3.7)
∂Ẏi
∂x2

= Ai +
∂ft
∂x2

Bi,

for some Ai, Bi ∈ Cx and i ∈ {1, 2}. Since Ai is an arbitrary smooth function, (3.6)
and (3.7) imply

Ẏi = Di +

x1
∫

0

∂ft
∂x1

Bi dx1,

where Di ∈ Cx2 . On the other hand, from the first row of the homological equation
−∂Ft

∂t
=M, M ∈ TQFt

, we have Ẏ1 = −Ẋ2, where Ẋ2 ∈ Cx. Hence, the second row
takes the form

(3.8) −
∂ft
∂t

=
∂ft
∂x1

Ẋ1 −
∂ft
∂y1

Ẏ1 + Ẏ2,

where Ẋ1 ∈ Cx. Note that the elements on the right side of (3.8) are exactly those

belonging to the tangent space T ˜Qft at the regular germs (Vt, π) with respect to
the quasi-equivalence relation, and the result follows.

Now assume that F has co-rank 2. Then, using the A-equivalence relation, one
can show the following.

Lemma 3.6. The adjacency of the 2-jets of map germs F is

I± : (x21±x
2
2, x1x2)← II : (x1x2, x

2
1)← (III)± : (x21±x

2
2, 0)← V : (x21, 0)← IV : (0, 0).
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Remark 3.1. Classes in Lemma 3.6 remain non-quasi-equivalent.

Lemma 3.7. 1. If the 2-jet of F is equivalent to (x21 ± x
2
2, 0) then F is non-

simple with respect to the quasi equivalence relation.

2. If the 4-jet of F is equivalent to (x1x2, x
2
1+αx1x

2
2 +βx42), α 6= 0, β 6= 0, then

F is non-simple with respect to the quasi-equivalence relation.

Proof. For the first part of the Lemma, consider the homogenous mapping
F3 = (x21 ± x

2
2, f3) where f3 = x31 +αx21x2 + βx1x

2
2 + γx32. Then, TQF3 is the set of

all expressions of the form

(

2x1Ẋ1 ± 2x2Ẋ2 + Ẏ1
∂f3
∂x1

Ẋ1 +
∂f3
∂x2

Ẋ2 + Ẏ2

)

, (∗)

where Ẋ1, Ẋ2 ∈ Cx and the Ẏi summands satisfy the following constraints

∂Ẏi
∂x1

= 2x1Ai +
∂f3
∂x1

Bi and
∂Ẏi
∂x2

= ±2x2Ai +
∂f3
∂x2

Bi,

for some Ai, Bi ∈ Cx. Notice that the 3-jet of Ẏi is ai(x
2
1 ± x22) + bif3, where

ai, bi ∈ R. Therefore, the 3-jet of TQF3 is generated by the vectors:

v1 = (2x21, x1
∂f3
∂x1

), v2 = (2x1x2, x2
∂f3
∂x1

), v3 = (±2x22, x2
∂f3
∂x2

),

v4 = (±2x1x2, x1
∂f3
∂x2

), v5 = (0, f3), v6 = (x31, 0), v7 = (x21x2, 0),

v8 = (x1x
2
2, 0), v9 = (x32, 0), v10 = (x21 ± x

2
2, 0), v11 = (0, x21 ± x

2
2).

These vectors form a subspace of dimension at most 11. The dimension of the
space of the 3-jets of co-rank 2 mappings is 14 which is greater than the subspace
dimension. This means that the germ F3 is non-simple with respect to the quasi
equivalence relation.

Similarly, we can prove the second part of the Lemma.

Proof of Theorem 3.4. Firstly, suppose that the co-rank of F is one. Then,
Lemma 3.5 and Theorem 2.7 imply that if F is simple then it is quasi equivalent to
one of the following: (x2, x

k+1
1 + x1x2), k ≥ 0, (x2, x

3
1 + xk2x1), k ≥ 2, (x2, x

k+1
1 +

x21x2), k ≥ 2 and (x2, x
4
1 + x22x1).

Next, let the co-rank of F be two. Then, Lemma 3.6 and Lemma 3.7 yield that
all simple quasi singularities are among map germs whose 2-jets are quasi equivalent
to either (x21 ± x

2
2, x1x2) or (x1x2, x

2
1). Using Arnold’s spectral sequence method

[1], one can easily prove the results below.
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• If F is a map germ with the 2-jet (x21 ± x
2
2, x1x2), then F is quasi equivalent

to
A±

2 : (x21 ± x
2
2, x1x2).

• Let F =
(

x1x2 + f, x21 + g), where f, g ∈ M
3
x. If g contains a term ax2, then

F is quasi equivalent to A3 :
(

x1x2, x
2
1 + x32). Otherwise, in the most general

case, F is equivalent to a non-simple germ, by Lemma 3.7. This finishes the
proof of Theorem. ✷

3.1.2. Quasi-stably simple classes of irreducible curves in R
n

Recall that an irreducible curve at the origin in R
n can be described by a germ

of an analytic map F : (R, 0)→ (Rn, 0), x 7→ y =
(

y1 = f1(x), y2 = f2(x), . . . , yn =

fn(x)
)

. Following Arnold in [2], we introduce the following.

Definition 3.8. An irreducible curve is called quasi-stably simple if it is simple
with respect to the quasi-equivalence relation and remains simple when the ambient
space is embedded into a larger space. Two curves which are obtained one from the
other by such embedding are called quasi-stably equivalent.

Remark 3.2. By the codimension here and below, we mean the codimension in
the space of the Taylor series with zero constant terms.

The classification of quasi-stably simple classes is as follows.

Theorem 3.9. Assume that the curve F is quasi-stably simple. Then, F is quasi-

stably equivalent to one of the lines Ak :
(

xk, 0
)

, k ≥ 1.

Remarks 3.10.

1. Any irreducible curve is either quasi-stably simple (and hence is quasi-stably
equivalent to one of lines, stated in the theorem) or belongs to the subset of
infinite codimension in the space of all curves.

2. The codimension of the class Ak is kn− 1.

Proof of Theorem 3.9. Up to the A-equivalence relation, we may assume
that any irreducible curve has the form F =

(

xk, f2, . . . , fn
)

, where k ≥ 1 and

fi ∈ M
k+1
x . Notice that the derivatives of the Ẏi summands in TQF with respect to

x belong to the ideal generated by xk−1 and hence Ẏi = xkAi, for some Ai ∈ Cx.
By Arnold’s spectral sequence method, one can easily show that F is quasi-stably
equivalent to the germ Ak :

(

xk, 0
)

, k ≥ 1.
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4. The quasi classification of some multi-germs of curves in R
n

We start with recalling the standard notions and basic definitions concerning
multi-germs of curves from [5].

A reducible curve at the origin in R
n is determined by a collection of maps

(R, 0)→ (Rn, 0), x 7→ y = (y1, . . . , yn).

Definitions 4.1. A multi-germ of curves in R
n is a set G = (F1, . . . , Fr) of germs

of analytic maps Fi : (R, 0) → (Rn, 0), where Im(Fi) ∩ Im (Fj)= {0} for i 6= j (
F1, F2, . . . and Fr are called components of the multi-germ G).

The group of A-equivalences A = L × R1 × R2 × · · · × Rr, where Ri is the
i-th copy of the group of the standard right equivalences, acts on the space of
multi-germs G = (F1, . . . , Fr) by the formula

(φ, ϕ1, . . . , ϕr).(F1, . . . , Fr) = (φ ◦ F1 ◦ ϕ
−1
1 , . . . , φ ◦ Fr ◦ ϕ

−1
r ),

where φ ∈ L and ϕi ∈ Ri.

Definitions 4.2. A multi-germ G is called simple if there exists a neighbourhood
of G in the space of multi-germs which intersects only the finite number of A-orbits.
It is stably simple, if it remains simple when the ambient space is immersed in a
larger space.

Definitions 4.3. Two multi-germs G and ˜G in R
n are equivalent if they lie in one

orbit of the A-action.

The tangent space TA.G to the orbit A.G is equal to TR.G+ TL.G. The first

set is the direct sum
r
⊕

i=1

Mx(
∂Fi

∂x
) and its elements denoted by matrices where the

i-th column of which corresponds to an element of TR.Fi. On the other hand, TL.G
is the set of matrices of the form











Ẏ11 Ẏ12 . . . Ẏ1r
Ẏ21 Ẏ22 . . . Ẏ2r
...

... . . .
...

Ẏn1 Ẏn2 . . . Ẏnr











,

where Ẏij = Ui ◦ Fj and Ui ∈My .
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The quasi-equivalence of multi-germs of curves is defined as follows.

Let Fj : (R, 0) → (Rn, 0), x 7→ y = (y1, . . . , yn), yi = fij(x), i = 1, . . . , n and
denote by Λj its graph.

Definition 4.4. Two multi-germs G = (F1, . . . , Fr) and ˜G = ( ˜F1, . . . , ˜Fr) in R
n

are called quasi equivalent if there exists a diffeomorphism germ Φ : (R× R
n, 0)→ (R× R

n, 0),

such that Φ(Λj) = ˜Λj, for all j, and the derivative of Φ preserves the direction of
the projection at the points which lie on Λj .

Obviously, the quasi-equivalence of multi-germs of curves is an equivalence re-
lation. By similar consideration and technique which were used in the proof of
Lemma 3.3, we obtain the following description of the tangent space TQ.G to the
quasi class Q.G of a multi-germ G.

Lemma 4.5. TQ.G = TR.G + TQ.G, where TR.G =
r
⊕

i=1

Mx(
∂Fi

∂x
) and TQ.G is

the set of matrices of the form











Ẏ11 Ẏ12 . . . Ẏ1r
Ẏ21 Y22 . . . Ẏ2r
...

... . . .
...

Ẏn1 Ẏn2 . . . Ẏnr











.

which satisfy the following











Ẏ ′
11 Ẏ ′

12 . . . Ẏ ′
1r

Ẏ ′
21 Ẏ ′

22 . . . Ẏ ′
2r

...
... . . .

...

Ẏ ′
n1 Ẏ ′

n2 . . . Ẏ ′
nr











=











A11 A12 . . . A1n

A21 A22 . . . A2n

...
... . . .

...

An1 An2 . . . Ann





















f ′
11 f ′

12 . . . f ′
1r

f ′
21 f ′

22 . . . f ′
2r

...
... . . .

...

f ′
n1 f ′

n2 . . . f ′
nr











.

where Aij ∈ Cx, f
′
ij =

dfij
dx

and Ẏ ′
ij =

dẎij

dx
.

Proposition 4.6. TA.G ⊂ TQ.G.

Proof. Let V ∈ TA.G. Then, we can write V = V1 + V2, where V1 ∈ TR.G
and V2 ∈ TL.G. Hence, V2 = (Ẏij), where Ẏij = Ui ◦ Fj and Ui ∈ My. Notice that
dẎij

dx
=

n
∑

k=1

dfkj

dx
∂Ui

∂yk
. Moreover, if we let F ′

j = (f ′
1j , f

′
2j , . . . , f

′
2n), where f

′
ij =

dfij
dx

and denote by (F ′
j)

T the transpose of F ′
j , then we have

n
∑

k=1

dfkj
dx

∂Ui

∂yk
= Ai(F

′

j)
T ,
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where Ai = (Ai1, Ai2, . . . , Ain) with Aik = ∂Ui

∂yk
, f ′

kj =
dfkj

dx
and the result fol-

lows.

Remark 4.1. For the standardA-equivalences of multi-germs, we are free to change
the coordinates about each point independently of the associated branch in the
source, whereas in the target the same coordinate change must be applied to each
branch. On the other hand, for the quasi-equivalence, we are still free to change the
coordinates in the source about each point independently of the associated branch,
but in the target if a quasi-change of the coordinates Yij occurs on a certain branch

Fj and the derivative of Ẏij is equal to Ai(F
′
j)

T , then the same factor Ai must be
applied to all quasi-changes of the coordinates on other branches.

Definition 4.7. A multi-germ G is called simple with respect to the quasi-
equivalence relation if there exists a neighbourhood of G in the space of multi-germs
which intersects only finite number of quasi-classes. Moreover, it is called quasi-

stably simple if it remains simple when the ambient space is immersed in a larger
space.

We will only consider bi-germs (multi-germs with two components) of curves
and give the beginning of the classifications with respect to the quasi-equivalence
relation.

Theorem 4.8. Let G be a quasi-stably simple bi-germ. Then, up to permutation

of curves, G is quasi-equivalent to one of the bi-germs
(

F1, F2

)

, described in the

following table.

Notation F1 F2 Restrictions

Ak (x, 0) (0, xk) k ≥ 1

Bk,l (x, 0) (xk, xl) l > k ≥ 1
C2 (x2, 0) (0, x2)
C3 (x2, 0) (0, 0, x3)
D2,3 (x2, 0) (x2, 0, x3)

To prove Theorem 4.8, we use the spectral sequence method [1] together with
the following auxiliary results.

Consider a pair G of curves with a regular first component which will be written
in the normal form (x, 0, . . . , 0) or equivalently as (x, 0). Introduce a family of
quasi-equivalent pairs Gt =

(

(x, 0), F2(t)
)

, preserving the first component, where

F2(t) =
(

f1(t), f2(t), . . . , fm(t)
)

, fi ∈ Cx and t ∈ [0, t] such that G0 = G. Let

f ′
i = dfi

dx
and denote by Ω the ideal generated by f ′

1, f
′
2, f

′
3, . . . , f

′
n, and by ˜Ω the

ideal generated by f ′
2, f

′
3, . . . , f

′
n.
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Lemma 4.9. The homological equation of Gt is











0 ḟ1
0 ḟ2
...

