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PROCEEDINGS OF THE THIRD CONFERENCE ON
COMPUTATIONAL ALGEBRA, COMPUTATIONAL NUMBER

THEORY AND APPLICATIONS
University of Kashan, Kashan, December 12–14, 2018

Ali Reza Ashrafi and Hassan Daghigh (Guest Editors)

c© 2019 by University of Nǐs, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. This issue of Facta Universitatis, Series: Mathematica and Informatics in-

cludes a selection of 20 papers that were presented at Third Conference on Computa-

tional Algebra, Computational Number Theory and Applications in the University of

Kashan, Kashan, Iran. This is the 3th in the series of computational algebra conferences

held in Iran organized mainly by the University of Kashan, first in 2014.

Keywords: Computational algebra; computational number theory.

Foreword

In the period from 12th to 14th December, 2018, the Third Conference on Com-
putational Algebra, Computational Number Theory and Applications (CACNA
2018) had taken place in Kashan, a city with 7000 years history in the center of Iran.
The conference was organized by the Faculty of Mathematical Sciences, University
of Kashan. The scope of the conference covered various topics related to compu-
tational algebra and computational number theory, including computational group
theory, computational number theory, algebraic programming languages, computer
algebra, algebraic cryptography, coding theory, algebraic combinatorics and infor-
mation theory.

The conference was attended by near 100 researchers from Iran, Iraq and Serbia
who held 20, 40 and 60-minutes lectures. The keynote speakers of the conference
were:

• Bijan Davvaz (Yazd University, Yazd),

Received December 03, 2019; accepted December 03, 2019
2010 Mathematics Subject Classification. Primary 20D15; Secondary 20F14
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598 A. R. Ashrafi and H. Daghigh

• Ali Reza Moghaddamfar (KNT University of Technology, Tehran),

• Predrag S. Stanimirovic (University of Nis, Serbia).

The conference had also two invited speakers: Majid Arezoomand (University
of Larestan) and Ashraf Daneshkhah (Bu-Ali Sina University).

The members of the Scientific and Organizing Committee of CACNA 2018 were:

• Alireza Abdollahi (University of Isfahan),

• Seyed Hassan Alavi (Bu-Ali Sina University),

• Jalal Askari (University of Kashan),

• Ali Reza Ashrafi (University of Kashan),

• Modjtaba Bahramian (University of Kashan),

• Behnam Bazigaran (University of Kashan),

• Hassan Daghigh (University of Kashan),

• Mohammad Reza Darafsheh (University of Tehran),

• Ali Eftekhari (University of Kashan),

• Modjtaba Ghorbani (Shahid Rajaee Teacher Training University),

• Ali Iranmanesh (Tarbiat Modares University),

• Mohammad Ali Iranmanesh (Yazd University),

• Reza Jahani-Nezhad (University of Kashan),

• Reza Kahkeshani (University of Kashan),

• Fatemeh Koorepazan-Moftakhar (University of Kashan),

• Hamid Mousavi (University of Tabriz),

• Majid Mazroei (University of Kashan),

• Akbar Mohebi (University of Kashan),

• Marzieh Pourbabaee (University of Kashan),

• Reza Orfi (Kwarazmi University),

• Farhad Rahmati (Amir Kabir University of Technology).
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This meeting was a continuation of a series of conferences on computational
algebra organized mainly by Faculty of Mathematical Sciences at the University
of Kashan and we gratefully acknowledge the financial support provided by this
university. This issue of Facta Universitatis, Series: Mathematica and Informatics
includes a selection of 20 papers from CACNA 2018. We are very thankful from
Professor Predrag Stanimirovic, the Editor-in-Chief of this journal for providing us
with the opportunity to be the Guest Editors of this issue. We would also like to
thank all the referees for the time they allocated and their help.
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STOCHASTIC EVOLUUTION EQUATIONS WITH MONOTONE
NONLINEARITY IN  Lp SPACES

Majid Amintorabi and Ruhollah Jahanipur

c© 2019 by University of Nǐs, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. In this paper, we study semilinear stochastic evolution equations with semi-
monotone nonlinearity and multiplicative noise in Lp spaces for 2 ≤ p < ∞. We do not
impose any coercivity or Lipschitz condition on the nonlinear part of equations. We
prove the existence, uniqueness and measurability of the mild solutions. The proofs of
the existence and uniqueness are based on a version of the Itô type inequality which is
stronger than analogous inequalities.
Keywords. Semilinear stochastic evolution equations; semimonotone nonlinearity;
multiplicative noise; Lipschitz condition.

1. Introduction

Stochastic evolution equations (SEE’s for short) describe the evolution in time
of the stochastic phenomena and use to model dynamical systems with random ef-
fects such as problems arising in biology, chemistry, quantum mechanics, statistical
physics, economics, etc. There are two approaches in the study of nonlinear SEE’s.
The first which is called the variational method, considers Hilbert space valued
solutions in the framework of Gelfand triple under certain monotonicity and coer-
civity conditions on coefficients; see e.g., [20], [26] and [27]. The second approach,
the one adopted in this paper, is the semigroup method in which we use the tools
of semigroup theory to study mild solutions of semilinear SEE’s. This approach
gives a unified treatment of a wide class of parabolic, hyperbolic and functional
stochastic partial differential equations. Furthermore, its advantage over the varia-
tional method is in that one does not require the coercivity condition. In semigroup
method, one usually investigate existence, uniqueness and stability of mild solutions
of semilinear SEE’s under standard Lipshitz-type assumptions on coefficients. The
Hilbert space theory of this case has been studied by many authors; see e.g., [8]

Received December 25, 2018; accepted May 08, 2019
2010 Mathematics Subject Classification. Primary 34K50; Secondary 37L55
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602 M. Amintorabi and R. Jahanipur

and references therein. Brzeźniak extended a number of results of the same type to
martingale type 2-spaces [3], [4]. van Neerven, Veraar and Weis studied stochastic
equations in the setting of UMD Banach spaces [23].

On the other hand, some authors use semigroup method to study more gen-
eral semilinear SEE’s with (semi)monotone nonlinear drift instead of Lipschitz one.
This approach has first followed by Browder [2] and Kato [18] for deterministic
monotone-type semilinear evolution equations. Zangeneh [33, 35] applied this ap-
proach to prove the existence and uniqueness of mild solutions of monotone-type
semilinear SEE’s with multiplicative noise and studied [34] the measurability of
mild solutions of these equations. Following this program, Jahanipur and Zangeneh
[13] studied (sample-path and p-th mean) exponential asymptotic stability of so-
lutions and Jahanipur [14] proved similar stability theorems for stochastic delay
evolution equations. Hamedani and Zangeneh [10] considered a stopped version of
monotone-type equations and obtained the existence, uniqueness and measurability
of the solutions. Using the tools of random fixed point theory, Jahanipur [15, 16, 17]
generalized this approach to study stochastic functional evolution equations. More-
over, Salavati and Zangeneh [28, 30] extended this method to investigate semilinear
SEE’s with Lévy (jump) noise.

In this paper, we consider monotone-type semilinear SEE’s with multiplicative
noise in Lp(R), 2 ≤ p <∞, and we prove existence and uniqueness of mild solutions.
Our results are remarkable from two points of view. First, we relax Lipschitz con-
dition on nonlinearity drift to semimonotone one without imposing the coercivity
hypothesis. Furthermore, while all the results for the semilinear SEE’s obtained
under our assumptions, have been restricted to the Hilbert space setting, we study
the problem in the more general case Lp(R), 2 ≤ p < ∞, and therefore we extend
some of the results mentioned above.

We make an iterative method to prove the existence and uniqueness of mild
solutions in r-th moment for r ≥ 2. This method is based on a version of Itô type
inequality. This is a pathwise inequality for powers r ≥ 2 of stochastic convolution
integrals in Lp(R), 2 ≤ p < ∞, and generalizes corresponding inequalities (for ex-
ample, Theorem 2 of [13]). We adopt the same approach as in [15] and we use a
method based on random fixed point theory.

The organization of the paper is as follows. We begin by recalling some prelimi-
nary materials in the Section 2. Section 3 is devoted to prove an Itô type inequality
inequality. In Section 4, we study the measurability of the solutions of the random
integral equation. In Section 5, we introduce the semilinear SEE of monotone-type
and prove the existence and uniqueness of it’s mild solution.