...

0 ḟn











=











H1 f ′
1H2

0 f ′
2H2

...
...

0 f ′
nH2











+











Ẏ11 Ẏ12
Ẏ21 Ẏ22
...

...

Ẏn1 Ẏn2











,

such that Ẏ11 ∈ Mx, Ẏi1 = 0, Ẏ ′
12 ∈ Ω, and Ẏ ′

i2 ∈
˜Ω for all i ∈ {2, 3, . . . , n}. Here,

ḟi =
dfi
dt

and H1, H2 ∈Mx.

Proof. By differentiating Gt with respect to t, we obtain the homological
equation described in Lemma. Moreover, Lemma 4.5 implies that

(4.1)











Ẏ ′
11 Ẏ ′

12

Ẏ ′
21 Ẏ ′

22
...

...

Ẏ ′
n1 Ẏ ′

n2











=























A11

n
∑

k=1

A1kf
′

k

A21

n
∑

k=1

A2kf
′

k

...
...

An1

n
∑

k=1

Ankf
′

k























.

Comparing the columns of the homological equation and (4.1) yields that Ẏ11 = −H1,
Ẏi1 = 0, and therefore A11 = − dH1

dx
, Ai1 = 0 for all i ∈ {2, 3, . . . ,m}. As H1 is

an arbitrary germ, we have that Ẏ ′
12 ∈ Ω and Ẏ ′

i2 ∈
˜Ω for all i ∈ {2, 3, . . . , n}, as

required.

Now suppose that both components of G are singular. Then,

Lemma 4.10. [5] The 2-jet of G is A-equivalent to either
(

(x2, 0), (0, x2)
)

or
(

(x2, 0), (x2, 0)
)

.

Moreover,

Lemma 4.11. A pair of curves with the 3-jet
(

(x2, x3), (x2, αx3)
)

, where α 6= 1,
is not simple with respect to quasi-equivalence.

Proof. Let Gα =
(

(x2, x3), (x2, αx3)
)

. Then, the 3-jet in TQ.Gα is generated

by the following 10 vectors: v1 =
(

(2x2, 3x3), (0, 0)
)

, v2 =
(

(0, 0), (2x2, 3αx3)
)

, v3 =
(

(2x3, 0), (0, 0)
)

, v4 =
(

(0, 0), (2x3, 0)
)

, v5 =
(

(x2, 0), (x2, 0)
)

, v6 =
(

(0, x2), (0, x2)
)

,

v7 =
(

(2x3, 0), (2x3, 0)
)

, v8 =
(

(0, 2x3), (0, 2x3)
)

, v9 =
(

(x3, 0), (αx3, 0)
)

, v10 =
(

(0, x3), (0, αx3)
)

. Notice that v3 + v4 = v7, 2av1+2v2−4αv5 = 3αv8 and v1+v2−
2v5 = 3v9. Therefore, the vectors v7, v8 and v9 can be removed from the list above.
The remaining vectors form a subspace of dimension at most 7. The dimension of
the space of all 3-jets of bi-germs with two singular components is 8 which is greater
than the subspace dimension. This means that the germ Gα is non-simple.



Quasi Mapping Singularities 551

4.1. Proof of the main Theorem 4.8

We distinguish the following cases.

1. Pairs of curves with a regular first component. In this case the pair takes
the form G = ((x, 0), F ). Therefore, we classify the second component using
Lemma 4.9 as follows.

• Assume the 1-jet of F is nontrivial and equal to (αx, βx), with α, β ∈ R,
and hence is equivalent to either (0, x) or (x, 0). Consider the first case.
Then, G is quasi equivalent to A1 :

(

(x, 0), (0, x)
)

. Next, if k be the
minimal number such that the k-jet of F is not (x, 0) then G is quasi-
equivalent to B1,k :

(

(x, 0), (x, xk)
)

where k ≥ 2.

• Consider the case when F is singular and its multiplicity is k. Then, the
k-jet of F is equivalent to either (0, xk) or (xk, 0). Suppose that l is the
minimal number such that the l-jet of F is not (xk, 0) then G is quasi
equivalent to Bk,l :

(

(x, 0), (xk, xl)) where l > k ≥ 2. Next, if the k-jet

of F is (0, xk) then G is quasi-equivalent to Ak :
(

(x, 0), (0, xk)
)

, with
k ≥ 2.

2. Pairs of curves with singular components. In this case the nontrivial 2-jet of
G is equivalent to either

(

(x2, 0), (0, x2)
)

or
(

(x2, 0), (x2, 0)
)

.

• Consider the case when the 2-jet is
(

(x2, 0), (0, x2)
)

. Then, G is quasi-

equivalent C2 :
(

(x2, 0), (0, x2)
)

.

• If the 2-jet is
(

(x2, 0), (x2, 0)
)

then Lemma 4.11 yields that all quasi-
stably simple singularities are among pairs with the 3-jet is either
(

(x2, x3, 0), (x2, 0, x3)
)

or
(

(x2, x3, 0), (0, 0, x3)
)

. In such cases, we obtain

C3 :
(

(x2, 0), (0, 0, x3)
)

and D2,3 :
(

(x2, 0), (x2, 0, x3)
)

, respectively. Pairs

from other cases are adjacent to the family
(

(x2, x3), (x2, αx3)
)

, where
α 6= 1.
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c© 2019 by University of Nǐs, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. In this paper, we obtain some retarded integral inequalities in two inde-
pendent variables which can be used as tools in the theory of partial differential and
integral equations with time delays. The presented inequalities are of new forms com-
pared with the existing ones so far in the literature. In order to illustrate the validity
of the theorems we give one application for them for the solution to certain fractional
order differential equations.
Keywords: integral inequalities; differential equations; time delay.

1. Introduction

As it is well known integral inequalities play a significant role in the qualitative
analysis of differential and integral equations theory. Over the years, various in-
vestigators have discovered many useful integral inequalities in order to achieve a
diversity of desired goals, see [1]-[12] and the references given therein. In a recent
paper [8] Pachpatte presented a retarded inequality which has very good characters.
A large number of papers have been presented dealing with various extensions and
generalizations of this inequality. Some of the results may be found in [8], but let
us first recall the main results of [8] as follows:

In what follows, R denotes a set of real numbers, R+ = [0,∞), J1 = [x0, X), J2 =
[y0, Y ) are given subsets of R, ∆ = J1 × J2 and ′ denotes the derivative.

Theorem 1.1. Let u(x, y), a(x, y) ∈ C(∆,R+), b(x, y, s, t) ∈ C(∆2,R+), for
x0 ≤ s ≤ x ≤ X, y0 ≤ t ≤ y ≤ Y, α(x) ∈ C1(J1, J1), β(y) ∈ C1(J2, J2) be
non-decreasing with α(x) ≤ x on J1, β(y) ≤ y on J2 and k ≥ 0 be a constant.
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(A1) If
(1.1)

u(x, y) ≤ k+

α(x)
∫

α(x0)

β(y)
∫

β(y0)






a(s, t)u(s, t) +

s
∫

α(x0)

t
∫

β(y0)

b(s, t, σ, η)u(σ, η)dσdη






dtds,

for (x, y) ∈ ∆, then

(1.2) u(x, y) ≤ k exp(A(x, y)),

for (x, y) ∈ ∆, where

(1.3) A(x, y) =

α(x)
∫

α(x0)

β(y)
∫

β(y0)






a(s, t) +

s
∫

α(x0)

t
∫

β(y0)

b(s, t, σ, η)dσdη






dtds,

for (x, y) ∈ ∆.

(A2) Let g ∈ C(R+,R+) be a non-decreasing function with g(u) > 0 for u > 0. If
(1.4)

u(x, y) ≤ k+

α(x)
∫

α(x0)

β(y)
∫

β(y0)






a(s, t)g(u(s, t))+

s
∫

α(x0)

t
∫

β(y0)

b(s, t, σ, η)g(u(σ, η))dσdη






dtds,

for (x, y) ∈ ∆, then for x0 ≤ x ≤ x1, y0 ≤ y ≤ y1,

(1.5) u(x, y) ≤ G−1 [G(k) +A(x, y)] ,

where A(x, y) is defined by (1.3), G−1 is the inverse function of

G(r) =

r
∫

r0

ds

g(s)
, r > 0, r0 > 0

and x1 ∈ J1, y1 ∈ J2 are chosen so that

G(k) +A(x, y) ∈ Dom(G−1),

for all x and y lying in [x0, x] and [y0, y] respectively.

The purpose of this paper is to explore two independent retarded versions of
the above integral inequalities which can be used as tools in the theory of partial
differential and integral equations with time delays. Applications are also given to
convey the significance of our results.
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2. Main Results

The first section of this paper will present some new non-linear retarded integral
inequalities in two independent variables which can be used as effective tools in the
study on non-linear partial differential equations with time delay.

Theorem 2.1. If u(x, y), p(x, y), a(x, y) are real valued non-negative continuous
functions and u(x, y) ≥ 2p(x, y) is defined for x ≥ 0, y ≥ 0, b(x, y, s, t) are continu-
ous non-decreasing in x and y for t, s. 0 ≤ α(x) ≤ x, 0 ≤ β(y) ≤ y, α′(x), β′(y) ≥ 0
are real valued continuous functions defined for x ≥ 0, y ≥ 0, that satisfy
(2.1)

u(x, y) ≤ p(x, y) +

α(x)
∫

0

β(y)
∫

0



a(s, t)u(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)u(σ, η)dσdη



 dtds,

then

(2.2) u(x, y) ≤ p(x, y)×



1 + e

α(x)∫

0

β(y)∫

0

[

a(s,t)+
s∫

0

t∫

0

b(s,t,σ,η)dσdη

]

dtds



 .

Proof. First of all let z(x, y) denote the function on the right hand side of 2.1, that
is,

z(x, y) =

α(x)
∫

0

β(y)
∫

0



a(s, t)u(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)u(σ, η)dσdη



 dtds,

then z(0, y) = z(x, 0) = 0 and our assumption on a, b, u, α and β imply that z is
a non-decreasing positive function for x ≥ 0, y ≥ 0 and x ∈ [0, T1], y ∈ [0, T2] we
have

zxy(x, y) =α′(x)β′(y)

[

a(α(x), β(y))u(α(x), β(y))+
α(x)
∫

0

β(y)
∫

0

b(α(x), β(y), σ, η)u(σ, η)dσdη

]

≤α′(x)β′(y) [a(α(x), β(y)) (p(α(x), β(y)) + z(α(x), β(y)))

+
α(x)
∫

0

β(y)
∫

0

b(α(x), β(y), σ, η) (p(σ, η) + z(σ, η)) dσdη

]

.

Then by rearranging the above inequality we obtain

zxy(x, y) ≤ z(T1, T2)

(

α′(x)β′(y)

[

a(α(x), β(y)) +
α(x)
∫

0

β(y)
∫

0

b(α(x), β(y), σ, η)dσdη

])

+

(

α′(x)β′(y)

[

a(α(x), β(y))p(α(x), β(y) +
α(x)
∫

0

β(y)
∫

0

b(α(x), β(y), σ, η)p(σ, η)dσdη

])

.
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As 0 ≤ α(x) ≤ x and 0 ≤ β(y) ≤ y and z(x, y) is non-decreasing with respect to x,
y we get

(2.3)
zxy(x, y)

z(T1, T2)
≤ 2

(

∂2

∂x∂y

α(x)
∫

0

β(y)
∫

0

[

a(s, t) +
s
∫

0

t
∫

0

b(s, t, σ, η)dσdη

]

dtds

)

.

On the other hand,

(2.4)
∂

∂y

(

zx(x, y)

z(T1, T2)

)

≤
zxy(x, y)

z(T1, T2)
.

From (2.3) and (2.4), we have

∂

∂y

(

zx(x, y)

z(T1, T2)

)

≤ 2

(

∂2

∂x∂y

α(x)
∫

0

β(y)
∫

0

[

a(s, t) +
s
∫

0

t
∫

0

b(s, t, σ, η)dσdη

]

dtds

)

.

Integrating both sides of the above inequality with respect to y from 0 to y, we get

zx(x, y)

z(T1, T2)
≤ 2

(

∂

∂x

α(x)
∫

0

β(y)
∫

0

[

a(s, t) +
s
∫

0

t
∫

0

b(s, t, σ, η)dσdη

]

dtds

)

,

then again integrating the above inequality with respect to x from 0 to x we obtain

ln |z(T1, T2)| ≤ ln |p(T1, T2)|+

α(x)
∫

0

β(y)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



 dtds

for x ∈ [0, T1], y ∈ [0, T2]. Thus we have

(2.5) z(T1, T2) ≤ p(T1, T2)× e

α(x)∫

0

β(y)∫

0

[

a(s,t)+
s∫

0

t∫

0

b(s,t,σ,η)dσdη

]

dtds

.

Let x = T1, y = T2 in (2.5), we obtain

z(T1, T2) ≤ p(T1, T2)× e

α(T1)∫

0

β(T2)∫

0

[

a(s,t)+
s∫

0

t∫

0

b(s,t,σ,η)dσdη

]

dtds

.

From the definition of z(x, y), we have u(x, y) ≤ p(x, y) + z(x, y). As a result, we
get the required inequality in (2.2).

Corollary 2.1. Assume that a, b, α, β are as in Theorem 2.1 and p(x, y) ≡ p > 0,
if u ∈ C(R+ × R+,R+) satisfying (2.1), then

u(x, y) ≤ p+ pe

α(x)∫

0

β(y)∫

0

[

a(s,t)+
s∫

0

t∫

0

b(s,t,σ,η)dσdη

]

dtds

, x ≥ 0, y ≥ 0.
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Corollary 2.2. Assume that a, b, α, β are as in Theorem 2.1 and p(x, y) ≡ p > 0.
Suppose u ∈ C(R+ × R+,R+) is a solution to the integral equation

u(x, y) = p+

α(x)
∫

0

β(y)
∫

0



a(s, t)u(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)u(σ, η)dσdη



 dtds, x ≥ 0, y ≥ 0.

If

lim
x→∞






lim
y→∞

α(x)
∫

0

β(y)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



 dtds






< ∞,

then u is bounded.

Theorem 2.2. Assume that p, a, b, α, β are as in Theorem 2.1 and g(r) is a posi-

tive continuous non-decreasing function for r > 0 with g(0) = 0 and
∞
∫

1

dt
g(t)

= ∞, if

u ∈ C(R+ × R+,R+) satisfies for x ≥ 0, y ≥ 0
(2.6)

u(x, y) ≤ p(x, y)+

α(x)
∫

0

β(y)
∫

0



a(s, t)g (u(s, t)) +

s
∫

0

t
∫

0

b(s, t, σ, η)g (u(σ, η)) dσdη



 dtds,

then
(2.7)

u(x, y) ≤ G−1






G (p(x, y)) +

α(x)
∫

0

β(y)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



 dtds






,

where

G(r) =

r
∫

1

dt

g(t)
, r ≥ 0.

Proof. Assume T1, T2 > 0 is fixed and let

z(x, y) =

α(x)
∫

0

β(y)
∫

0



a(s, t)g (u(s, t)) +

s
∫

0

t
∫

0

b(s, t, σ, η)g (u(σ, η)) dσdη



 dtds,

with the assumption on a, b, α, β imply that z(x, y) is non-decreasing about x and
y. Hence for x ∈ [0, T1], y ∈ [0, T2] we have
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zxy(x, y) = α′(x)β′(y) [a(α(x), β(y))g (u(α(x), β(y)))

+
α(x)
∫

0

β(y)
∫

0

b(α(x), β(y), σ, η)g (u(σ, η)) dσdη

]

≤ α′(x)β′(y) [a(α(x), β(y)) (g (p(α(x), β(y))) + g (z(α(x), β(y))))

+
α(x)
∫

0

β(y)
∫

0

b(α(x), β(y), σ, η) (g (p(σ, η)) + g (z(σ, η))) dσdη

]

≤ g(p(T1, T2) + z(T1, T2))

×

(

α′(x)β′(y)

[

a(α(x), β(y)) +
α(x)
∫

0

β(y)
∫

0

b(α(x), β(y), σ, η)dσdη

])

.

Therefore, we write

zxy(x, y)

g(p(T1, T2) + z(T1, T2))
≤

∂2

∂x∂y







α(x)
∫

0

β(y)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



 dtds






.

Noting that

∂

∂y

(

zx(x, y)

g(p(T1, T2) + z(T1, T2))

)

≤
zxy(x, y)

g(p(T1, T2) + z(T1, T2))
.

We obtain

∂

∂y

(

zx(x, y)

g(p(T1, T2) + z(T1, T2))

)

≤

∂
2

∂x∂y







α(x)
∫

0

β(y)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



dtds






.

Integrating both sides of the above inequality with respect to y from 0 to y we get

zx(x, y)

g(p(T1, T2) + z(T1, T2))
≤

∂

∂x







α(x)
∫

0

β(y)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



 dtds






,

then integrating the above inequality with respect to x from 0 to x we have
(2.8)

G(p(T1, T2)+z(T1, T2)) ≤ G (p(T1, T2))+

α(x)
∫

0

β(y)
∫

0



a(s, t)+

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



dtds,
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for x ∈ [0, T1], y ∈ [0, T2].

In view of
∞
∫

1

dt
g(t)

= ∞, from (2.8), we have

(2.9)

p(T1, T2)+z(T1, T2)) ≤ G
−1






G (p(T1, T2))+

α(x)
∫

0

β(y)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



dtds






.

Let x = T1, y = T2 in (2.9), we obtain

p(T1, T2)+z(T1, T2)) ≤ G
−1






G (p(T1, T2))+

α(T1)
∫

0

β(T2)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



dtds






.

Due to T1, T2 are arbitrary and u(x, y) ≤ p(x, y) + z(x, y), we obtain (2.7).

Corollary 2.3. Assume that p, a, b, α, β are as in Theorem 2.2. Suppose u ∈
C(R+ × R+,R+) is a solution to the integral equation

u(x, y) = p(x, y)+

α(x)
∫

0

β(y)
∫

0



a(s, t)g (u(s, t)) +

s
∫

0

t
∫

0

b(s, t, σ, η)g (u(σ, η)) dσdη



 dtds,

for x ≥ 0, y ≥ 0. If p is bounded and

lim
x→∞






lim
y→∞

α(x)
∫

0

β(y)
∫

0



a(s, t) +

s
∫

0

t
∫

0

b(s, t, σ, η)dσdη



 dtds






< ∞,

then u is bounded.

3. Basic Application

In this section, we will present some basic applications of our results to obtain the
bounds on the solution to the integral equation with time delay. We would like to
develop a set of benchmark applications which may be used in the theory of partial
differential and integral equations with time delay so we invite other researchers
to contact us with their results for these cases, and perhaps forward us their own
examples.

3.1. Application:

In order to exemplify the application of Theorem 2.1 we set up the bound on the
solutions of partial integral equations of the form :
(3.1)

u(x, y)=k(x, y)+

α(x)
∫

0

β(y)
∫

0



G(x, y, s, t, u(s, t)) +

s
∫

0

t
∫

0

F (x, y, s, t, σ, η, u(σ, η))dσdη



 dtds
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where all the function are continuous on their respective domains of their definitions
and

(3.2) |k(x, y)| ≤ p(x, y)

(3.3) |G(s, t, u)| ≤ a(s, t)u(s, t)

(3.4) |F (s, t, σ, η, u(σ, η))| ≤ b(s, t, σ, η)u(σ, η)

for x ≥ 0, y ≥ 0 where a, b, p, α, β are as in Theorem 2.1 using the equations (3.2)-
(3.4) in the equation (3.1) then applying Theorem 2.1, we obtain the bound on the
solution u(x, y) to the equation (3.1).

In addition to this, in order to provide explicit bounds on the solution to par-
tial differential equations of the form uxy = G(x, y, α(s), β(y), u), one can use the
integral inequalities which are obtain in Theorems 2.1 and 2.2.

4. Concluding Remarks

In concluding this paper, we have established some new generalized Pachpatte-type
inequalities. As it can be seen from the present application, the results established
are useful in researching both qualitative and quantitative properties for solutions
to certain fractional order differential equations.
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Abstract. A graph Γ is called an n-Cayley graph over a group G if Aut(Γ) contains a
semi-regular subgroup isomorphic to G with n orbits. In this paper, we review some
recent results and future directions around the problem of computing the eigenvalues
on n-Cayley graphs.
Keywords: n-Cayley graph; eigenvalues; semi-regular subgroup.

1. Introduction

The spectrum of a graph is one of the most important algebraic invariants as it
is known that numerous proofs in graph theory depend on the spectrum of graphs.
In particular, eigenvalues of Cayley graphs have attracted increasing attention due
to their prominent roles in algebraic graph theory and applications in many areas
such as expanders, chemical graph theory, quantum computing, etc [21]. This paper
is a survey of the literature on the eigenvalues of graphs having a semi-regular of
subgroup of their automorphism groups.

A digraph Γ is a pair (V,E) of vertices V and edges E where E ⊆ V × V . A
graph is a digraph with no edges of the form (α, α) and with the property that
(α, β) ∈ E implies (β, α) ∈ E. The set of all permutations of V which preserve the
adjacency structure of Γ is called the automorphism group of Γ; it is denoted by
Aut(Γ). In this paper all digraphs have no loops. For the most part our notation and
terminology are standard and mainly taken from [9] (for graph theory) and [16] (for
representation theory of finite groups). For the graph-theoretic and group-theoretic
terminology not defined here we refer the reader to [9, 16].

Let Γ be a (di)graph with n vertices. The adjacency matrix of A of Γ is an n×n
matrix with ij-entry equal to 1 if ith and jth vertices are adjacent and 0 otherwise.
The spectrum of a graph is the multi-set of eigenvalues of its adjacency matrix. It
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is known that numerous proofs in graph theory depend on the spectrum of graphs
and the spectrum of a graph is one of the most important algebraic invariants [9].

Let G be a group and S be a subset of G not containing the identity element
of G. The Cayley (di)graph of G with respect to S is a graph with a vertex set G
where (g, h) is an arc whenever hg−1 ∈ S. A large number of results on spectra
of Cayley graphs have been produced over the last more than four decades. For a
survey of the literature on eigenvalues of Cayley graphs and their applications see
[21].

By a theorem of Sabidussi [26], a (di)graph Γ is a Cayley graph over a group G
if Aut(Γ) contains a regular subgroup of Aut(Γ) isomorphic to G. As a generaliza-
tion, a (di)graph Γ is called an n-Cayley (di)graph over a group G if there exists
a semiregular subgroup of Aut(Γ) isomorphic to G with n orbits (of equal size).
Since every regular subgroup is a transitive semi-regular subgroup, every Cayley
(di)graphs is a 1-Cayley (di)graph. Also a Cayley graph over a finite group G hav-
ing a subgroup H of index n is an n-Cayley graph over H [1, Lemma 8]. n-Cayley
graphs over cyclic groups are called n-circulant. In particular 2-Cayley and 3-Cayley
graphs over cyclic groups are called bicirculant and tricirculant graphs [24], respec-
tively. Unlike Cayley graphs, in general n-Cayley graphs are not vertex-transitive
for n ≥ 2. Furthermore, there are vertex-transitive n-Cayley graphs which are
not Cayley graphs such as generalized Petersen graphs. Undirected and loop-free
2-Cayley graphs are called, by some authors, semi-Cayley graphs [25, 3] and also
bi-Cayley graphs [17]. In this paper, we follow [25] to use the term semi-Cayley.

n-Cayley graphs, in particular when n = 2 or n = 3, have played an important
role in many classical fields of graph theory, such as strongly regular graphs [19, 22,
23, 24, 25], automorphisms [2, 15, 28], isomorphisms [3, 5], symmetry properties of
graphs [10, 11, 20] and the spectrum of graphs [1, 4, 8, 12, 13]. In this paper, we
review recent results and future directions of some problems related to the spectrum
of n-Cayley graphs.

2. Presentation of n-Cayley graphs

Recall that a (di)graph Γ is called an n-Cayley graph over a group G if Aut(Γ)
contains a semi-regular subgroup isomorphic to G with n orbits (of equal size). It
is proved that every n-Cayley graph over a group G can be presented by suitable
n2 subsets of G:

Lemma 2.1. ([1, Lemma 2]) A digraph Γ is n-Cayley digraph over G if and only
if there exist subsets Tij of G, where 1 ≤ i, j ≤ n, such that Γ is isomorphic to a
digraph X with vertex set G× {1, 2, . . . , n} and edge set

E(X) =
⋃

1≤i,j≤n

{

((g, i), (tg, j)) | g ∈ G and t ∈ Tij

}

.

By Lemma 2.1, an n-Cayley (di)graph is characterized by a group G and n2

subsets Tij of G (some subsets may be empty). So we denote an n-Cayley (di)graph
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with respect to n2 subsets Tij by Γ = Cay(G;Tij | 1 ≤ i, j ≤ n). It is easy to see
that Cay(G;Tij | 1 ≤ i, j ≤ n) is undirected if and only if T−1

ij = Tji for all
1 ≤ i, j ≤ n. Also it is loop-free if 1 /∈ Tii for all 1 ≤ i ≤ n. Let Γ be a 2-Cayley
graph which is undirected and loop-free. Then there exist three subsets R = T11,
L = T22, S = T12 and T21 = S−1 of G such that R = R−1, L = L−1 and 1 /∈ R ∪ L
and Γ = Cay(G;Tij | 1 ≤ i, j ≤ 2). We denote this graph with SC(G;R,L, S) and
call it semi-Cayley graph. In the case R = L = Ø, we denote it by BCay(G;S) and
call it bi-Cayley graph.

There are a lot of examples of n-Cayley graphs, n ≥ 2. Here we provide some.

Example 2.1. Let P be the Petersen graph. Then P = SC(G;R,L, S), where G = 〈a〉 ∼=
Z5, R = {a, a

4
}, L = {a

2
, a

3
} and S = {1}.

Example 2.2. ([1, Lemma 8]) Let Γ = Cay(G,S) be a Cayley (di)graph. Suppose that
there exists a subgroup H of G with index n. If {t1, . . . , tn} is a left transversal to H in
G, then Γ ∼= Cay(H,Tij | 1 ≤ i, j ≤ n), where Tij = {h ∈ H | t

−1

j hti ∈ S} = H ∩ tjSt
−1

i .

Example 2.3. The I-graph I(n, j, k) is a cubic graph of order 2n with vertex set {ui, vi |

0 ≤ i ≤ n− 1} and edge set {uiui+j , uivi, vivi+k}. Graphs I(n, 1, k) are called generalized
Petersen graphs. It is easy to see that I(n, j, k) = SC(G;R,L, S), where G = 〈a〉 ∼= Zn,
R = {a

j
, a

−j
}, L = {a

k
, a

−k
} and S = {1}.

Example 2.4. Let RW (n, j, k) be a Rose Window graph, for the definition of graph
see [18]. RW (n, j, k) is a 4-valent bicirculant graph isomorphic to SC(G;R,L, S), where
G = 〈a〉 ∼= Zn, R = {a, a

−1
}, L = {a

j
, a

−j
} and S = {1, ak

}.