2. Preliminaries

Throughout the paper, (Ω,F ,P) denotes a probability space equipped with a
filtration (Ft)t≥0 satisfying the usual conditions, p ≥ 2, T > 0 and r ≥ 2 are
given constants. The conjugate exponent of p will be denoted by q and we will
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simply write Lp for Lp(R). Moreover, H is a real separable Hilbert space with inner
product 〈. , .〉H , E is a real Banach space with dual E∗, and L(H,E) stands for
the space of all bounded linear operators from H to E. We recall that the duality
mapping J : E −→ E∗ is defined for every x ∈ E by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x∗‖2 = ‖x‖2 },

in which 〈x , x∗〉 is the duality pairing between E and E∗. It is well-known that
if E is uniformly convex, then J is single valued and continuous. Also, WH :=
(WH(t))t∈[0,T ] denotes an H-cylindrical Brownian motion, i.e., WH(t) is a bounded
operator from H to L2(Ω), for each h ∈ H the process WHh := (WH(t)h)t∈[0,T ] is
a real Brownian motion, and for all h1, h2 ∈ H and t1, t2 ∈ [0, T ] we have

E(WH(t1)h1 ·WH(t2)h2) = (t1 ∧ t2)〈h1, h2〉H ·

Furthermore, we assume that A : D(A) ⊆ Lp −→ Lp is the generator of a C0-
semigroup

(
S(t)

)

t≥0
of bounded linear operators satisfying an exponential growth

condition with parameter λ > 0; that is,

‖S(t)‖ ≤ eλt ∀t ≥ 0·

If ‖S(t)‖ ≤ 1 for all t ≥ 0, then S(t) is called a contraction semigroup.

2.1. Derivative of Lp-norm

Here we calculate the first and second Fréchet derivatives of Lp-norm function.
These results are used in the next sections. Let

h(x) = ‖x‖rLp ∀x ∈ Lp(R)·

The first and second Fréchet derivatives of h at the point x ∈ Lp(R) are defined
as mappings Dh(x) : Lp −→ R and

(
D2h(x)

)
(y) : Lp −→ R such that for any

y, z ∈ Lp,

〈y,Dh(x)〉 = lim
t↓0

1

t

(
‖x+ ty‖rLp − ‖x‖rLp

)

= lim
t↓0

r

p

(∫

|x+ ty|p
) r

p
−1

· p

∫

|x+ ty|p−2(x+ ty)y

= r‖x‖r−p
Lp

∫

|x|p−2xy = r‖x‖r−2
Lp

∫

‖x‖2−p
Lp |x|p−2xy

= r‖x‖r−2
Lp 〈y, J(x)〉,

where J(x) is the value at x of the duality mapping of J , and similarly

〈
z,
(
D2h(x)

)
(y)

〉
=

〈
z,D(r‖x‖r−2

Lp 〈y, J(x)〉)
〉
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= lim
t↓0

1

t

[
(

r‖x+ tz‖r−p
Lp

∫

|x+ tz|p−2(x + tz)y
)

−
(

r‖x‖r−p
Lp

∫

|x|p−2xy
)
]

= lim
t↓0

r

[
( d

dt
‖x+ tz‖r−p

Lp

)∫

|x+ tz|p−2(x+ tz)y

+‖x+ tz‖r−p
Lp

( d

dt

∫

|x+ tz|p−2(x+ tz)y
)
]

= r(r − p)‖x‖r−2p
Lp

∫

|x|p−2xz

∫

|x|p−2xy

+r(p− 1)‖x‖r−p
Lp

∫

|x|p−2zy

= r(r − p)‖x‖r−4
Lp 〈z, J(x)〉〈y, J(x)〉

+r(p− 1)‖x‖r−p
Lp

∫

|x|p−2zy·

So, by Hölder’s inequality

∣
∣
∣

〈
z,
(
D2h(x)

)
(y)

〉
∣
∣
∣ ≤ r(r − p)‖x‖r−2

Lp ‖z‖Lp‖y‖LP + r(p − 1)‖x‖r−2
Lp ‖z‖Lp‖y‖Lp

and therefore,
‖D2(h(x))‖ ≤ r(r − 1)‖x‖r−2

Lp ·(2.1)

2.2. γ-radonifying operators

Suppose (γn)n≥1 is a Gaussian sequence; i.e., a sequence of independent real-
valued standard Gaussian random variables. A linear operatorR : H −→ E is called
γ-radonifying if for some (and consequently for every) orthonormal basis (hn)n≥1

of H , the series
∑∞

n=1 γnRhn converges in L2(Ω, E). We denote by γ(H,E) the set
of all γ-radonifying operators from H to E. For any R ∈ γ(H,E) the norm of R is
defined by

‖R‖γ(H,E) :=

(

E

∥
∥
∥

∞∑

n=1

γnRhn

∥
∥
∥

2
) 1

2

.

Note that ‖ · ‖γ(H,E) is independent of the orthonormal basis (hn)n≥1 for H . En-
dowed with this norm, γ(H,E) is a Banach space. If R ∈ γ(H,E), then R is
bounded and ‖R‖ ≤ ‖R‖γ(H,E). If E is also a Hilbert space, then γ(H,E) is
isometrically isomorphic to L2(H,E), where L2(H,E) denotes the space of all
Hilbert-Schmidt operators from H to E. Specially if E is finite dimensional, then
γ-radonifying norm is the same as operator norm. For more information about
γ-radonifying operators and their properties, see [24].



Stochastic Evolution Equations with Monotone Nonlinearity in Lp Spaces 605

2.3. Itô formula in UMD Banach spaces

A Banach space E is said to have the unconditional martingale difference prop-
erty, or briefly, E is a UMD space, if for some (equivalently, for all) p ∈ (1,∞) there
exists a real positive constant C such that

E

∥
∥
∥
∥

N∑

n=1

εndn

∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

N∑

n=1

dn

∥
∥
∥
∥

p

∀N ≥ 1

for all (εn)
N
n=1 ∈ {−1, 1}N and every Lp-integrable E-valued martingale difference

sequence (dn)n≥1. For example every Hilbert space is a UMD space. Also, the
spaces Lp(S) for 1 < p <∞ and σ-finite measure space (S,A, µ) are UMD spaces.
If E is a UMD Banach space, then it is well-known that for a suitable class of
functions Φ : [0, T ]× Ω −→ γ(H,E) the stochastic integral with respect to WH is
well-defined (see, e.g., [22]).

Let E and F be two normed linear spaces and h : [0, T ]×E −→ F be a function.
We say that h is of class C1,2 if h is Fréchet differentiable with respect to the first
variable and twice Fréchet differentiable with respect to the second variable and h,
D1h, D2h and D2

2h are continuous functions on [0, T ]×Ω. Now, we recall the main
result of [6].

Theorem 2.1. (Itô formula) Let E and F be UMD spaces. Assume that h :
[0, T ]× E −→ F is of class C1,2. Let Φ : [0, T ]× Ω −→ L(H,E) be an H-strongly
measurable and adapted process which is stochastically integrable with respect to
WH and assume that the paths of Φ belong to L2(0, T ; γ(H,E)) almost surely. Let
ψ : [0, T ]× Ω −→ E be strongly measurable and adapted with paths in L1(0, T ;E)
almost surely. Let ξ : Ω −→ E be strongly F0-measurable. Define ζ : [0, T ]×Ω −→ E

by

ζ = ξ +

∫ ·

0

ψ(s)ds+

∫ ·

0

Φ(s)dWH(s)·

Then s 7−→ D2h(s, ζ(s))Φ(s) is stochastically integrable and almost surely we have,
for all t ∈ [0, T ],

h(t, ζ(t))− h(0, ζ(0)) =

∫ t

0

D1h(s, ζ(s))ds+

∫ t

0

D2h(s, ζ(s))ψ(s)ds

+

∫ t

0

D2h(s, ζ(s))Φ(s)dWH (s) +
1

2

∫ t

0

TrΦ(s)

(
D2

2h(s, ζ(s))
)
ds·

Moreover,

∫ t

0

∥
∥
∥
∥
TrΦ(s)

(

D
2
2h(s, ξ(s))

)∥∥
∥
∥
ds ≤

∫ t

0

∥
∥
∥D

2
2h(s, ξ(s))

∥
∥
∥

∥
∥
∥Φ(s)

∥
∥
∥

2

γ(H,E)
ds·(2.2)
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The following theorem is a maximal inequality for stochastic convolution inte-
grals to which we refer several times in the next sections. we recall it from [25].

Theorem 2.2. Let E be a 2-smooth Banach space and let Φ be a progressively
measurable process in γ(H,E).If

∫ T

0

∥
∥Φ(t)

∥
∥
2

γ(H,E)
dt <∞ a.s.,

then the stochastic convolution process X(t) =
∫ t

0
S(t−s)Φ(s)dWH(s) is well-defined

and has a continuous version. Moreover, for all real positive b there exists a constant
D, depending only on b and E, such that

E sup
0≤t≤T

∥
∥X(t)

∥
∥
b
≤ Db

E

(∫ T

0

∥
∥Φ(t)

∥
∥
2

γ(H,E)
dt

) b
2

·(2.3)

We conclude this section by recalling the well-known Burkholder-Davis-Gundy
inequality for stochastic integrals in UMD Banach spaces from [32].