Example 2.5. For given natural numbers n ≥ 3 and 1 ≤ r, j, k ≤ n − 1, with j 6= n/2
and r 6= k, the Tabačjn graph T (n, r, k, j) is a pentavalent graph with vertex set {xi | i ∈

Zn} ∪ {yi | i ∈ Zn} and edge set

{xixi+1 | i ∈ Zn} ∪ {yiyi+j | i ∈ Zn} ∪ {xiyi+r | i ∈ Zn} ∪ {xiyi+k | i ∈ Zn}.

It is easy to see that T (n, r, k, j) = Γ ∼= SC(G;R,L, S), where G = 〈a〉 ∼= Zn, R = {a, a
−1

},
L = {a

j
, a

−j
} and S = {1, ar

, a
k
}.

Example 2.6. LetKr,r,...,r be the n-partite complete graph. ThenKr,r,...,r = Cay(G; Tij |

1 ≤ i, j ≤ n), where G is a finite group of order r, and for all 1 ≤ i, j ≤ n where j 6= i,
Tii = Ø and Tij = G.

3. Eigenvalues of n-Cayley (di)graphs

In 2007, the spectrum of bi-Cayley graphs over finite abelian groups computed in
[29]:

Theorem 3.1. Let Γ = BCay(G,S) be a bi-Cayley graph over finite abelian group
G = Zn1 × . . .× Znt

with respect to S. Then eigenvalues of Γ are

±|
∑

(i1,...,it)∈S

ωr1i1
n1

. . . ωrtit
nt

|, rj = 0, . . . , nj − 1, j = 1, . . . , t.
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In 2010, Gao and Luo improved Theorem 3.1. They studied the spectrum of
semi-Cayley graphs over finite abelian groups. Using matrix theory, they derived a
formula of the spectrum of semi-Cayley graphs over finite abelian groups:

Theorem 3.2. ([12, Theorem 3.2]) Let Γ = SC(G;R,L, S) be a semi-Cayley graph
over a finite abelian group G = Zn1 × . . .× Znt

. Then Γ has eigenvalues

λR
r1...rt

+ λR
r1...rt

±
√

(λR
r1...rt

− λL
r1...rt

)2 + 4|λS
r1...rt

|2

2
,

rj = 0, . . . , nj − 1, j = 1, . . . , t, where λX
r1...rt

=
∑

(i1,...,it)∈X ωr1i1
n1

. . . ωrtit
nt

and ωn

is the primitive nth root of unity.

Also the spectrum of a bi-Cayley graph of an arbitrary group with respects to
a normal subset computed in [6, Theorem 2.1], a generalization of Theorem 3.1. In
2013, Theorem 3.2 extended to n-Cayley graphs, n ≥ 2, over arbitrary groups by
Arezoomand and Taeri in [1] using representation theory of finite groups. Let us
recall some definitions of the latter paper. Let G be a finite group and C[G] be
the complex vector space of dimension |G| with basis {eg | g ∈ G}. We identify
C[G] with the vector space of all complex-valued functions on G. Thus a function
ϕ : G → C corresponds to the vector ϕ =

∑

g∈G ϕ(g)eg and vice versa. In particular,
the vector eg, where g ∈ G, of the standard basis corresponds to the function eg,
where

eg(h) =

{

1 h = g
0 h 6= g.

The (left) regular representation ρreg of G on C[G] is defined by its action on
the basis {eh | h ∈ G}; that is for all g, h ∈ G, ρreg(g)eh = egh. Let Irr(G) =
{ρ1, . . . , ρm} be the set of all irreducible inequivalent C-representations of G and dk
be the degree of ρk, k = 1, . . . ,m. Let eig be the 1×n|G| vector with n blocks, where
ith block is eg, as defined, and other blocks are 01×|G| vectors. Let V be the vector
space with basis {eig | g ∈ G, 1 ≤ i ≤ n}. Clearly V ∼= C[G]⊕ C[G]⊕ · · · ⊕ C[G]

︸ ︷︷ ︸

n−times

, as

C[G] = 〈eg | g ∈ G〉. So dimC V = n dimC C[G] = n|G|. Let Γ = Cay(G;Tij | 1 ≤
i, j ≤ n) and A = [a(g,i)(h,j)]g,h∈G,1≤i,j≤n be the adjacency matrix of Γ. Viewing A
as the linear map

A : V → V

eig 7→

n
∑

j=1

∑

h∈G

a(h,j)(g,i)e
j
h, 1 ≤ i ≤ n, g ∈ G,

it is proved that:

Theorem 3.3. ([1, Theorem 6]) Let Γ = Cay(G;Tij | 1 ≤ i, j ≤ n) be an n-Cayley
digraph over a finite group G and Irr(G) = {ρ1, . . . , ρm}. For each l ∈ {1, . . . ,m},
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we define ndl × ndl block matrix Al :=
[

A
(l)
ij

]

, where A
(l)
ij =

∑

t∈Tji
ρ(l)(t). Let

χAl
(λ) and χA(λ) be the characteristic polynomial of Al and A, respectively. Then

χA(λ) = Πm
l=1χAl

(λ)dl .

Example 3.1. ([7, Corollary 2.3]) The eigenvalues of I(n, j, k) are

cos(2ljπ/n) + cos(2lkπ/n) ±
√

(cos(2ljπ/n) − cos(2lkπ/n))2 + 1, l = 0, . . . , n− 1.

Example 3.2. ([7, Corollary 2.4]) The eigenvalues of RW (n, j, k) are

cos(2lπ/n)+cos(2ljπ/n)±
√

(cos(2lπ/n) − cos(2ljπ/n))2 + 2 + 2 cos(2lkπ/n), l = 0, . . . , n−1.

Example 3.3. ([7, Corollary 2.5]) The eigenvalues of T (n, r, k, j) are

cos(2lπ/n) + cos(2ljπ/n) ±
√

(cos(2lπ/n) − cos(2ljπ/n))2 + αl, l = 0, . . . , n− 1,

where αl = 3 + 2
(

cos(2πlr/n) + cos(2πlk/n) + cos(2πl(r − k)/n)
)

.

Since any Cayley graph over a group G is a 1-Cayley graph over G, as a direct
consequence of Theorem 3.3, we can reprove the following result which is proved in
[27]:

Corollary 3.1. Let Γ = Cay(G,S) be a Cayley digraph over a finite group G
with irreducible matrix representations ̺(1), . . . , ̺(m) . Let dl be the degree of ̺(l).

For each l ∈ {1, . . . ,m}, define a dl × dl block matrix Al :=
[

A
(l)
S

]

, where A
(l)
S =

∑

s∈S ̺(l)(s). Let χAl
(λ) and χA(λ) be the characteristic polynomial of Al and A,

the adjacency matrix of Γ, respectively. Then χA(λ) = Πm
l=1χAl

(λ)dl .

Let G be a finite abelian group. Then by [16, Theorem 9.8], putting n = 2
in Theorem 3.3, Theorem 3.2 directly follows. Also Theorems 4.6 and 4.3 of [12]
improved in [1]:

Corollary 3.2. ([1, Corollary 9]) Let Γ = Cay(G,S) be a Cayley digraph, H = 〈a〉
a cyclic subgroup of G of order n and of index 2 with left transversal {t1, t2} . Then
the characteristic polynomial of the adjacency matrix of Γ is χA(λ) = Πn−1

k=0 (λ −
λ+
k )(λ − λ−

k ), where

λ+
k =

λ11
k + λ22

k +
√

(λ11
k − λ22

k )2 + 4λ12
k λ21

k

2
,

λ−

k =
λ11
k + λ22

k −
√

(λ11
k − λ22

k )2 + 4λ12
k λ21

k

2
,

λij
k =

∑

t∈Tji
ωkt
n and Tij = {t | 0 ≤ t ≤ n− 1, at ∈ tjSt

−1
i }.
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Let Γ be a k-regular graph with n vertices and adjacency matrix A and Ac

be the adjacency matrix of the complement of Γ. Then (λ + k + 1)χAc(λ) =
(−1)n(λ−n+ k+1)χA(−λ− 1), see [9, p. 20]. Despite of Cayley graphs, n-Cayley
graphs n ≥ 2, are not necessarily regular, but we have a similar relation between
the characteristic polynomials of any n-Cayley graph and its complement which is
given in the next theorem:

Theorem 3.4. ([1, Theorem 10]) Let Γ = Cay(G, Tij | 1 ≤ i, j ≤ n) be an n-
Cayley graph over a finite group G, n ≥ 1. Let Γc be the complement of Γ with
adjacency matrix Ac. Then the characteristic polynomials of Γ and Γc are related
with the following equation:

χB1(λ)χA(−λ− 1) = (−1)|G|−1χA1(−λ− 1)χAc(λ),

where B1 = |G|J − In − A1, J is the all ones matrix of degree n, and A1 =
[|Tji|]1≤i,j≤n.

An eigenvector of the adjacency matrix of a graph Γ is said to be main eigenvec-
tor if it is not orthogonal to the all ones vector j. An eigenvalue of a graph Γ is said
to be a main eigenvalue if it has a main eigenvector. By Perron-Frobenius Theorem,
the largest eigenvalue of a graph is a main eigenvalue. It is also well known that
a graph is regular if and only if it has exactly one main eigenvalue. So for every
Cayley graph Γ = Cay(G,S), |S| is the only main eigenvalue of Γ. Since n-Cayley
graphs, for n ≥ 2 are not necessarily regular, determining the main eigenvalues of
these graphs seems to be important. This problems reduced to determining main
eigenvalues of the matrix A1:

Theorem 3.5. ([1, Corollary 12]) Let Γ = Cay(G, Tij | 1 ≤ i, j ≤ n) be an n-
Cayley graph over a finite group G and n ≥ 2. The main eigenvalues of Γ is equal
to main eigenvalues of the matrix A1 = [|Tji|]1≤i,j≤n.

4. Integrality of n-Cayley graphs

A graph Γ is called integral if all eigenvalues of the adjacency matrix of Γ are
integers. The concept of integral graphs was first defined by Harary and Schwenk
[14]. During the last forty years many mathematicians have tried to construct
and classify some special classes of integral graphs including Cayley graphs(for a
survey see [21]). It seems that integral graphs are very rare and determining all the
integral n-Cayley graphs, even for n = 2, is difficult. It is easy to construct integral
semi-Cayley graphs over finite abelian groups, as the following corollary shows:

Corollary 4.1. ([12, Corollary 3.5]) Let Γ = SC(G;R,R, S) be a semi-Cayley
graph over a finite abelian group G. If Cay(G,R) and Cay(G,S) are integral then
Γ is integral.
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The study of integrality of bi-Cayley graphs started by Arezoomand and Taeri
in 2015:

Theorem 4.1. ([4, Corollary 3.10]) Every bi-Cayley graph of a finite group G is
integral if and only if G is isomorphic to one of the groups Z

k
2 , k ≥ 1, Z3 or S3.

Also finite groups admitting a connected cubic integral bi-Cayley graph deter-
mined in the following theorem:

Theorem 4.2. ([8, Theorem A]) A finite group G admits a connected cubic inte-
gral bi-Cayley graph if and only if G is isomorphic to one of the groups

Z
2
2, Z3, Z4, Z6, Z2 × Z6, S3, A4, Dic12.

The following questions naturally arise:

Problem 4.1. Determine finite groups admitting a connected k-regular, k ≥ 4,
bi-Cayley graphs.

Problem 4.2. Let Γ = BCay(G,S). In what conditions on S, is Γ an integral?

Problem 4.3. Determine finite groups in which all bi-Cayley graphs over them of
the valency at most k ≥ 2 are integral.

Problem 4.4. Let Γ = SC(G;R,L, S) be a semi-Cayley graph over a group G. In
what conditions on R,L and S is Γ an integral?

5. Laplacian and signless Laplacian eigenvalues of n-Cayley graphs

Let Γ be a graph with vertex set {v1, . . . , vn}. Recall that the adjacency matrix
of Γ is an n × n matrix A = [aij ], where aij = 1 whenever vi and vj are adjacent
and aij = 0, otherwise. The degree matrix of Γ is a diagonal n × n matrix D =
diag(d1, . . . , dn), where di is the number of vertices adjacent to vi. The matrices
L = D−A and Q = D+A are called Laplacian and signless Laplacian matrices of
Γ, respectively. The characteristic polynomial of an n×n matrix X is det(λIn−X),
where In is the n × n identity matrix and the roots of this polynomial are called
eigenvalues of X . In this paper, the Laplacian eigenvalues and signless Laplacian
eigenvalues of a graph Γ are eigenvalues of Laplacian and signless Laplacian matrices
of Γ, respectively.

In 2015, the Laplacian and signless Laplacian spectrum of semi-Cayley graphs
over abelian groups computed:

Theorem 5.1. ([13, Theorem 1]) Let Γ = SC(G;R,L, S) be a semi-Cayley graph
over a finite abelian group G = Zn1 × . . .× Znt

. Then Γ has Laplacian eigenvalues
(resp. signless Laplacian eigenvalues)

µR
r1...rt

+ µL
r1...rt

+ 2|S| ±
√

(µR
r1...rt

− µL
r1...rt

)2 + 4|λS
r1...rt

|2

2
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rj = 0, . . . , nj − 1, j = 1, . . . , t, where λS
r1...rt

are eigenvalues of Cay(G,S), and
µR
r1...rt

, µL
r1...rt

are the Laplacian (resp. signless Laplacian) eigenvalues of Cay(G,R)
and Cay(G,L), respectively.

The n-sunlet graph on 2n vertices is obtained by attaching n pendant edges to
the cycle Cn. It is easy to see that Γ = SC(G,R, S, T ), where G = 〈a〉 ∼= Zn,
R = {a, a−1}, S = Ø and T = {1}.

Example 5.1. Let Γ be an n-sunlet graph. Then

(1) Lpalcian eigenvalues of Γ are

2− cos
2πl

n
±

√

(1− cos
2πl

n
)2 + 1,

where l = 0, . . . , n− 1.

(2) signless Laplacian eigenvalues of Γ are

2 + cos
2πl

n
±

√

(1 + cos
2πl

n
)2 + 1,

where l = 0, . . . , n− 1.

As a corollary, one can construct semi-Cayley graphs with an integral Laplacian
and signless Laplacian spectrum:

Corollary 5.1. ([13, Corollary 4.6]) Let Γ = SC(G;R,R, S) be a semi-Cayley
graph over a finite abelian group G. If Cay(G,R) and Cay(G,S) are integral graphs
then Γ is a Laplacian and signless Laplacian integral graph.

We end the paper with some open problems:

Problem 5.1. Determine the Laplacian and signless Laplacian eigenvalues of semi-
Cayley graphs over non-abelian groups. Also do this for n-Cayley graphs when
n ≥ 3.

Problem 5.2. In what conditions on R,L and S, SC(G;R,L, S) is Laplacian (and
signless Laplacian) an integral?
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19. K. Kutnar, D. Marušič, Š. Miklavič and P. Šparl: Strongly regular tri-Cayley

graphs, European J. Combin. 30(4) (2009) 822-832.

20. Z.P. Lu, C.Q. Wang and M.Y. Xu: Semisymmetric cubic graphs constructed from

bi-Cayley graphs of An, Ars Combin. 80 (2006) 177-187.

21. X. Liu and S. Zhou: Eigenvalues of Cayley graphs: arXiv: 1809.09829 [math.CO].

22. K.H. Leung and S.L. Ma: Partial difference triples, J. Algebraic Combin. 2 (1993)
397-409.

23. L. Martinez: Strongly regular m-Cayley circulant graphs and digraphs: Ars Math.
Contemp. 8 (2015) 195-213.
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Abstract. In this paper, we show that the following simple groups are uniquely deter-
mined by their orders and vanishing element orders: Ap−1(2), where p 6= 3, 2Dp+1(2),
where p ≥ 5, p 6= 2m − 1, Ap(2), Cp(2), Dp(2), Dp+1(2) which for all of them p is an
odd prime and 2p − 1 is a Mersenne prime. Also, 2Dn(2) where 2n−1 + 1 is a Fermat
prime and n > 3, 2Dn(2) and Cn(2) where 2n + 1 is a Fermat prime. Then we give an
almost general result to recognize the non-solvability of finite group H by an analogy
between orders and vanishing element orders of H and a finite simple group of Lie type.
Keywords: simple groups; Mersenne prime; Fermat prime; Lie group.
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1. Introduction

Throughout this paper G and H are two finite groups. Let X be a finite set of
positive integers. The prime graph Π(X) is a graph whose vertices are the prime
divisors of elements of X , and two distinct vertices p and q are adjacent if there
exists an element of X divisible by pq. For a finite group G, we denote by ω(G), the
set of element orders of G. The prime graph Π(ω(G)) is denoted by GK(G) and is
called the Gruenberg-Kegel graph ofG. Here, s(G) denotes the number of connected
components of GK(G). For the groupG, we denote by ρ(G) some independence sets
in GK(G) with maximal number of vertices and put t(G) = |ρ(G)|, independence
number of GK(G). g ∈ G is called a vanishing element of G if χ(g) = 0 for some
χ ∈ Irr(G). Let us denote by Van(G) and vo(G) the set of all vanishing elements
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and the set of vanishing element orders of G, respectively. Also the prime graph
Π(vo(G)) is denoted by Γ(G) and is called the vanishing prime graph of G.

If n is a natural number and π is a set of primes, then we denote the set of all
prime divisors of n by π(n), and the maximal divisor t of n such that π(t) ⊆ π by
nπ. If π(G) is the set of prime divisors of |G|, then πi(G) = π(mi) for some positive
integers mi, 1 ≤ i ≤ t, such that |G| = m1m2 · · ·mt and t = s(G). Also for any
group with even order, 2 ∈ π1(G). We set OC(G) = {m1, · · · ,mt} and call the set
of order components of G. A finite simple group G is said characterizable by its
order components, if G ∼= H for each finite group H such that OC(G) = OC(H).
Some authors have proved that some non-abelian simple groups are recognizable by
their order components. We refer the reader to [23] to find a list of papers with the
OC-characterizability criterion for some finite simple groups.

It was shown in [38] that if G is a finite group such that vo(G) = vo(A5) then
G ∼= A5. According to this result, M. Foroudi, A. Iranmanesh and F. Mavadatpour
in [12] stated the conjecture as follows:

Conjecture 1.1. Let G and H be two groups with the same order. If G is a
non-abelian group and vo(G) = vo(H), then G ∼= H.

First, this conjecture was proved for L2(q), where q ∈ {5, 7, 8, 9, 17}, L3(4), A7,
Sz(8) and Sz(32) in [12]. Then they proved this conjecture in [13] for finite simple
Kn-groups with n ∈ {3, 4}, sporadics, alternatatings and L2(p) where p is an odd
prime. In [24] it has been verified that the groups Sz(q) satisfy this conjecture,
where q = 22n+1 and either q− 1, q−

√
2q+1 or q+

√
2q+1 is a prime, and F4(q),

where q = 2n and either q4+1 or q4− q2+1 is a prime. In this paper, we show that
the above conjecture is valid for some families of simple groups of Lie type. Then
we prove another result about non-solvability of some finite group using vanishing
element orders. In fact, we prove the following theorems:

Theorem 1.1. Let G and H be two groups with the same order and G be a simple
group of Lie type Ap−1(2) where p 6= 3, 2Dp+1(2), where p ≥ 5, p 6= 2m − 1, Ap(2),
Cp(2), Dp(2), Dp+1(2), which for all of them p is an odd prime and 2p − 1 is a
Mersenne prime, 2Dn(2) where 2n−1 + 1 is a Fermat prime, 2Dn(2) and Cn(2)
where for the last two groups 2n + 1 is a Fermat prime. If vo(G) = vo(H), then
G ∼= H.

Theorem 1.2. Let G and H be two groups with the same order. Suppose G is
a simple group of Lie type with s(G) ≥ 2 except A2(q), where (q − 1)3 6= 3, q is
a Mersenne prime, 2A2(q), where (q + 1)3 6= 3, q is a Fermat prime, C2(q) where
q > 2. If vo(G) = vo(H), then H is non-solvable.

2. Preliminaries

In this section, we state some results which will be of use to the proof of the main
theorems.
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Definition 2.1. A group G is said to be a 2-Frobenius group if there exist two
normal subgroups F and L of G with the following properties: L is a Frobenius
group with kernel F , and G/F is a Frobenius group with kernel L/F .

Recall that a Frobenius group with kernel N and complement H is a semidirect
product G = H ⋉ N such that N is a normal subgroup in G, and CN (h) = 1 for
every non-identity element h of H . As is well-known, N is the Fitting subgroup of
G.

Definition 2.2. G is a nearly 2-Frobenius group if there exists two normal sub-
groups F and L of G with the following properties: F = F1×F2 is nilpotent, where
F1 and F2 are normal subgroups of G, furthermore G/F is a Frobenius group with
kernel L/F , G/F1 is a Frobenius group with kernel L/F1, and G/F2 is a 2-Frobenius
group.

Lemma 2.1. [11]

(a) Let G be a solvable Frobenius group with kernel F and complement H. The
graph GK(G) has two connected components, whose vertex sets are π1 = π(F )
and π2 = π(H), and which are both complete graphs.

(b) Let G be a finite solvable group. Then Γ(G) has at most two connected compo-
nents. Moreover, if Γ(G) is disconnected, then G is either a Frobenius group
or a nearly 2-Frobenius group.

(c) Let G be a nearly 2-Frobenius group. If Γ(G) is disconnected, then each con-
nected component is a complete graph.

(d) Let G be a solvable Frobenius group with kernel F and complement H. If
F ∩ V an(G) 6= Ø, then Γ(G) = GK(G), and the otherwise Γ(G) coincides
with the connected component of GK(G) with vertex set π(H).

Lemma 2.2. [10] If G is a finite non-abelian simple group, then GK(G) = Γ(G),
unless G ∼= A7.

Theorem 2.1. [13] Let G be a finite group and let M be a simple K3-group or a
K4-group. If |G| = |M | and vo(G) = vo(M), then G ∼= M .

Recall that a finite simple group G is called a Kn-group if its order has exactly n
distinct prime divisors, where n is a natural number.

Theorem 2.2. [36] Let G be a finite simple group. Then all the connected com-
ponents of GK(G) are cliques if and only if G is one of the following: A5, A6, A7,
A9, A12, A13, M11, M22, J1, J2, J3, HS, A1(q), with q > 2, Sz(q) with q = 22m+1,
C2(q), G2(3

k), A2(q) where q is a Mersenne prime, 2A2(q) where q is a Fermat
prime, A2(4),

2A2(9),
2A3(3),

2A5(2), C3(2),D4(2),
3D4(2).
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3. Main results

To prove Theorem 1.2, we adopt Table I by [14] of components of prime graphs of
simple groups of Lie type over a field of even characteristics which in this table p
is an odd prime. In Table 1, m2 coincides with the factor for primes in the second
connected component. Table 2 shows OC-characterizable groups of Lie type with
their prime graph having two connected components. We also use Tables 3 and 4
for the proof of Theorem 1.3. These tables were adopted from [37] and they show
the independence number of prime graphs of finite simple groups of Lie type and.
In Tables 3 and 4, n and k are natural numbers. [x] denotes the integral part of x.
We assume that G is a finite non-abelian simple group of Lie type over a field of
characteristic p and order q. We define the primitive prime divisor of qm− 1 by rm.
If p is odd then we say that 2 is a primitive prime divisor of q − 1 if q ≡ 1 (mod 4)
and that 2 is a primitive prime divisor of q2 − 1 if q ≡ −1 (mod 4).

The following lemma is a conclusion from some noteworthy properties of a simple
group G with s(G) = 2 and the conditions of Conjecture 1.1.

Lemma 3.1. Let G and H be two groups with the same order. Suppose that
G is a non-abelian simple group with s(G) = 2 and GK(H) is disconnected. If
vo(G) = vo(H), then OC(G) = OC(H).

Proof. The assumption vo(G) = vo(H) and Lemma 2.2 imply GK(G) = Γ(G) =
Γ(H). So the set of vertices of the vanishing prime graph of H is equal to π(H).
Since Γ(H) ≤ GK(H), the prime graph of H has two connected components. Let
OC(G) = {m1,m2} and OC(H) = {n1, n2}. It is sufficient to prove m1 = n1. As-
sume m1 6= n1. Therefore, π1(G) 6= π1(H). Without loss of generality, we suppose
there is a prime p in π1(G) such that p 6∈ π1(H). So p ∈ π2(H). The connectedness
of components implies π1(G) ⊆ π2(H), that is, 2 ∈ π2(H), a contradiction. If p is
an isolated vertex, then p = 2 because the order of G is even. Therefore 2 ∈ π2(H)
which is impossible.

Before bringing forward the proof of Theorem 1.2, we recall that an irreducible
character χ of group G is called p-defect zero if p ∤ |G|/χ(1) where p is a prime.

3.1. Proof of Theorem 1.2

First we show that GK(H) is disconnected. According to Table 1, s(G) = 2 and
the second order component of G are prime. From vo(G) = vo(H) and Lemma
2.2, we deduce GK(G) = Γ(G) = Γ(H). The last equalities imply that Γ(H) has a
connected component with a single vertex p. On the other hand, H has a vanishing
p-element. Since characters of degree not divisible by some prime number p never
vanish on p-elements, it is then clear that H has a p-defect zero character, namely
χ. We claim that GK(H) is disconnected. We assume the assertion is false. Then
there exists a non-vanishing element x of order pq in H where q ∈ π1(G). Since
any p-defect zero characters vanish on elements of order divisible by p, we observe
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χ(x) = 0. It means that Γ(H) is connected. This is a contradiction and hence
GK(G) is disconnected. Then by Lemma 3.1, OC(G) = OC(H). According to
Table 2, G is an OC-characterizable group with s(G) = 2 and therefore G ∼= H . �

Lemma 3.1 will be of use to show the validity of Conjecture 1.1 for more OC-
characterizable simple groups of Lie type that we state as a general result.

Theorem 3.1. Let G and H be two groups with the same order. Suppose G is an
OC-characterizable simple group of Lie type with s(G) = 2 and GK(H) is discon-
nected. If vo(G) = vo(H), then G ∼= H.

In particular, the Conjecture 1.1 is valid for any group of Table 2 with a prime m2.

Table 1: The prime graph components of the simple groups of Lie type over the field of even

characteristic.