Theorem 2.3. (B.D.G inequality) Let E be a UMD Banach space and Φ : [0, T ]×
Ω −→ γ(H,E) be an H-strongly measurable and Ft-adapted process which is scalarly
in L0

(
Ω, L2(0, T ;H)

)
. If Φ is stochastically integrable with respect to WH , then for

0 < b <∞ we have

E sup
0≤t≤T

∥
∥
∥
∥

∫ t

0

Φ(s)dWH(s)

∥
∥
∥
∥

b

≤ Cp,EE
∥
∥Φ

∥
∥
b

γ(L2(0,T ;H),E)
,(2.4)

where Cp,E is a constant depending only on E and p.

3. Itô type inequality

In this section, we prove an Itô type inequality. This is a pathwise inequality
for the norm of the stochastic convolution integral. We use this result to prove the
existence and uniqueness of the mild solutions of stochastic evolution equations.
One of the first attempts to obtain inequalities for the stochastic convolution inte-
grals was the one made by Kotelenez [19], where he considered Hilbert space valued
processes and power r = 2 for stochastic convolution integral.Tubaro [31] extended
this result to exponents r ≥ 2 and Ichikawa [11] proved it for the case 0 < r < 2.
van Neerven [25] and Brzeźniak [5] considered such inequalities for processes with
values in some Banach spaces of special kind (Theorem 2.2).

While all of these inequalities are for moments and involve expectations, we
need a pathwise inequality for studying monotone-type semilinear SEE’s. There
exist several results of this type for Hilbert space valued processes. In particular,
Zangeneh [33] proved a pathwise inequality for the square of the norm of stochastic
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convolution integral in a Hilbert space. Jahanipur and Zangeneh [13] extended
this inequality to the powers r ≥ 2 in a special case that the stochastic convolution
integral is an Itô integral with respect to the Wiener process. Salavati and Zangeneh
[29] proved more general case where integrator is a general martingale.

We adopt the same approach as in [13] to prove a pathwise inequality for powers
r ≥ 2 of the norm of stochastic convolution integral in Lp, p ≥ 2. First, we recall
our main assumptions.

Hypothesis 3.1. (a) X0 is an F0-measurable random variable.

(b) f : [0, T ]×Ω −→ Lp is strongly measurable and adapted process with paths in

L1(0, T ;Lp) almost surly and
∫ T

0 E‖f(t)‖rdt <∞.

(c) g : [0, T ]× Ω −→ L(H,Lp) is an H-strongly measurable and adapted process
which is stochastically integrable with respect to WH , almost every path of g

belong to L2(0, T ; γ(H,Lp)) and
∫ T

0
E‖g(t)‖rγ(H,Lp) <∞.

Theorem 3.2. (Itô type inequality) Let hypotheses 3.1 hold and

X(t) := S(t)X0 +

∫ t

0

S(t− s)f(s)ds+

∫ t

0

S(t− s)g(s)dWH(s), 0 ≤ t ≤ T.

Then for all t ∈ [0, T ] we have

∥
∥X(t)

∥
∥
r

Lp ≤ erλt
∥
∥X0

∥
∥
r

Lp + r

∫ t

0

erλ(t−s)
∥
∥X(s)

∥
∥
r−2

Lp 〈f(s), J(X(s))〉ds

+r

∫ t

0

erλ(t−s)
∥
∥X(s)

∥
∥
r−2

Lp 〈g(s), J(X(s))〉dWH(s)

+ 1
2r(r − 1)

∫ t

0

erλ(t−s)
∥
∥X(s)

∥
∥
r−2

Lp

∥
∥g(s)

∥
∥
2

γ(H,Lp)
ds,(3.1)

where J(X(s)) denotes the value of the duality mapping J at X(s).

It is easy to see that by an appropriate transformation, we may assume that
λ = 0 (see, e.g., Lemma 1 of [13]). Then according to the Lumer-Phillips theorem,
we have 〈Ax, J(x)〉 ≤ 0 for each x ∈ D(A).

The main idea of the proof is to approximate X(t) using the Yosida method.
For each n ∈ N we define the mapping Rn : Lp −→ D(A) by Rn = nR(n,A) where
R(n,A) = (nI −A)−1; hence ‖Rn‖ ≤ 1. Let

Xn
0 = RnX0, fn = Rnf, gn = Rng

and define

Xn(t) = S(t)Xn
0 +

∫ t

0

S(t− s)fn(s)ds+

∫ t

0

S(t− s)gn(s)dWH(s)·

Now, we state and prove some lemmas.
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Lemma 3.1. Under the above conditions,

∥
∥Xn(t)−X(t)

∥
∥
∞

:= sup
0≤t≤T

∥
∥Xn(t)−X(t)

∥
∥
Lp −→ 0

in Lr as n → ∞. Moreover, there exists a subsequence, again denoted by {Xn},
such that

E

∫ T

0

∣
∣
∣

∥
∥Xn(t)

∥
∥
r

Lp −
∥
∥X(t)

∥
∥
r

Lp

∣
∣
∣dt −→ 0·

Proof. By Theorem 2.2, we have

E

[

sup
0≤t≤T

∥
∥
∥
∥

∫ t

0

S(t− s)(gn(s)− g(s))dWH(s)

∥
∥
∥
∥

r

Lp

]

≤ DE

[ ∫ T

0

∥
∥
∥gn(s)− g(s)

∥
∥
∥

2

γ(H,Lp)

] r
2

.

Since

∥
∥gn(s)− g(s)

∥
∥
γ(H,Lp)

≤
∥
∥Rn − I

∥
∥
∥
∥g(s)

∥
∥
γ(H,Lp)

≤ 2
∥
∥g(s)

∥
∥
γ(H,Lp)

a.s.

by Hypothesis 3.1(c) and the fact that Rn −→ I strongly, the dominated conver-
gence theorem implies

E

[ ∫ T

0

∥
∥gn(s)− g(s)

∥
∥
2

γ(H,Lp)

]r/2

−→ 0.

So,
∥
∥
∥

∫ ·

0

S(t− s)(gn(s)− g(s))dWH(s)
∥
∥
∥
∞

−→ 0 in Lr·

On the other hand, by Hölder’s inequality,

E

[

sup
0≤t≤T

∥
∥
∥

∫ t

0

S(t− s)(fn(s)− f(s))ds
∥
∥
∥

r

Lp

]

≤ T r−1
E

∫ T

0

‖fn(s)− f(s)‖rLpds

and the right hand side of the above inequality tends to zero by the dominated
convergence theorem. Hence,

∥
∥
∥

∫ ·

0

S(t− s)(fn(s)− f(s))ds
∥
∥
∥
∞

−→ 0, in Lr·

Moreover,

∥
∥S(t)(Xn

0 −X0)
∥
∥
r

Lp ≤ ‖Xn
0 −X0‖

r
Lp −→ 0 boundedly.

From (1) we imply that there exists a subsequence, again denoted by {Xn}, such
that for each t ∈ [0, T ],

‖Xn(t)‖
r
Lp −→ ‖X(t)‖rLp a.s.
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and

‖Xn(ω)−X(ω)‖r∞ −→ 0 a.s.

Furthermore, we have

∣
∣
∣

∥
∥Xn(t, ω)

∥
∥
r

Lp −
∥
∥X(t, ω)

∥
∥
r

Lp

∣
∣
∣ ≤ 2r−1

∥
∥Xn(t, ω)−X(t, ω)

∥
∥
r

Lp

+(2r−1 + 1)
∥
∥X(t, ω)

∥
∥
r

Lp ·

Now, Lemma 3 of [13] yields the result.

Lemma 3.2. Let J(Xn), J(X) denote the values of duality mapping at Xn and
X, respectively. Then, after choosing a subsequence if it is necessary, we have

E

∫ T

0

∥
∥J(Xn(s)) − J(X(s))

∥
∥
r

Lqds −→ 0.

Proof. By Lemma 3.1, one can find a subsequence denoted by the same notation
{Xn}, such that

∥
∥Xn(s)−X(s)

∥
∥
Lp −→ 0 a.s., for all s ∈ [0, T ].

Hence, from the continuity of the duality mapping we imply that

∥
∥J(Xn(s)) − J(X(s))

∥
∥
r

Lq −→ 0 a.s., for all s ∈ [0, T ].

On the other hand

∥
∥J(Xn(s))− J(X(s))

∥
∥
r

Lq ≤ 2r
(∥
∥Xn(s)

∥
∥
r

Lp +
∥
∥X(s)

∥
∥
r

Lp

)

.

Now, applying Lemma 3 of [13] and Lemma 3.1 we obtain the desired result.

Lemma 3.3. {Xn} is a D(A)-valued process, the process {AXn} has integrable
paths almost surely and we have for all t ∈ [0, T ] that

Xn(t) = Xn
0 +

∫ t

0

AXn(s)ds+

∫ t

0

fn(s)ds+

∫ t

0

gn(s)dWH(s),(3.2)

and

‖Xn(t)‖
r
Lp ≤ ‖X0‖

r
Lp + r

∫ t

0

‖Xn(s)‖
r−2
Lp 〈fn(s), J(Xn(s))〉ds

+r

∫ t

0

‖Xn(s)‖
r−2
Lp 〈gn(s), J(Xn(s))〉dWH (s)

+ 1
2r(r − 1)

∫ t

0

‖Xn(s)‖
r−2
Lp ‖g(s)‖2γ(H,Lp)ds.(3.3)
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Proof. Note that

∫ t

0

AXn(θ)dθ =

∫ t

0

AS(θ)Xn
0 dθ

︸ ︷︷ ︸

T1

+

∫ t

0

A
( ∫ θ

0

S(θ − s)fn(s)ds
)

dθ

︸ ︷︷ ︸

T2

+

∫ t

0

A
( ∫ θ

0

S(θ − s)gn(s)dWH(s)
)

dθ

︸ ︷︷ ︸

T3

.

Furthermore, we have

T1 = S(t)Xn
0 −Xn

0 ,

and by the Fubini theorem,

T2 =

∫ t

0

S(t− s)fn(s)ds−

∫ t

0

fn(s)ds.

Also, by the Fubini theorem for stochastic integrals in UMD Banach spaces [21], we
have

T3 =

∫ t

0

S(t− s)gn(s)dWH(s)−

∫ t

0

gn(s)dWH(s).

Hence (3.2) is obtained. Now we apply Itô formula (Theorem 2.1) to h(Xn(·)) where
h(x) = ‖x‖rLp . We find

‖Xn(t)‖
r
Lp = ‖Xn

0 ‖
r
Lp + r

∫ t

0

‖Xn(s)‖
r−2
Lp 〈fn(s), J(Xn(s))〉ds

+r

∫ t

0

‖Xn(s)‖
r−2
Lp 〈AXn(s), J(Xn(s))〉ds

+r

∫ t

0

‖Xn(s)‖
r−2
Lp 〈gn(s), J(Xn(s))〉dWH (s)

+
1

2

∫ t

0

Trgn(s)
(
D2(‖Xn(s)‖

r
Lp)

)
ds,

where J(Xn(s)) denotes the value of duality mapping at Xn(s). Here we have
used the first and second Fréchet derivatives of ‖ · ‖rLp . Since ‖Xn

0 ‖
r
Lp ≤ ‖X0‖

r
Lp ,

〈Ax, J(x)〉 ≤ 0 for all x ∈ D(A), and

‖gn(s)‖γ(H,Lp) ≤ ‖g(s)‖γ(H,Lp),

we can apply the inequalities (2.1) and (2.2) to conclude the result.

Proof of Theorem 3.2. It is enough to prove that the right hand side of
(3.3) (after choosing a subsequence) converges term by term to that of (3.1), in
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probability. We prove this in three steps:
Step 1 : Note that

∣
∣
∣

∫ t

0

‖Xn(s)‖
r−2
Lp 〈fn(s), J(Xn(s))〉ds−

∫ t

0

‖X(s)‖r−2
Lp 〈f(s), J(X(s))〉ds

∣
∣
∣

≤
∣
∣
∣

∫ t

0

(
‖Xn(s)‖

r−2
Lp − ‖X(s)‖r−2

Lp

)
〈fn(s), J(Xn(s))〉ds

∣
∣
∣

︸ ︷︷ ︸

An(t)

+
∣
∣
∣

∫ t

0

‖X(s)‖r−2
Lp 〈fn(s)− f(s), J(Xn(s))〉ds

∣
∣
∣

︸ ︷︷ ︸

Bn(t)

+
∣
∣
∣

∫ t

0

‖X(s)‖r−2
Lp 〈f(s), J(Xn(s))− J(X(s))〉ds

∣
∣
∣

︸ ︷︷ ︸

Cn(t)

.

By Hölder’s inequality and elementary inequality |a− b|k ≤ |ak − bk| which is true
for all non-negative numbers a, b and all k ≥ 1, we obtain

E

[

sup
0≤t≤T

An(t)

]

≤ E

∫ T

0

∣
∣
∣
∣
‖Xn(s)‖

r−2
Lp − ‖X(s)‖r−2

Lp

∣
∣
∣
∣

∥
∥
∥f(s)

∥
∥
∥
Lp

∥
∥
∥Xn(s)

∥
∥
∥
Lp

ds

≤

[

E

∫ T

0

∣
∣
∣
∣
‖Xn(s)‖

r−2
Lp − ‖X(s)‖r−2

Lp

∣
∣
∣
∣

r
r−2

ds

] r−2

r

×

[

E

∫ T

0

∥
∥
∥f(s)

∥
∥
∥

r

Lp
ds

] 1

r
[

E

∫ T

0

∥
∥
∥Xn(s)

∥
∥
∥

r

Lp
ds

] 1

r

≤

[

E

∫ T

0

∣
∣
∣
∣
‖Xn(s)‖

r
Lp − ‖X(s)‖rLp

∣
∣
∣
∣
ds

] r−2

r
[

E

∫ T

0

‖f(s)‖rLpds

] 1

r [

TE‖Xn‖
r
∞

] 1

r

.

The second and third terms on the right, are bounded and according to Lemma
3.1, after choosing a subsequence, the first term tends to zero. So, for this subse-
quence we have sup

0≤t≤T
An(t) −→ 0 in L1 and hence in probability. Also, the Hölder

inequality implies that

sup
0≤t≤T

Bn(t) ≤

∫ T

0

∥
∥X(s)‖r−2

Lp

∥
∥fn(s)− f(s)

∥
∥
Lp

∥
∥Xn(s)

∥
∥
Lpds

≤
(
T ‖X‖r∞

)1− 2

r

(∫ T

0

‖fn(s)− f(s)‖rLpds

) 1

r (
T ‖Xn‖

r
∞

) 1

r ·

The first and third terms on the right are bounded and the second term tends to zero
almost surely by the dominated convergence theorem. Hence, sup0≤t≤T Bn(t) −→ 0
almost surely and so in probability. Moreover, by Hölder’s inequality we have

E

[

sup
0≤t≤T

Cn(t)

]

≤ E

∫ T

0

∥
∥
∥X(s)‖r−2

Lp

∥
∥
∥f(s)

∥
∥
∥
Lp

∥
∥
∥J(Xn(s))− J(X(s))

∥
∥
∥
Lq

ds



612 M. Amintorabi and R. Jahanipur

≤
(

TE‖X‖r∞

)1− 2

r

(

E

∫ T

0

‖f(s)‖rLpds

) 1

r
(

E

∫ T

0

‖J(Xn(s))− J(X(s))‖rLqds

) 1

r

.

By Lemma 3.2, after choosing a subsequence, the right hand side tends to zero. So,
for this subsequence we get sup0≤t≤T Cn(t) −→ 0 in L1 and hence in probability.
Step 2 : We have

∣
∣
∣
∣
∣

∫ t

0

‖Xn(s)‖
r−2
Lp 〈gn(s), (Xn(s))〉dWH(s)−

∫ t

0

‖X(s)‖r−2
Lp 〈g(s), J(X(s))〉dWH(s)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∫ t

0

(

‖Xn(s)‖
r−2
Lp − ‖X(s)‖r−2

Lp

)

〈gn(s), J(Xn(s))〉
︸ ︷︷ ︸

ϕn(s)

dWH(s)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ t

0

‖X(s)‖r−2
Lp 〈gn(s)− g(s), J(Xn(s))〉

︸ ︷︷ ︸

ψn(s)

dWH(s)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ t

0

‖X(s)‖r−2
Lp 〈g(s), J(Xn(s))− J(X(s))〉

︸ ︷︷ ︸

ρn(s)

dWH(s)

∣
∣
∣
∣
∣

= Dn(t) +En(t) + Fn(t).