Type Factors for primes in π1 m2

Ap−1(q), (p, q) 6= (3, 2), (3, 4) q, qi − 1, 1 ≤ i ≤ p− 1 qp−1

(q−1)(q−1,p)

Ap(q), q − 1|p+ 1 q, qp+1 − 1, qi − 1, 1 ≤ i ≤ p− 1 qp−1

q−1

Ck(q), k = 2n q, qk − 1, q2i − 1, 1 ≤ i ≤ k − 1 qk + 1

Cp(q), (q − 1, p) = 1 q, qp + 1, q2i − 1, 1 ≤ i ≤ p− 1 qp−1

q−1

Dp(q), (q − 1, p) = 1 q, q2i − 1, 1 ≤ i ≤ p− 1 qp−1

q−1

Dp+1(2) 2, 22i − 1, 1 ≤ i ≤ p− 1, 2p − 1
2p + 1, 2p+1 − 1

2A3(2
2) 2,3 5

2Ap−1(q
2) q, qi − (−1)i, 1 ≤ i ≤ p− 1 qp+1

(q+1)(q+1,p)
2Ap(q

2), q + 1|p+ 1 q, qp+1 − 1, qi − (−1)i, qp+1

q+1

1 ≤ i ≤ p− 1
2Dk(q), k = 2n, n ≥ 2 q, q2i − 1, 1 ≤ i ≤ k − 1 qk + 1
2Dk+1(2), k = 2n, n ≥ 2 2, 22i − 1, 1 ≤ i ≤ k − 1, 2k + 1

2k − 1, 2k+1 + 1
G2(q), q ≡ 1 (mod 3) q, q2 − 1, q3 − 1 q2 − q + 1
G2(q), q ≡ −1 (mod 3) q, q2 − 1, q3 + 1 q2 + q + 1
3D4(q

3) q, q6 − 1 q4 − q2 + 1
2F4(2)

′ 2,3,5 13

E6(q), q ≡ 1 (mod 3) q, q5 − 1, q8 − 1, q12 − 1 q6+q3+1

3

E6(q), q ≡ 1 (mod 3) q, q5 − 1, q8 − 1, q12 − 1 q6 + q3 + 1
2E6(q

2), q ≡ −1 (mod 3) q, q5 + 1, q8 − 1, q12 − 1 q6−q3+1

3
2E6(q

2), q ≡ 1 (mod 3) q, q5 + 1, q8 − 1, q12 − 1 q6 − q3 + 1
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Table 2: OC-characterizable simple groups of Lie type with their prime graphs having two

connected components.

G Restriction on G Reference
Ap−1(q) p 6= 3, q 6= 2, 4 [16, 15, 26]
Ap(q) (q − 1)|(p+ 1) [8, 34]
2Ap(q) (q + 1)|(p+ 1) , p 6= 3, 5, q 6= 2, 3 [29]

2Ap−1(q) [18, 19, 20, 30]
Bn(q) n = 2m ≥ 2, [22, 39, 25, 28]
Bp(3) [7]
Cn(q) n = 2m ≥ 2 [22, 39, 25, 28]
Cp(q) q = 2, 3 [7] and Table 4 of [23]
Dp(5) p ≥ 5, q = 2, 3, 5 Table 4 of [23]

Dp+1(q) q = 2, 3 [6]
2Dn(q) n = 2m [27, 31]
2Dn(2) n = 2m + 1, m ≥ 2 [9]
2Dp(3) 5 ≤ p 6= 2m + 1 [35, 5]
2Dn(3) n = 2m + 1 6= p, m ≥ 2 [4]
3D4(q) [3]
E6(q) [33]
2E6(q) q > 2 [32]
F4(q) q odd [21, 17]
G2(q) 2 < q ≡ ε (mod 3), ε = ±1 [1, 2]

3.2. Proof of Theorem 1.3

From vo(G) = vo(H) and Lemma 2.2, we deduce that GK(G) = Γ(G) = Γ(H).
Since for a simple group G with s(G) > 2, non-solvability of H is concluded from
Lemma 2.1 (b), it is sufficient that we investigate the case s(G) = 2. Let H be a
solvable group and G be a simple group of Lie type with s(G) = 2. Since Γ(H)
has two connected components, Lemma 2.1 (b) implies that H is either a Frobenius
group or a nearly 2-Frobenius group. For both cases, using Lemma 2.1 (a), (b) and
(c), GK(G) has two clique connected components. So G is the above mentioned
simple group of Theorem 2.2. According to Tables 3 and 4 for simple groups of Lie
type with s(G) = 2 except A2(q), where (q − 1)3 6= 3 and q is a Mersenne prime,
2A2(q), where (q + 1)3 6= 3 and q is a Fermat prime, C2(q) where q > 2, 2A2(9),
C3(2), D4(2) and 3D4(2), we have t(G) ≥ 3. Thus, if p, q, r ∈ ρ(G), then at least
two of them lie in a component such that they are non-adjacent, which is impossible.
Now, if G is one of the following groups: 2A2(9), C3(2), D4(2) or

3D4(2), then G is
a K4-group and Theorem 2.1 implies H ∼= G. Hence the desired conclusion holds.
�

Table 3: Independence number and set of finite simple classical groups of Lie type.
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i ≡ 1(mod 2)}
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Table 4: Independence number and set of finite simple exceptional Lie-type groups.

G Conditions t(G) ρ(G)
G2(q) q > 2 3 {p, r3, r6}
F4(q) q = 2 4 {5, 7, 13, 17}

q > 2 5 {r3, r4, r6, r8, r12}
E6(q) q = 2 5 {5, 13, 17, 19, 31}

q > 2 6 {r4, r5, r6, r8, r9, r12}
2E6(q) 5 {r4, r8, r10, r12, r18}
E7(q) 7 {r7, r8, r9, r10, r12, r14, r18}
E8(q) 11 {r7, r8, r9, r10, r12, r14, r15, r18, r20, r24, r30}
3D4(q) q = 2 2 {2, 13}

q > 2 3 {r3, r6, r12}
2B2(2

2n+1) n ≥ 1 4 {2, s1, s2, s3} where
s1 | 22n+1 − 1

s2 | 22n+1 − 2n+1 + 1
s3 | 22n+1 + 2n+1 + 1

2G2(3
2n+1) n ≥ 1 5 {3, s1, s2, s3, s4}, where

s1 6= 2, s1 | 3
2n+1 − 1

s2 6= 2, s2 | 3
2n+1 + 1

s3 | 32n+1 − 3n+1 + 1
s4 | 32n+1 + 3n+1 + 1

2F4(2
2n+1) n ≥ 2 5 {s1, s2, s3, s4, s5}, where

s1 6= 3, s1 | 2
2n+1 + 1

s2 | 24n+2 + 1
s3 6= 3, s3 | 24n+2 − 22n+1 + 1

s4 | 24n+2 − 23n+2 + 22n+1 − 2n+1 + 1
s5 | 24n+2 + 23n+2 + 22n+1 + 2n+1 + 1

2F4(2)
′ none 3 {3, 5, 13}

2F4(8) none 4 {7, 19, 37, 109}
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Abstract. While methods of detecting outliers is frequently implemented by statis-
ticians when analyzing univariate data, identifying outliers in multivariate data pose
challenges that univariate data do not. In this paper, after short reviewing some tools
for univariate outliers detection, the Mahalanobis distance, as a famous multivariate
statistical distances, and its ability to detect multivariate outliers are discussed. As an
application the univariate and multivariate outliers of a real data set has been detected
using R software environment for statistical computing.
Keywords: Mahalanobis distance, multivariate normal distribution, multivariate out-
liers, outlier detection.

1. Introduction

The role of statistical distances when dealing with problems such as hypothesis
testing, goodness of fit tests, classification techniques, clustering analysis, outlier
detection and density estimation methods is of great importance. Using distance
measures (or similarities) enable us to quantify the closeness between two statistical
objects. These objects can be two random variables, two probability distributions,
moment generating functions, an individual sample point and a probability distri-
butions or two individual samples. There exists many statistical distance measures
[38], among them the Mahalanobis distance has the advantage of its ability to detect
multivariate outliers.

Outliers are those data that deviate from global behavior of majority of data.
Outliers or outlying observation have different definition in texts, for example “an
outlier deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism”, see [12]. Outliers have major influence on the
statistical inference. They increase error variance and reduce the power of statistical
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tests and cause bias estimates that may be of substantive interest [22]. Therefore,
the process of outlier detection is an interesting and important aspect in the data
analysis, see [3] and [5]. Depending on application synonyms are often used for the
outlier detection process, among them, one can mention anomaly detection, devi-
ation detection, exception mining, fault detection in safety critical systems, fraud
detection for credit cards, intrusion detection in cyber security (unauthorized access
in computer networks), misuse detection, noise detection and novelty detection see
[1], [9], [23] and [32].

All proximity-based techniques for identification of outliers such as k-Nearest
Neighbor (k-NN) algorithm calculate the nearest neighbors of a record using a suit-
able distance calculation metric such as Euclidean distance, Mahalanobis distance
or some other measure of dissimilarity. For large data set using the Mahalanobis
distance is computationally more expensive than Euclidean distance as it require to
pass through all variables in data set to calculate the underlying inter-correlation
structure. An iterative Mahalanobis distance type of method for the detection of
outliers in multivariate data has been proposed by [10]. Due to the masking effect,
in which one outlier masks a second outlier, if the second outlier can be considered
as an outlier only by itself, but not in the presence of the first outlier, detecting mul-
tiple outliers is more completed than the case where data consist of a single outlier,
since masking effects might decrease the Mahalanobis distance of an outlier. This
might happen because a small cluster of outliers attracts mean and inflate variance
towards its direction [4]. In such cases using robust estimates of sample mean and
variance, can often improve the performance of the detection procedure, see [24]
and [30].

In this paper, the problems of the univariate and multivariate outlier detection
has been addressed. For univariate outlier detection, the result of applying the
classical visual method based on box-plot and Ven der Loo method [36] on a real
data set has been compared. For multivariate outlier detection, usual and robust
Mahalanobis distances has been used to find the outliers of a real data set using R
software environment for statistical computing.

2. Univariate Outlier Detection

A simple visualization tools, such as scatter plot, box-and-whisker (boxplot),
stem-and-leaf plot, QQ-plot, etc., can be used to discover the outliers. The box
plots, first introduced by [35], are a standardized way of displaying the distribution
of data based on a five number summary (“minimum”, first quartile (Q1), median,
third quartile (Q3), and “maximum”). In general, the box of a box plot shows the
median and quartiles. The box plot rule declares observations as outliers if they lie
outside the interval

Q1 − k(Q1 −Q3), Q3 + k(Q3 −Q1),

the common choices for k is 1.5 for flagging (dubbed) outliers and 3.0 for flagging
outliers, see Figure 2.1, in which the whiskers are shown for k = 1.5. This rule differs
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from standard outlier identification rules, since it is not sample-size dependent,
the probability of declaring outliers when none exist changes with the number of
observations [29]. Moreover, for data coming from a random normal sample of size
75, the probability of labeling at least one outlier is 0.5 [13]. Many other statistical
tests have been used to detect outliers, as discussed in [3].

(a) The Boxplot of jobs income and 5 jobs above
the upper whisker that flagged out as outliers

(b) The empirical density and the corresponding
box plot whiskers. On the x axis, five outliers are
shown that exceed the upper whisker threshold

Fig. 2.1: Univariate outlier detection using the boxplot for job incomes in Prestige
data set

Van der Loo [36] developed two methods to detect outliers in economic data,
when an approximate data distribution is known. In the following, his first method
is applied in order to detect the outliers of “income” variable (average income of
incumbents, dollars, in 1971) from Prestige of Canadian Occupations data set in
“car” package in R software environment [8]. The Prestige data set has 102 rows and
6 columns. This data consists of some measurment related to different occupations.
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According to the Kolmogrov-Smirnov goodness-of fit test, the log-normal dis-
tribution fits well to income data (p-value=0.47), see the left panel of Figure 2.2.
Therefore, the Var der Loo method was applied to detect possible outliers in this
data using the plotting facilities developed in the “extremevalues” package in R
software environment [37].

(a) The empirical distribution of job incomes and
the fitted log-normal distribution

(b) Outlier detected using the first Van der Loo
method, which are indicated by ∗ sign

Fig. 2.2: Model based univariate outlier detection for job incomes in Prestige data
set

As it is shown in the right panel of Figure 2.2, this method detects six outliers
which are located on two sides of data. The Outliers on the left down part of the
Figure are case numbers 53, 63, 68, and the rest are 2, 17, 24, whereas the upper
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outliers on the boxplot are case numbers 2, 17, 24, 25, 26.

The study of outliers in structured situations like regression models are based
on the residuals and has been studied by several authors, see [29] and references
therein. Five widely used test statistics for detecting outliers have been compared
using Monte Carlo method by Balasooriya and Tse [2].

Fig. 2.3: (above) Scatter plot of two simulated samples from bivariate normal distributions,
which show clear outliers out of 0.75 and 0.95 cutoffs corresponding to quantiles of the χ

2(2)
distribution, (below) the box plot of margins of the same data with no points lying outside the
whiskers

3. Multivariate Outliers Detection

Nowadays more and more observed data are multi-dimensional, which increase
the chance of occurring unusual observations. The problem is that a few outliers
is always enough to distort the results of data (by altering the mean performance,
by increasing variability, etc.). Therefore, detecting outliers is a growing concern
in many scientific areas, including but not limited to Psychology [18], Financial
market [6] and Chemometrics [26].

In the field of multivariate statistics, the Mahalanobis distance has a major
application for the detection of outliers [20]. The Mahalanobis distance is defined in
the next section. Mahalanobis distance measures the number of standard deviations
that an observation is from the mean of a distribution. Since outliers do not behave
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as normal as usuall observations at least in one dimension, this measure can be used
to detect outliers. See [14] for a comparison of Mahalanobis distances with other
proximity-based outlier detection techniques.

3.1. The Mahalanobis distance

From geometric point of view, the Euclidean distance between two points is
the shortest possible distance between them. One problem with the Euclidean dis-
tance measure is that it does not take the correlation between highly correlated
variables into account. In this situation, Euclidean distance assigns equal weight to
such variables, and since these variables measure essentially the same characteris-
tic, therefore this single characteristic gets additional weight. In effect, correlated
variables gets excess weight by Euclidean distance, see [16] and [21].

An alternative approach is to scale the contribution of individual variables to
the distance value according to the variability of each variable. This approach is
considered by the Mahalanobis distance, which has been developed as a statistical
measure by PC Mahalanobis, an Indian statistician [19]. The Mahalanobis distance
finds wide applications in the field of multivariate statistics. It differs from Euclidean
distance in this way that it takes into account the correlations between variables.
It is a scale invariant metric and provides a measure of distance between a point
x ∈ Rp generated from a given p−variate (probability) distribution fX(.) and the
mean µ = E(X) of the distribution. Assume fX(.) has finite second order moments
and denote Σ = E(X−µ) be the covariance matrix. Then the Mahalanobis distance
is defined by

(3.1) D(X, µ) =
√

(X− µ)TΣ−1(X− µ).

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces
to the Euclidean distance. For the comparison of these two distances see Figure 3.1,
in which the Euclidean and Mahalanobis distances of points located on the circles
and ellipse are 1 and 2 unit far away from the center of data. The computation has
been done on a data set, that are find under geog.uoregon.edu/GeogR/data/csv/
midwtf2.csv. The observed difference stems from this fact that the Mahalanobis
distance also accounts for the covariance (or correlation) structure of data.

Apart from usual application of the Mahalanobis distance in multivariate analy-
sis techniques such as classification and clustering, discriminant analysis and pattern
analysis, principal component analysis, there exists modern applications, among
them financial applications [33], image processing [39], Neurocomputing [11] and
Physics [31] might be mentioned.
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Fig. 3.1: Schematic comparison of the Mahalanobis (ellipse) and Euclidean (circle) distances
calculated for a data set. The two lines, circles and ellipses, correspond to the Euclidean and the
Mahalanobis distances, of one and two units apart from the center of data

3.2. Multivariate normal distribution

Recall the multivariate normal density function below, in which the parameters
µ and Σ, are the mean and the covariance matrix of the distribution, respectively.

φ(x) =

(

1

2π

)p/2

|Σ|−1/2 exp{−
1

2
(x − µ)′Σ−1(x− µ)},

note that this density function, φ(x), only depends on x through the following
squared Mahalanobis distance in the exponent:

(x− µ)′Σ−1(x− µ).

There are some important facts about this exponent:

• All values of x such that (x−µ)′Σ−1(x−µ) = c for any specified constant value
c have the same value of the density f(x) and thus have equal likelihood. The
paths of these x values yielding a constant height for the density are ellipsoids.
That is, the multivariate normal density is constant on surfaces where the
square of the distance (x− µ)′Σ−1(x− µ) is constant. These paths are called
contours, which can be constructed from the eigenvalues and eigenvectors of
the covariance matrix, meaning that the direction of the ellipse axes are in the
direction of the eigenvalues and the length of the ellipse axes are proportional
to the constant times the eigenvectors [15].

• As the value of (x−µ)′Σ−1(x−µ) increases, the value of the density function
decreases.

• The value of (x − µ)′Σ−1(x − µ) increases as the distance between x and µ
increases.
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(a) The Mahalanobis distance.

(b) The Eucleadn distance

Fig. 3.2: Emperical densities

• The Mahalanobis distance d2 = (x−µ)′Σ−1(x−µ) has a chi-square distribu-
tion with p degrees of freedom, see Figure 3.1.

Suppose that X , is a p-dimensional vector having multivariate normal distribu-
tion, X ∼ Np(µ,Σ), the Mahananobis squared distanceD2(X, µ) is then distributed
as a χ2 random variable with p degrees of freedom. The classical approach of outlier
detection uses the estimates of the Mahalanobis distance, by plugging in multivari-
ate sample mean X̄ and covariance matrix S estimates for unknown mean µ and
covariance matrix Σ, and tags as outlier any observation which has a Mahalanobis
squared distance d2(X, X̄) lying above a predefined quantile of the χ2 distribution
with p degrees of freedom [7].

This method is problematic, because all relies on normality assumption and
the parameters estimates are particularly sensitive to outliers. Therefore, it is im-
portant to consider robust alternatives to these estimators for calculating robust
Mahalanobis distances. The most widely used estimator of this type is the mini-
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mum covariance determinant (MCD) estimator defined in [25] for which also a fast
computing algorithm was constructed [27].

In the next section, a sample data has been subjected to find its multivariate
outliers by calculating the robust version of the Mahalanobis distances using the R
as a modern statistical software for heavy computations involved.

4. Analyzing a Sample Data

In the following, the vector of three variables of Prestige data set are considered
as a multivariate observation. These variables are “education” (average education of
occupational incumbents), “income” (average income of incumbents) and “prestige”
(Pineo-Porter prestige score for occupation). The aim is to detect multivariate
outliers in this data set using robust version of the Mahalanobis distance, the (MCD)
estimator, which has been implemented in “rrcov” package in R [34]. First the
mean vector and usual (classic) covariance matrix of the observation and the robust
version of them are calculated. The results are:

-> Method: Classical Estimator.

Estimate of Location:

education income prestige

10.74 6797.90 46.83

Estimate of Covariance:

education income prestige

education 7.444e+00 6.691e+03 3.991e+01

income 6.691e+03 1.803e+07 5.222e+04

prestige 3.991e+01 5.222e+04 2.960e+02

-> Method: Robust Estimator.

Robust Estimate of Location:

education income prestige

9.97 5833.96 41.64

Robust Estimate of Covariance:

education income prestige

education 7.156e+00 4.355e+03 3.192e+01

income 4.355e+03 9.695e+06 3.923e+04

prestige 3.192e+01 3.923e+04 2.559e+02

Comparing classical and robust estimators of mean vector µ and the covariance
matrix Σ, shows clear differences. These robust estimators are relatively insensitive
to small changes in the bulk of the observations (inliers) or large changes in small
number of observations (outliers).

In two left panels of Figure 4.1, the robust and classical Mahalanobis distances
are shown in parallel. In most right panel of this figure, the distance-distance plot
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defined by [28] is shown, which plots the classical Mahalanobis versus robust dis-
tances and enable us to classify the observations and identify the potential outliers.
The dashed line represents the points for which the robust and classical distances

are equal. The horizontal and vertical lines are drawn at values x = y =
√

χ2

(3,0.975).

Points beyond these lines can be considered as outliers and are identified by their
labels. In all panels, the outliers have large robust distances and are identified by
their labels, for more details see [34].

Looking at the non-robust Mahalanobis distances at right panel of Figure 4.1
flagged out the observation number 2 and 24 as outliers, whereas robust Maha-
lanobis at the same panel flagged out the observation number 2, 7, 24, 25, 26 and
29 as outliers. In other words, applying the robust method enabled us to detect
hidden outliers which has been masked by each other.

(a) Distance plot. (b) Chi-square Q-Q plot.

Fig. 4.1: Multivariate outlier detection using the robust Mahalanobis distances

5. Conclusion

In this paper, the Mahalanobis distance as a multivariate distance and its advan-
tages relative to the Euclidean distance was reviewed. It made clear when dealing
with correlated multivariate data the Mahalanobis distance is more suitable than
the Euclidean distance because it takes the correlation into account. Moreover,
It was shown how the Mahalanobis distances can be used as a tool for identify-
ing multivariate outliers. When calculating the Mahalanobis distances one needs
to estimate the theoretical mean vector and covariance matrix. Estimating these
parameters using their usual empirical counterparts especially when data contain
outliers yields misleading results, since these estimators are affected seriously by
outliers. One reasonable solution is to use robust statistical techniques. There are
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different robust estimates, but distance-based methods, such as MCD are based on
robust estimates of the mean and covariance matrix so that a robust Mahalanobis
distance can be computed for each point. In this paper, the above mentioned meth-
ods have been applied to detect multivariate outliers in a real data set, using R
software environment for statistical computing.

REFERENCES

1. C. C. Aggarwal: Outlier Analysis, 2th Edition. Springer, New York, 2017.

2. U. Balasooriya and Y. K. TSE: Outlier detection in linear models: A compar-

ative study in simple linear regression. Communications in Statistics: Theory and
Methods 15(12) 1986, 3589–3598.

3. V. Barnett and T. Lewis: Outliers in Statistical Data. John Wiley and Sons,
Chichester, England, 1994.

4. C. Becker and U. Gather: The masking breakdown point of multivariate out-

lier identification rules. Journal of the American Statistical Association 94(447)

(1999), 947–955.

5. V. Chandola, A. Banerjee and V. Kumar: Anomaly detection: a survey.
ACM Comput. Surv. 41(3) (2009), 1–58.

6. W. Dai and M. G. Genton: Multivariate functional data visualization and out-

lier detection. Journal of Computational and Graphical Statistics 27(4) (2018),
923–934.

7. C. Fauconnier and G. Haesbroeck: Outliers detection with the minimum co-

variance determinant estimator in practice. Statistical Methodology 6(4) (2009),
363–379.

8. J. Fox and S. Weisberg: An R Companion to Applied Regression, 3th Edition.
SAGE Publications, Los Angeles, 2019.

9. M. Goldstein and S. Uchida: A comparative evaluation of unsupervised

anomaly detection algorithms for multivariate data. PLoS ONE 11(4) (2016),
1–31.

10. A. S. Hadi: Identifying multiple outliers in multivariate data. Journal of the
Royal Statistical Society, Series B, 54 (1992), 761-771.

11. N. Haldar K. Farrukh A. Aftab and H. Abbas: Arrhythmia classification

using Mahalanobis distance based improved fuzzy C-Means clustering for mobile

health monitoring systems. Neurocomputing, 220 (2016), 221–235.

12. D. M. Hawkins: Identification of Outliers. Chapman and Hall, London, 1980.

13. D. C. Hoaglin, B. Iglewicz and J. W. Tukey: Performance of some resis-

tant rules for outlier labeling. Journal of the American Statistical Association 81

(1986), 991–999.

14. V. J. Hodge and J. Austin: A survey of outlier detection methodologies. Artif.
Intell. Rev. 22 (2004), 85126.

15. R. A. Johnson and D. Wichern: Applied Multivariate Statistical Analysis.
Prentice Hall, 2007.

16. I. T. Jolliffe: Principal Component Analysis. Springer-Verlag (1986).



594 H. Ghorbani

17. W. J. Krzanowski: Principles of Multivariate Analysis: A Users Perspective,
Oxford Science Publications, 1988.

18. C. Leys, O. Klein, Y. Dominicy and C. Ley: Detecting multivariate outliers:

Use a robust variant of the Mahalanobis distance. Journal of Experimental Social
Psychology 74 (2018), 150–156.

19. P. C. Mahalanobis: On the generalized distance in statistics. Proceedings of the
National Institute of Sciences (Calcutta), 1936, 2, pp. 49–55.

20. J. Majewska: Identification of multivariate outliers problems and challenges of

visualization methods. Informatyka i Ekonometria 4 (2015), 69–83.

21. G. M. Mimmack, S. Mason and J. Galpin: Choice of distance matrices in

cluster analysis: defining regions. Journal of Climate 14 (2001), 2790–2797.

22. J. W. Osborne and A. Overbay: The power of outliers (and why researchers

should always check for them). Pract. Assess. Res. Eval. 9(6) (2004), 1–9.

23. M. A. F. Pimentel, D. A. Clifton, L. Clifton and L. Tarassenko: A

review of novelty detection. Signal Processing 99 (2014), 215-249.

24. D. M. Rocke and D. L. Woodruff: Identification of outliers in multivariate

data. Journal of the American Statistical Association 91(435) (1996), 1047–1061.

25. P. J. Rousseeuw: Multivariate estimation with high breakdown point. In: Math-
ematical Statistics and Applications (W. Grossmann, G. Pflug, I. Vincze, W.
Wertz, eds.), Reidel, Dordrecht, B, 1985, pp 283–297.

26. P. Rousseeuw, M. Debruyne, S. Engelen and M. Hubert: Robustness

and outlier detection in Chemometrics. Critical Reviews in Analytical Chemistry
36(3), (2006), 221–242.

27. P. J. Rousseeuw and K. Van Driessen: A fast algorithm for the minimum

covariance determinant estimator. Technometrics, 41 (1999), 212–223.

28. P. J. Rousseeuw and B. C. van Zomeren: Robust distances: simulation and

cutoff Values. In: Directions in Robust Statistics and Diagnostics, Part II. (W.
Stahel, S. Weisberg, eds.), Springer-Verlag, New York, 1991.

29. T. A. Sajesh and M. R. Srinivasan: An overview of multiple outliers in

multidimensional data. Sri Lankan Journal of Applied Statistics 14 (2013), 86–
120.

30. C. J. Santos-Pereira and A. M. Pires: Detection of outliers in multivariate

data: a method based on clustering and robust estimators. In: Compstat (W.
Hrdle, B. Rnz, eds.), Physica, Heidelberg, 2002, pp 291–296.

31. N. G. Sharma, M. Silarski, T. Bednarski, P. Biaas, E. Czerwiski, A.
Gajos, M. Gorgol, B. Jasiska, D. Kamiska, . Kapon, G. Korcyl, P.
Kowalski, T. Kozik, W. Krzemie, E. Kubicz, S. Niedwiecki, M. Paka, L.
Raczyski, Z. Rudy, O. Rundel, A. Somski, A. Strzelecki, A. Wieczorek,
W. Wilicki, M. Zieliski, B. Zgardziska and P. Moskal: Reconstruction of

hit time and hit position of annihilation quanta in the J-PET detector using the

Mahalanobis distance. Nukleonika 4 (2015), 765–769.

32. K. Singh and D. S. Upadhyaya: Outlier detection: Applications and techniques.
International Journal of Computer Applications 89(6) (2014) 307–323.