Since the γ-radonifying norm and the operator norm are equal in finite dimensional
spaces, By B.D.G inequality (Theorem 2.3) for b = 1 and the Hölder inequality, we
obtain

E

[

sup
0≤t≤T

Dn(t)
]

≤ C E
∥
∥ϕn

∥
∥
γ(L2(0,T ;H),R)

= C E
∥
∥ϕn

∥
∥

= C E sup
‖f‖≤1

(∫ T

0

∣
∣ϕn(s)f(s)

∣
∣ds

)

≤ CE sup
‖f‖≤1

(∫ T

0

‖ϕn(s)‖
2ds

)1/2

‖f‖L2(0,T ;H)

≤ C E

[ ∫ T

0

∣
∣‖Xn(s)‖

r−2
Lp − ‖X(s)‖r−2

Lp

∣
∣
2∥
∥Xn(s)

∥
∥
2

Lp

∥
∥gn(s)

∥
∥
2

γ(H,Lp)
ds

]1/2

≤ C
[

E‖Xn‖
2
∞

(
‖Xn‖

r−2
∞ + ‖X‖r−2

∞

)]1/2

×

[

E

∫ T

0

∣
∣‖Xn(s)‖

r−2
Lp − ‖X(s)‖r−2

Lp

∣
∣‖g(s)‖2γ(H,Lp)ds

]1/2

≤ C
[

E‖Xn‖
r
∞ +

(
E‖Xn‖

r
∞

) 2

r
(
E‖X‖r∞

) r−2

r

]1/2

×

[

E

∫ T

0

∣
∣‖Xn(s)‖

r
Lp − ‖X(s)‖rLp

∣
∣ds

] r−2

2r
[

E

∫ T

0

‖g(s)‖rγ(H,Lp)

] 1

r

,

where C is the same constant as in (2.4). Since E‖Xn‖
r
∞, E‖X‖r∞ are bounded by

a constant independent of n, Hypothesis 3.1(c) and Lemma 3.1 imply that the right
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hand side tends to zero along some subsequence. So, after choosing a subsequence
if necessary, we get sup

0≤t≤T
Dn(t) −→ 0 in L1. Similarly, one can see that

E

[

sup
0≤t≤T

En(t)
]

≤ C E‖ψn‖γ(L2(0,T ;H),R) ≤ C E

(∫ T

0

‖ψn(s)‖
2ds

)1/2

≤ C E

[ ∫ T

0

‖X(s)‖2r−2
Lp ‖gn(s)− g(s)‖2γ(H,Lp)ds

]1/2

≤ C E

[

‖X‖r−1
∞

(∫ T

0

‖gn(s)− g(s)‖2γ(H,Lp)ds
)1/2

]

≤ CT
r−2

2r

(

E‖X‖r∞

) r−1

r

(

E

∫ T

0

‖gn(s)− g(s)‖rγ(H,Lp)

) 1

r

.

But by the dominated convergence theorem,

E

∫ T

0

‖gn(s)− g(s)‖rγ(H,Lp) −→ 0.

Therefore, sup
0≤t≤T

En(t) −→ 0 in L1. Also by Hölder’s inequality, we find

E

[

sup
0≤t≤T

Fn(t)
]

≤ CE

(∫ T

0

‖ρn(s)‖
2ds

)1/2

≤ CE

[ ∫ T

0

‖X(s)‖2r−4
Lp ‖J(Xn(s))− J(X(s))‖2Lq‖g(s)‖2γ(H,Lp)ds

]1/2

≤ CE
[

‖X‖r−2
∞

∥
∥‖J(Xn(·))− J(X(·))‖Lq

∥
∥
L2(0,T )

∥
∥‖g(·)‖γ(H,Lp)

∥
∥
L2(0,T )

]

≤ CKE

[

‖X‖r−2
∞

∥
∥‖J(Xn(·))− J(X(·))‖Lq

∥
∥
Lr(0,T )

∥
∥‖g(·)‖γ(H,Lp)

∥
∥
Lr(0,T )

]

≤ CK
(
E‖X‖r∞

) r−2

r ×
(

E

∫ T

0

‖J(Xn(s)) − J(X(s))‖rLqds

) 1

r
(

E

∫ T

0

‖g(s)‖rγ(H,Lp)ds

) 1

r

,

where K is a constant. By Lemma 3.2, the right hand side approaches zero after
choosing a subsequence. Hence, sup0≤t≤T Fn(t) −→ 0 in L1 along some subse-
quence.
Step 3 : By Hölder’s inequality,

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

‖Xn(s)‖
r−2
Lp ‖g(s)‖2γ(H,Lp)ds−

∫ t

0

‖X(s)‖r−2
Lp ‖g(s)‖2γ(H,Lp)ds

∣
∣
∣
∣

≤

∫ T

0

∣
∣
∣‖Xn(s)‖

r−2
Lp − ‖X(s)‖r−2

Lp

∣
∣
∣‖g(s)‖2γ(H,Lp)ds
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≤

[ ∫ T

0

∣
∣
∣‖Xn(s)‖

r
Lp − ‖X(s)‖rLp

∣
∣
∣ds

] r−2

r
[∫ T

0

‖g(s)‖rγ(H,Lp)ds

] 2

r

.

Lemma 3.1 implies that by passing to a subsequence, the right hand side tends to
zero in L1. �

4. Measurability of the solutions

In this section, we stablish the existence, uniqueness and measurability of the
solution to the integral equation

X(t, ω) = S(t− s)X0(ω) +

∫ t

0

S(t− s)f
(
s, ω,X(s, ω)

)
ds+ V (t, ω),(4.1)

on [0, T ] with X0 : Ω −→ Lp. Suppose that V : [0, T ] × Ω −→ Lp satisfies the
Carathéodory condition; i.e., V (·, ω) is continuous on [0, T ] for each ω ∈ Ω and
V (t, ·) is measurable on Ω into (Lp,B) for all t ∈ [0, T ], where B denotes the Borel
σ-field of subsets of Lp. Moreover, we assume that V (0, ω) = 0 for all ω ∈ Ω.
This equation appears in the next section when we use an iterative method to
prove the existence of the mild solutions to semilinear SEE’s. In fact, existence
and measurability of the solution of (4.1) is necessary in each step of iteration. We
proceed as in [15] and we use the method based on random fixed point theory.

We say that the mapping h : [0, T ]× Lp −→ Lp is weakly closed as a Nemytskii
operator, if whenever xn ⇀ x weakly in L2(0, T ;Lp) and h(·, xn(·)) ⇀ ξ(·) weakly
in L2(0, T ;Lp), then ξ(·) = h(·, x(·)).

The following are the relevant hypotheses on nonlinear part f of (4.1).

Hypothesis 4.1. (a) The function f : [0, T ]×Ω×Lp −→ Lp is jointly measur-
able.

(b) For each ω ∈ Ω, the mapping (t, x) 7−→ f(t, ω, x) is weakly closed as a Nemyt-
skii operator.

(c) There exists a nonnegative measurable function M : Ω −→ R such that for
each t ∈ [0, T ] and ω ∈ Ω, the function x 7−→ f(t, ω, x) is semimonotone with
parameter M(ω); i.e.,

〈
f(t, ω, x)− f(t, ω, y), J(x− y)

〉
≤M(ω)‖x− y‖2Lp ·

(d) There exists a constant C such that ‖f(t, ω, x)‖Lp ≤ C(1 + ‖x‖Lp) for all
t ∈ [0, T ], ω ∈ Ω and x ∈ Lp.
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We first consider (4.1) in finite dimensions. It is well-known that the space Lp has a
Schauder basis ( see, e.g., [9]); i.e., there exists a sequence (an, xn)n≥0 in (Lp)∗×Lp

such that

x =

∞∑

n=1

〈x, an〉xn ,

for all x ∈ Lp. Let N ∈ N and EN = span{x1, x2, ..., xN}. Then {EN}∞N=1 is an
increasing sequence of finite dimensional subspaces of Lp such that

⋃∞
N=1EN is

dense in Lp. We recall that the natural projection PN : Lp −→ EN is defined by

PN (x) =

N∑

n=1

〈x, an〉xn .

Theorem 4.2. If we substitute Lp by EN , then under Hypothesis 4.1, the integral
equation

X0 = 0, X(t, ω) =

∫ t

0

f(s, ω,X(s, ω))ds(4.2)

has a unique measurable solution.

Before proceeding in the proof, we recall two results. First we give the following
simple but useful lamma, the proof of which is similar to that of Lemma 2 of [36].

Lemma 4.1. If a(·) is an Lp-valued integrable function on [0, T ], x ∈ Lp and

X(t) = x+
∫ t

0
a(s)ds, then

‖X(t)‖2Lp = ‖x‖2Lp + 2

∫ t

0

〈a(s), J(X(s))〉ds.

Theorem 4.3. [12] Let K be a closed, convex and separable subset of a Banach
space. Then any continuous compact random operator h : Ω × K −→ K has a
random fixed point.

Proof of Theorem 4.2: Let

K =
{

x ∈ C
(
[0, T ], EN

)
∣
∣
∣ ‖x(t)‖ ≤ eCt − 1 for all t ∈ [0, T ]

}

,

where C is the constant appeared in Hypothesis 4.1. Define h on Ω×K −→ EN by

h(ω, x)(t) =

∫ t

0

f(s, ω, x(s))ds·

Then K is the closed and convex subset of the separable Banach space C
(
[0, T ], EN

)
.

Hypothesis 4.1(d) shows that h is a map into K and by Hypothesis 4.1(a), for each
x ∈ K, h(·, x) is measurable. Now fix ω ∈ Ω. We show that h(ω, ·) is a continuous
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and compact operator on K. Let (xn) ⊆ K be a sequence strongly convergent to x;
i.e.,

sup
0≤t≤T

‖xn(t)− x(t)‖EN
−→ 0.

Then, there exists M > 0 such that

sup
0≤t≤T

‖xn(t)‖ ≤M for all n ∈ N.

Consider an arbitrary subsequence of {xn} which we denote it by the same symbol
{xn}. From Hypothesis 4.1 it follows that f(·, ω, xn(·)) is a bounded sequence in
L2(0, T ;EN) and so it has a subsequence f(·, ω, xnk

(·)) which is weakly conver-
gent in L2(0, T ;EN). Therefore, by Hypothesis 4.1(b) f(·, ω, xnk

(·)) ⇀ f(·, ω, x(·))
weakly in L2(0, T ;EN). Hence, the whole sequence f(·, ω, xn(·)) is in fact weakly
convergent to f(·, ω, x(·)) in L2(0, T ;EN). For each t ∈ [0, T ], since f(t, ω, xn(t))⇀
f(t, ω, x(t)) weakly in EN andEN is finite dimensional, f(t, ω, xn(t)) −→ f(t, ω, x(t))
strongly in EN . Now, by Hypothesis 4.1(d) and the dominated convergence theo-
rem, we have

sup
0≤t≤T

∥
∥h(ω, xn)(t) − h(ω, x)(t)

∥
∥ ≤

∫ T

0

∥
∥f(s, ω, xn(s))− f(s, ω, x(s))

∥
∥
EN
ds,

the right-hand side of which goes to zero as n → ∞. Thus, h(ω, ·) is continuous.
To prove the compactness of h, we note first that for each x ∈ K and all t ∈ [0, T ],

∥
∥h(ω, x)(t)

∥
∥ ≤

∫ t

0

∥
∥f(s, ω, x(s))

∥
∥ds ≤ C

∫ t

0

(
1 + ‖x(s)‖

)
ds ≤ (eCt − 1).

Hence, h(ω, ·) is uniformly bounded. Moreover, for 0 ≤ t1 < t2 ≤ T and x ∈ K we
have

∥
∥h(ω, x)(t2)− h(ω, x)(t1)

∥
∥ ≤

∫ t2

t1

∥
∥f(s, ω, x(s))

∥
∥ds ≤ (t2 − t1)(e

Ct2 − eCt1).

So, h(ω, ·) is an equicontinuous family on [0, T ]. Therefore, h(ω, ·) is a compact
operator. Now by Theorem 4.3, there exists a measurable function ξ : Ω −→ K

such that

ξ(ω)(t) =

∫ t

0

f(s, ω, ξ(ω)(s))ds, ∀t ∈ [0, T ]·

According to Proposition 5.1 of [15], if we define X : [0, T ]×Ω −→ EN by X(t, ω) =
ξ(ω)(t), thenX is jointly measurable andX is a solution of problem (4.2). It remains
to show the uniqueness of the solution. Let X and Y be two solutions of (4.2). We
have

X(t, ω)− Y (t, ω) =

∫ t

0

(

f
(
s, ω,X(s, ω)

)
− f

(
s, ω, Y (s, ω)

))

ds.
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By Lemma 4.1 and Hypothesis 4.1(c), for each ω ∈ Ω we obtain

∥
∥X(t, ω)− Y (t, ω)

∥
∥
2

= 2

∫ t

0

〈
f(s, ω,X(s, ω))− f(s, ω, Y (s, ω)), J(X(s, ω)− Y (s, ω))

〉
ds

≤ 2M(ω)

∫ t

0

∥
∥X(s, ω)− Y (s, ω)

∥
∥
2
ds.

Hence,

E

(

sup
0≤s≤t

∥
∥
∥X(s, ω)− Y (s, ω)

∥
∥
∥

2
)

≤ 2M(ω)

∫ t

0

E

(

sup
0≤θ≤s

∥
∥
∥X(θ, ω)− Y (θ, ω)

∥
∥
∥

2
)

ds.

Thus, by the Gronwall inequality

E

(

sup
0≤s≤t

∥
∥X(s, ω)− Y (s, ω)

∥
∥
2
)

= 0 ∀t ∈ [0, T ];

that is, X = Y .

Theorem 4.4. Assume that f satisfies Hypothesis 4.1. Then the equation

X(0) = 0, X(t, ω) =

∫ t

0

f(s, ω,X(s, ω))ds

has a unique measurable solution.

Proof. The uniqueness follows as in the proof of previous theorem. Let Pn : Lp −→
En be the natural projection of Lp onto En. By Theorem 4.2, for each n ∈ N and
ω ∈ Ω, the equation

X0 = 0, X(t, ω) =

∫ t

0

Pnf(s, ω,X(s, ω))ds

has a unique measurable solution Xn(t, ω). Due to Lemma 4.1 and Hypothesis
4.1(c), we obtain

∥
∥Xn(t, ω)

∥
∥
2

Lp = 2

∫ t

0

〈
Pnf(s, ω,Xn(s, ω)), J(Xn(s, ω))

〉
ds

= 2

∫ t

0

〈
Pnf(s, ω,Xn(s, ω))− Pnf(s, ω, 0), J(Xn(s, ω))

〉
ds

+ 2

∫ t

0

〈
Pnf(s, ω, 0), J(Xn(s, ω))

〉
ds

≤ 2M(ω)

∫ t

0

∥
∥Xn(s, ω)

∥
∥
2

Lpds+ 2

∫ t

0

∥
∥f(s, ω, 0)

∥
∥
Lp

∥
∥Xn(s, ω)

∥
∥
Lpds

≤ (2M(ω) + 1)

∫ t

0

∥
∥Xn(s, ω)

∥
∥
2

Lpds+

∫ t

0

∥
∥f(s, ω, 0)

∥
∥
2

Lpds.
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So, by the Gronwall inequality,

sup
0≤t≤T

∥
∥Xn(t, ω)

∥
∥
Lp ≤ e(2M(ω)+1)T

∫ T

0

∥
∥f(s, ω, 0)

∥
∥
2

Lpds ≤ Te(2M(ω)+1)T .

Now fix ω ∈ Ω. The above inequality shows that {Xn(·, ω)} is a bounded se-
quence in L2(0, T ;Lp). Also by Hypothesis 4.1(c), the sequence f(·, ω,Xn(·, ω)) is
bounded in L2(0, T ;Lp). Therefore, there exists a subsequence, again denoted by
(
Xn(·, ω)

)
, such that

(
Xn(·, ω)

)
and f(·, ω,Xn(·, ω)) are both weakly convergent

in L2(0, T ;Lp). Let X(·, ω) be the weak limit of
(
Xn(·, ω)

)
. Then, by Hypothesis

4.1(b), f(·, ω,X(·, ω)) is the weak limit of f(·, ω,Xn(·, ω)). Since Lp is a reflexive
Banach space, by Theorem 3.2.13 of [1], (an, xn) is a shrinking basis; that is, for
each v ∈ Lq, ‖P ∗

nv − v‖ −→ 0 as n −→ 0. So, we have

〈
Pnf(t, ω,Xn(t, ω)), v

〉

=
〈
Pnf(t, ω,Xn(t, ω))− f(t, ω,Xn(t, ω)), v

〉
+
〈
f(t, ω,Xn(t, ω)), v

〉

=
〈
f(t, ω,Xn(t, ω)), P

∗
nv − v

〉
+
〈
f(t, ω,Xn(t, ω)), v

〉

−→
〈
f(t, ω,X(t, ω)), v

〉
, as n→ ∞.

Thus,

〈
Xn(t, ω), v

〉
=

∫ t

0

〈
Pnf(t, ω,Xn(s, ω)), v

〉
ds −→

〈
∫ t

0

f(s, ω,X(s, ω))ds, v
〉
,

and hence,
〈
X(t, ω), v

〉
=

〈
∫ t

0

f(s, ω,X(s, ω))ds, v
〉
·

Therefore,

X(t, ω) =

∫ t

0

f(s, ω,X(s, ω))ds·

It remains to show that X(·, ·) is measurable on [0, T ] × Ω. For arbitrary v ∈ Lq,
we see that ∫ t

0

〈
Xn(s, ω), v

〉
ds −→

∫ t

0

〈
X(s, ω), v

〉
ds,

and the function (t, ω) 7−→

∫ t

0

〈
Xn(s, ω), v

〉
ds is measurable. Hence, the function

(t, ω) 7−→

∫ t

0

〈
X(s, ω), v

〉
ds is also measurable and

〈
X(·, ω), v

〉
is continuous. So,

we can differentiate and obtain

〈
X(t, ω), v

〉
=

d

dt

∫ t

0

〈
X(s, ω), v

〉
ds,

which shows that
〈
X(t, ω), v

〉
is measurable in (t, ω) ∈ [0, T ]× Ω. By separability

of Lp, this implies the measurability of X(·, ·) on [0, T ]× Ω.
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Now, we are ready to state and prove our main result in this section.