33. S. Stckl and M. Hanke: Financial applications of the Mahalanobis distance,
SSRN Electronic Journal 1(2) (2014), 78–84.



Detecting Multivariate Outliers 595

34. V. Todorov and P. Filzmoser: An object-oriented framework for robust mul-

tivariate analysis. Journal of Statistical Software 32(3) (2009), 1–47.

35. J. W. Tukey: Exploratory Data Analysis. Addison-Wesley, New York, USA,
1977.

36. M. P. J. van der Loo: Distribution based outlier detection for univariate data.
Discussion paper 10003 Statistics Netherlands (2010), 3–14.

37. M. P. J. van der Loo: Extremevalues, an R package for out-

lier detection in univariate data. R package version 2.3 (2010), url =
http://www.github.com/markvanderloo/extremevalues.

38. G. M. Venturini: Statistical Distances and Probability Metrics for Multivariate

Data. Ph. D. Thesis, Charles III University of Madrid, 2015.

39. Y. Zhang, B. Du, L. Zhang and S. Wang: A low-rank and sparse matrix

decomposition-based Mahalanobis distance method for hyperspectral anomaly de-

tection. IEEE Transactions on Geoscience and Remote Sensing 220 (2016), 1376–
1389.

Hamid Ghorbani

Faculty of Mathematical Sciences

Department of Statistics

University of Kashan

Kashan 87317-53153, I. R. Iran

hamidghorbani@kashanu.ac.ir





CMYK
CMYK

C
M

Y
K

C
M

Y
K

CIP -  Каталогизација у публикацији
Народна библиотека Србије, Београд

51
002

    FACTA Universitatis. Series, Mathematics
and informatics / editor-in-chief Predrag S.
Stanimirović. - 1986, N° 1-    . - Niš :
University of Niš, 1986- (Niš :
Unigraf-X-Copy). - 24 cm

Tekst na engl. jeziku. - Drugo izdanje na
drugom medijumu: Facta Universitatis. Series:
Mathematics and Informatics (Online) = ISSN
2406-047X
ISSN 0352-9665 = Facta Universitatis. Series:
Mathematics and informatics
COBISS.SR-ID 5881090

SERIES MATHEMATICS AND INFORMATICS

EDITORIAL BOARD:
R. P. Agarwal, Melbourne, FL, USA
O. Agratini, Cluj-Napoca, Romania
S. Bogdanović, Niš, Serbia
Miroslav Ćirić, Niš, Serbia
D. Cvetković, Belgrade, Serbia
D. K. Dimitrov, Sao Jose do Rio Preto, Brazil
Dragan Đorđević, Niš, Serbia
S. S. Dragomir, Victoria, Australia
M. Droste, Leipzig, Germany

A. Guessab, Pau, France
A. Ivić, Belgrade, Serbia
B. S. Kašin, Moscow, Russia
Lj. Kočinac, Niš, Serbia
G. Mastroianni, Potenza, Italy
P. S. Milojević, Newark, NJ, USA
I. Ž. Milovanović, Niš, Serbia
Lj. Velimirović, Niš, Serbia
S. Pilipović, Novi Sad, Serbia

V. Rakočević, Niš, Serbia
Th. M. Rasssias, Athens, Greece
S. Saitoh, Kiryu, Japan
H. M. Srivastava, Victoria, Canada
R. Stanković, Niš, Serbia
A. Tepavčević, Novi Sad, Serbia
H. Vogler, Dresden, Germany
Themistocles M. Rassias, Athens, Greece

AREA EDITORS:
Gradimir Milovanović 
Approximation Theory, Numerical Analysis
Aleksandar Cvetković 
Approximation Theory, Numerical Analysis
Dragana Cvetković Ilić 
Linear Algebra, Operator Theory
Dijana Mosić 
Mathematical and Functional Analysis
Jelena Ignjatović 
Algebra, Fuzzy Mathematics, Theoretical 
Computer Science
Ljubiša Kocić 
Fractal Geometry, Chaos Theory,  
Computer Aided Geometric Design
Tuncer Acar 
Differential Equations, Aproximation Theory, 
Space of Sequences & Summability,  
Special Functions, Quantum Calculus
Emina Milovanović 
Parallel Computing, Computer Architecture
Predrag Stanimirović 
Symbolic and Algebraic Computation,  
Operations Research, Numerical Linear Algebra
Milena Stanković 
Internet Technologies, Software Engineering

Marko Milošević 
Discrete Mathematics,  
Graph and Combinatorial Algorithms
Marko Petković 
Approximation Theory, Numerical Analysis, 
Numerical Linear Algebra, Information  
Theory and Coding, Determinant Computation
Marko Miladinović 
Optimization Theory, Image and Signal 
Processing
Milan Bašić 
Graph Theory, Automata Theory, Computer 
Communication Networks, Quantum 
Information Theory, Number Theory
Milan Tasić 
Database Programming, Web Technologies
Mazdak Zamani 
Multimedia Security, Network Security, 
Genetic Algorithms, and Signal Processing
Uday Chand De 
Differential Geometry
Marko Milošević 
Discrete Mathematics,   
Graph and Combinatorial Algorithms
Vishnu Narayanmishra 
Fourier Analysis, Approximation Theory, 
Asymptotic expansions, Inequalities,  
Non-linear analysis, Special Functions

Zoubir Dahmani 
Integral and Differential Equations, Fractional 
Differential Equations, Fractional and Classial 
Integral Inequalities, Generalized Metric Spaces
Mazdak Zamani 
Genetic Algorithms
Mića Stanković 
Geometry
Sunil Kumar 
Fractional Calculus, Nonlinear Sciences,  
Mathematical Physics, Wavelet Methods
Igor Bičkov 
Artificial Inteligence, Geoinformation Systems,  
Systems of Intelligent Data Analzysis
Hari Mohan Srivastava 
Fractional Calculus and its Applications,  
Integral Equations and Transforms
Aleksandar Nastić 
Time Series Analysis
Emanuel Guariglia 
Fractal Geometry, Wavelet Analysis,  
Fractional Calculus
Praveen Agarwal 
Integral Calculus, Differential Equations,  
Differential Calculus

Scientific Journal FACTA UNIVERSITATIS
UNIVERSITY OF NIŠ

Univerzitetski trg 2, 18000 Niš, Republic of Serbia
 Phone: +381 18 257 095 Telefax: +381 18 257 950
 e-mail: facta@ni.ac.rs http://casopisi.junis.ni.ac.rs/

Editors-in-Chief:  Predrag S. Stanimirović, e-mail: pecko@pmf.ni.ac.rs  
 University of Niš, Faculty of Science and Mathematics, Department of Computer Science  
 Dragana Cvetković-Ilić, e-mail: dragana@pmf.ni.ac.rs 
 University of Niš, Faculty of Science and Mathematics, Department of Mathematics 
 Višegradska 33, 18000 Niš, Republic of Serbia
Associate Editor: Marko Petković, e-mail: marko.petkovic@pmf.edu.rs 
 University of Niš, Faculty of Science and Mathematics, Department of Mathematics
 Višegradska 33, 18000 Niš, Republic of Serbia 

English Proofreader:  Sonja Miletić, University of Niš, Faculty of Science and Mathematics, Republic of Serbia
The authors themselves are responsible for the correctness of the English language in the body of papers. 
Secretary:  Olgica Davidović, University of Niš, e-mail: olgicad@ni.ac.rs
Computer support:  Mile Ž. Ranđelović, University of Niš, e-mail: mile@ni.ac.rs
 Miloš Babić, University of Niš, e-mail: milosb@ni.ac.rs
Founded in 1986 by Gradimir V. Milovanović, Serbian Academy of Sciences and Arts,  
and Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia 
The cover image taken from http://www.pptbackgrounds.net/binary-code-and-computer-monitors-backgrounds.html. 
Publication frequency – one volume, five issues per year. 
Published by the University of Niš, Republic of Serbia
© 2019 by University of Niš, Republic of Serbia  
This publication was in part supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia
Printed by "UNIGRAF-X-COPY" – Niš, Republic of Serbia

Technical Assistance: Zorana Jančić, Marko Miladinović, Jovana Nikolov Radenković, Marko Kostadinov, Jovana Milošević
Technical Support:  Ivana Jančić*, Zorana Jančić, Ivan Stanimirović, Jovana Nikolov Radenković, Marko Kostadinov, Jovana Milošević
 University of Niš, Faculty of Science and Mathematics, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia

Scientific Journal FACTA UNIVERSITATIS publishes original high scientific level works 
in the fields classified accordingly into the following periodical and independent series:
Architecture and Civil Engineering Linguistics and Literature  Physical Education and Sport
Automatic Control and Robotics  Mathematics and Informatics Physics, Chemistry and Technology
Economics and Organization Mechanical Engineering  Teaching, Learning and Teacher Education
Electronics and Energetics Medicine and Biology Visual Arts and Music
Law and Politics Philosophy, Sociology, Psychology and History Working and Living Environmental Protection



CMYK
CMYK

C
M

Y
K

C
M

Y
K

FA
C

TA
 U

N
IV

E
R

SI
TA

T
IS

 • 
Se

rie
s M

at
he

m
at

ic
s a

nd
 In

fo
rm

at
ic

s V
ol

. 3
4,

 N
o 

3 
(2

01
9)

Contents

Mohd Arif Raza
ON mTH-COMMUTATORS AND ANTI-COMMUTATORS
INVOLVING GENERALIZED DERIVATIONS IN PRIME RINGS ........................................391

Qiaozhen Zhao
BOUNDEDNESS FOR TOEPLITZ TYPE OPERATOR ASSOCIATED WITH SINGULAR 
INTEGRAL OPERATOR WITH VARIABLE CALDERÓN-ZYGMUND KERNEL .................399

Mohamed A. Barakat, Hassen M. Aydi
(CLR)-PROPERTY ON QUASI-PARTIAL METRIC SPACES  
AND RELATED FIXED POINT THEOREMS ..........................................................................415

Marko Kostadinov
A NOTE ON OPERATORS CONSISTENT IN INVERTIBILITY ......................................................429

Bilender P. Allahverdiev, Hüseyin Tuna
NONLINEAR SINGULAR STURM-LIOUVILLE PROBLEMS  
WITH IMPULSIVE CONDITIONS ...........................................................................................439

Nihal Y. Özgür, Nihal Taş
FIXED-CIRCLE PROBLEM ON S-METRIC SPACES   
WITH A GEOMETRIC VIEWPOINT ........................................................................................459

Ayşe Altın
THE CLASSICAL BERNOULLI-EULER ELASTIC CURVE IN A MANIFOLD ...................473

Majid Arezoomand
ON THE WALKS ON CAYLEY GRAPHS ................................................................................481

Arun Kajla
GENERALIZED BERNSTEIN-KANTOROVICH OPERATORS OF BLENDING TYPE ......491

Gülhan Ayar, Mustafa Yıldırım
RICCI SOLITONS AND GRADIENT RICCI SOLITONS  
ON NEARLY KENMOTSU MANIFOLDS ................................................................................503

Demet Aydin
THE NEW WEIGHTED INVERSE RAYLEIGH DISTRIBUTION AND ITS APPLICATION .511

Petra N. Laketa, Aleksandar S. Nastić
CONDITIONAL LEAST SQUARES ESTIMATION OF THE PARAMETERS  
OF HIGHER ORDER RANDOM ENVIRONMENT INAR MODElS .......................................525

Fawaz Alharbi
QUASI MAPPING SINGULARITIES ........................................................................................537

Fuat Usta, Mehmet Zeki Sarıkaya
ON BIVARIATE RETARDED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS ..553

Majid Arezoomand
ON THE EIGENVALUES OF N-CAYLEY GRAPHS: A SURVEY............................................563

Majedeh Pasdar, Ali Iranmanesh
ON THE CHARACTERIZABILITY OF SOME FAMILIES OF FINITE GROUP  
OF LIE TYPE BY ORDERS AND VANISHING ELEMENT ORDERS ....................................573

Hamid Ghorbani
MAHALANOBIS DISTANCE AND ITS APPLICATION  
FOR DETECTING MULTIVARIATE OUTLIERS .....................................................................583

FACTA UNIVERSITATIS
Series  

Mathematics and Informatics 

Vol. 34, No 3 (2019)

U
N

IV
E

R
SI

T
Y

 O
F 

N
IŠ

FACTA UNIVERSITATIS
Series 

MATHEMATICS AND INFORMATICS 
Vol. 34, No 3 (2019) 

UNIVERSITY OF NIŠ ISSN 0352-9665 (Print)
ISSN 2406-047X (Online) 
COBISS.SR-ID 5881090 


	00 FUMI-34 3(2019)
	fumi190301_4612-33183-1-PB_391_398
	fumi190302_4411-33184-1-PB_399_414
	fumi190303_4543-33185-1-PB_415_427rev
	prazna
	fumi190304_4615-33186-1-PB_429_438
	fumi190305_4405-33187-1-PB_439_457
	prazna
	fumi190306_4530-33188-1-PB_459_472
	fumi190307_4617-33189-1-PB_473_480
	fumi190308_4548-33190-1-PB_481_490_rev
	fumi190309_4752-33191-1-PB_491_502rev
	fumi190310_4649-33192-1-PB_503_510
	fumi190311_4772-33193-1-PB_511_523
	prazna
	fumi190312_4316-33194-1-PB_525_535
	prazna
	fumi190313_4742-33195-1-PB_537_552rev
	fumi190314_4446-33196-1-PB_553_561
	prazna
	fumi190315_4761-33197-1-PB_563_572
	fumi190316_4774-33198-1-PB_573_582
	fumi190317_5028-33199-1-PB_583_595
	prazna