Theorem 4.5. Assume that X0 is an Lp-valued random variable and
(
S(t)

)
is

a C0-semigroup on Lp satisfying an exponential growth condition with generator
A. Let V satisfies the Carathéodory condition and V (0, ω) = 0 for all ω ∈ Ω.
Furthermore, let Hypothesis 4.1 holds. Then (4.1) has a unique measurable solution.

Proof. One can easily see that it suffices to prove Theorem 4.5 in the case that
λ = 0, X0 = 0 and V = 0.
Uniqueness. Assume that X and Y are two solutions of (4.1) and fix any ω ∈ Ω.
Then using the Itô type inequality (Theorem 3.2) with g = 0 and r = 2, and
Hypothesis 4.1(c), we obtain

∥
∥X(t, ω)− Y (t, ω)

∥
∥
2

Lp

≤ 2

∫ t

0

〈
f(s, ω,X(s, ω))− f(s, ω, Y (s, ω)), J(X(s, ω)− Y (s, ω))

〉
ds

≤ 2M(ω)

∫ t

0

∥
∥X(s, ω)− Y (s, ω)

∥
∥
2

Lpds.

So,

E

(

sup
0≤s≤t

∥
∥
∥X(s, ω)− Y (s, ω)

∥
∥
∥

2

Lp

)

≤ 2M(ω)

∫ t

0

E

(

sup
0≤θ≤s

∥
∥
∥X(θ, ω)− Y (θ, ω)

∥
∥
∥

2

Lp

)

ds.

Hence, by the Gronwall inequality, we conclude that X = Y .
Existence. Consider the Yosida approximations

Rn := n(nI −A)−1 : Lp −→ D(A), An := ARn

and fn(t, ω, x) = Anx + f(t, ω, x). First, let us show that fn satisfies Hypothesis
4.1. It is clear that fn is jointly measurable. Moreover, An is continuous and so
weakly closed. Hence fn is weakly closed as a Nemytskii operator. Since Lp is a
reflexive and strictly convex Banach space and A is maximal monotone, An is a
monotone operator. Thus, for all x, y ∈ Lp we have

〈
fn(t, ω, x)− fn(t, ω, y), J(x− y)

〉
=

〈
Anx−Any, J(x− y)

〉

︸ ︷︷ ︸

≤0

+
〈
f(t, ω, x)− f(t, ω, y), J(x− y)

〉

≤M(ω)‖x− y‖2Lp

So, fn(ω) is semimonotone. Note also that ‖An‖ ≤ n and therefore,

∥
∥fn(t, ω, x)

∥
∥
Lp ≤ n‖x‖Lp + C(1 + ‖x‖Lp) ≤ (n+ C)(1 + ‖x‖Lp)·
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Now, by Theorem 4.4, for each n ∈ N the integral equation

X0 = 0, X(t, ω) =

∫ t

0

fn(s, ω,X(s, ω))ds,

has a unique measurable solution Xn(t, ω). According to Lemma 4.1, Hypothesis
4.1(c) and Cauchy-Schwartz inequality, we have

∥
∥Xn(t, ω)

∥
∥
2

Lp = 2

∫ t

0

〈
AnXn(s, ω), J(Xn(s, ω))

〉

︸ ︷︷ ︸

≤0

ds

+ 2

∫ t

0

〈
f(s, ω,Xn(s, ω)), J(Xn(s, ω))

〉
ds

≤ 2M(ω)

∫ t

0

∥
∥
∥Xn(s, ω)

∥
∥
∥

2

Lp
ds+ 2

∫ t

0

∥
∥
∥f(s, ω, 0)

∥
∥
∥
Lp

∥
∥
∥Xn(s, ω)

∥
∥
∥
Lp
ds

≤ (2M(ω) + 1)

∫ t

0

∥
∥Xn(s, ω)

∥
∥
2

Lpds+

∫ t

0

∥
∥f(s, ω, 0)

∥
∥
2

Lpds.

Thus, by Gronwall’s inequality

sup
0≤t≤T

∥
∥Xn(t, ω)

∥
∥
2

Lp ≤ e(2M(ω)+1)T

∫ T

0

∥
∥f(s, ω, 0)

∥
∥
2

Lpds·(4.3)

On the other hand, An is bounded and generates the uniformly continuous contrac-
tion semigroup

(
Sn(t)

)
. We claim that for each x ∈ Lp, Sn(t)x −→ S(t)x. Since

D(A) is dense in Lp, it suffices to prove this for x ∈ D(A). For x ∈ D(A), we have

S(t)x− Sn(t)x =

∫ t

0

d

dθ

(
Sn(t− θ)S(θ)x

)
dθ

=

∫ t

0

Sn(t− θ)[An −A]S(θ)xdθ,

and
∥
∥Sn(t− θ)[An −A]S(θ)x

∥
∥ ≤

∥
∥(An −A)S(θ)x

∥
∥.

Also,

(An −A)S(θ)x =
[
(I − n−1A)−1 − I

]
AS(θ)x = (Rn − I)AS(θ)x −→ 0,

θ 7−→ AS(θ)x is continuous and so bounded on [0, T ], and ‖Rn − I‖ ≤ 2. Hence,
by the dominated convergence theorem, Sn(t)x −→ S(t)x. We claim that

Xn(t, ω) =

∫ t

0

Sn(t− s)f(s, ω,Xn(s, ω))ds·(4.4)
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In fact, for any fixed ω ∈ Ω, by Theorem 2.38 of [7], the problem

Y (0, ω) = 0,
dY

dt
= AnY (t, ω) + f(t, ω,Xn(t, ω)),

has a unique solution

Y (t, ω) =

∫ t

0

Sn(t− s)f(s, ω,Xn(s, ω))ds.

That is,

Y (t, ω) =

∫ t

0

AnY (s, ω)ds+

∫ t

0

f(s, ω,Xn(s, ω))ds.

Thus,

Xn(t, ω)− Y (t, ω) =

∫ t

0

(
AnXn(s, ω)−AnY (s, ω)

)
ds.

and so, by Lemma 4.1 and monotonicity of An,

∥
∥
∥Xn(t, ω)− Y (t, ω)

∥
∥
∥

2

Lp
= 2

∫ t

0

〈

AnXn(s, ω)− AnY (s, ω), J(Xn(s, ω)− Y (s, ω))
〉

ds ≤ 0·

Hence, sup0≤t≤T

∥
∥Xn(t, ω)−Y (t, ω)

∥
∥
2

Lp = 0; i.e, Xn = Y and we obtain (4.4). Now,
we are going to use the method of the proof of Theorem 4.4. Fix ω ∈ Ω. From (4.3)
and Hypothesis 4.1 (b) and (d), it follows that there exists a subsequence

(
Xnk

(·, ω)
)

and an element X(·, ω) ∈ L2(0, T ;Lp), such that
(
Xnk

(·, ω)
)
and f(·, ω,Xnk

(·, ω))
are respectively weakly convergent to X(·, ω) and f(·, ω,X(·, ω)) in L2(0, T ;Lp).
So, for each v ∈ Lq we have as n→ ∞ that

〈
Sn(t− s)f(s, ω,Xn(s, ω)), v

〉

=
〈
Sn(t− s)f(s, ω,Xn(s, ω))− S(t− s)f(s, ω,Xn(s, ω)), v

〉

+
〈
S(t− s)f(s, ω,Xn(s, ω)), v

〉
−→

〈
S(t− s)f(s, ω,X(s, ω)), v

〉

and thus,
〈
Xn(t, ω), v

〉
=

∫ t

0

〈
Sn(t− s)f(s, ω,Xn(s, ω)), v

〉
ds

tends to
∫ t

0

〈
S(t− s)f(s, ω,X(s, ω)), v

〉
ds as n→ ∞. Hence,

〈
X(t, ω), v

〉
=

〈
∫ t

0

S(t− s)f(s, ω,X(s, ω))ds, v
〉
,

and therefore,

X(t, ω) =

∫ t

0

S(t− s)f(s, ω,X(s, ω))ds·

This finishes the proof of the existence.
Measurability. Similar to the proof of Theorem 4.4, one can see that X(·, ·) is
measurable on [0, T ]× Ω.
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5. Existence and uniqueness of mild solutions

In this section, we use semigroup theory to make an iterative method in order
to prove the existence and uniqueness of the mild solutions of monotone-type semi-
linear SEE’s. The Itô type inequality (Theorem 3.2) is a key tool to study both
existence and uniqueness. Consider the following semilinear stochastic evolution
equation on Lp (p ≥ 2):

{
dX(t) = AX(t)dt+ f(t,X(t))dt+ g(t,X(t))dWH(t), t ∈ [0, T ]
X(0) = X0,

(5.1)

where the initial data X0 is an Lp-valued F0-measurable random variable and
E‖X0‖

r
Lp <∞. Our hypotheses on A, g and nonlinear part f are as follows.

Hypothesis 5.1. (a) A : D(A) ⊆ Lp −→ Lp is the generator of a C0-semigroup
(
S(t)

)

t≥0
of linear operators satisfying an exponential growth condition; i.e.,

there exists λ ≥ 0 such that

‖S(t)‖ ≤ eλt ∀t ≥ 0·

(b) f satisfies Hypothesis 4.1 with the constant M which is independent of ω ∈ Ω.

(c) g : [0, T ]×Ω×Lp −→ γ(H,Lp) is a progressively measurable process such that
for all t ∈ [0, T ], ω ∈ Ω and x, y ∈ Lp

∥
∥g(t, ω, x)− g(t, ω, y)

∥
∥
γ(H,Lp)

≤ C‖x− y‖Lp ,

where C is the constant appeared in Hypothesis 4.1(d). Moreover,

E

(

sup
0≤s≤t

‖g(s, 0)‖rγ(H,Lp)

)

<∞, ∀t ∈ [0, T ]·

Definition 5.2. An adapted process X : [0, T ]×Ω −→ Lp is called a mild solution
of (5.1) if it satisfies the integral equation

X(t) = S(t)X0 +

∫ t

0

S(t− s)f(s,X(s))ds+

∫ t

0

S(t− s)g(s,X(s))dWH(s).(5.2)

Theorem 5.3. If Hypothesis 5.1 holds, then (5.1) has a unique continuous mild
solution X such that

E

(

sup
0≤s≤t

‖X(s)‖rLp

)

<∞, r ≥ 2, t ∈ [0, T ]·

Proof. One can easily see that it suffices to prove the theorem in the case that X0

and λ are zero.
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Uniqueness: Let X(t) and Y (t) be two continuous mild solutions of (5.1) with
initial data X(0) = Y (0) = 0. Then we have

X(t)− Y (t) =

∫ t

0

S(t− s)
(
f(s,X(s))− f(s, Y (s))

)
ds

+

∫ t

0

S(t− s)
(
g(s,X(s))− g(s, Y (s))

)
dWH(s).

We can apply Itô-type inequality (Theorem 3.2) with r = 2 and find that

∥
∥X(t)− Y (t)

∥
∥
2

Lp ≤ 2

∫ t

0

〈
f(s,X(s))− f(s, Y (s)), J(X(s)− Y (s))

〉
ds

+ 2

∫ t

0

〈
g(s,X(s))− g(s, Y (s)), J(X(s)− Y (s))

〉
dWH(s)

+

∫ t

0

∥
∥g(s,X(s))− g(s, Y (s))

∥
∥
2

γ(H,Lp)
ds.

By Hypothesis 5.1 (b) and (c), we have

∫ t

0

〈

f(s,X(s))− f(s, Y (s)), J(X(s) − Y (s))
〉

ds ≤ M

∫ t

0

∥
∥
∥X(s)− Y (s)

∥
∥
∥

2

Lp
ds,(5.3)

and ∫ t

0

∥
∥
∥g(s,X(s))− g(s, Y (s))

∥
∥
∥

2

γ(H,Lp)
ds ≤ C

2

∫ t

0

∥
∥
∥X(s)− Y (s)

∥
∥
∥

2

Lp
ds.(5.4)

Also, using B.D.G inequality (Theorem2.3) with b = 1, Hypothesis 5.1(c) and
Cauchy-Schwartz inequality, we obtain

E sup
0≤ρ≤t

∣
∣
∣
∣
∣
∣

∫ ρ

0

〈

g(s,X(s))− g(s, Y (s)), J(X(s)− Y (s))
〉

︸ ︷︷ ︸

φ(s)

dWH(s)

∣
∣
∣
∣
∣
∣

≤ C1E

∥
∥
∥φ
∥
∥
∥
γ(L2(0,t;H),R)

= C1E

∥
∥
∥φ
∥
∥
∥ = C1 sup

‖f‖≤1

[

φ, f
]

L2(0,t;H)

≤ C2E

(
∫ t

0

∥
∥
∥φ(s)

∥
∥
∥

2

ds

)1/2

≤ C2E



 sup
0≤s≤t

‖X(s) − Y (s)‖Lp

(
∫ t

0

‖X(s)− Y (s)‖2Lpds

)1/2




≤ C2

[

E

(

sup
0≤s≤t

‖X(s)− Y (s)‖2Lp

)]1/2[

E

∫ t

0

‖X(s)− Y (s)‖2Lpds

]1/2

≤
1

4
E

(

sup
0≤s≤t

‖X(s)− Y (s)‖2Lp

)

+ 2C2
2
E

∫ t

0

‖X(s)− Y (s)‖2Lpds.(5.5)

Here, C1 is the constant appeared in inequality 2.4 and we have used the inequality
ab ≤ 1

2 (
1
ka

2 + kb2) for any a, b ∈ R and any k > 0, with k = 2C2. From (5.3), (5.4)
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and (5.5) we obtain

1

2
E

(

sup
0≤s≤t

‖X(s)− Y (s)‖2Lp

)

≤ A

∫ t

0

E

(

sup
0≤θ≤s

‖X(θ)− Y (θ)‖2Lp

)

ds,

where A = 2M + C2 + 4C2
2 . Hence, by the Gronwall inequality

E

(

sup
0≤s≤t

‖X(s)− Y (s)‖2Lp

)

= 0 for all t ∈ [0, T ].

So, X = Y on [0, T ] almost surly.
Existence: Let X1(t) = 0 and define Xn(t) by induction. Assume Xn(t) is defined.
Theorem 4.5 implies that there exists a continuous adapted solution Xn+1 of

Xn+1(t) =

∫ t

0

S(t− s)f(s,Xn+1(s))ds+ Vn(t),

where

Vn(t) =

∫ t

0

S(t− s)g(s,Xn(s))dWH(s)·

We claim that

E

(

sup
0≤s≤t

‖Xn(s)‖
r
Lp

)

<∞, ∀n ∈ N, ∀t ∈ [0, T ],(5.6)

the proof of which is by induction on n. By Hypothesis 5.1(b),

‖Xn+1(t)‖
2
Lp ≤ 4C2

∫ t

0

(
1 + ‖Xn+1(s)‖

2
Lp

)
ds+ 2‖Vn(t)‖

2
Lp .

Hence,

sup
0≤s≤t

‖Xn+1(s)‖
2
Lp ≤ 4C2t+ 4C2

∫ t

0

sup
0≤θ≤s

‖Xn+1(θ)‖
2
Lpds+ 2 sup

0≤s≤t
‖Vn(s)‖

2
Lp .

So, by Gronwall’s inequality we obtain

sup
0≤s≤t

‖Xn+1(s)‖
2
Lp ≤

[

4C2t+ 2 sup
0≤s≤t

‖Vn(s)‖
2
Lp

]

e4C
2t,

and thus,

sup
0≤s≤t

‖Xn+1(s)‖
r
Lp ≤ 2r/2

[

(4C2t)r/2 + 2r/2 sup
0≤s≤t

‖Vn(s)‖
r
Lp

]

e2rC
2t.

Therefore, to get (5.6) it suffices to prove that

E sup
0≤s≤t

‖Vn(s)‖
r
Lp <∞·
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By Theorem 2.2 there exists a constant K such that

E sup
0≤s≤t

‖Vn(s)‖
r
Lp ≤ Kr

E

[
∫ T

0

∥
∥g(t,Xn(t))

∥
∥
2

γ(H,Lp)
dt

]r/2

.

By Hypothesis 5.1(c) and Jensen’s inequality, we have

E sup
0≤s≤t

‖Vn(s)‖
r
Lp ≤ K

r
E



2C

∫ T

0

‖Xn(t)‖
2
Lpdt+ 2

∫ T

0

‖g(t, 0)‖2γ(H,Lp)dt





r/2

≤ 2rKr



C
r/2

T E sup
0≤t≤T

‖Xn(t)‖
r
Lp +

∫ T

0

E‖g(t, 0)‖rγ(H,Lp)dt



,

which is finite by induction. Next, we are going to prove the convergence of sequence
{Xn} to a mild solution of (5.1). Note that

Xn+1(t)−Xn(t) =

∫ t

0

S(t− s)
(
f(s,Xn+1(s)) − f(s,Xn(s))

)
ds

+

∫ t

0

S(t− s)
(
g(s,Xn(s)) − g(s,Xn−1(s))

)
dWH(s).

Therefore, Itô type inequality (Theorem 3.2) implies that

‖Xn+1(t)−Xn(t)‖
r
Lp ≤

r

∫ t

0

‖Xn+1(s)−Xn(s)‖
r−2
Lp

〈

f(s,Xn+1(s))− f(s,Xn(s)), J(Xn+1(s)−Xn(s))
〉

ds

+r

∫ t

0

‖Xn+1(s)−Xn(s)‖
r−2
Lp

〈

g(s,Xn(s))− g(s,Xn−1(s)), J(Xn+1(s)−Xn(s))
〉

︸ ︷︷ ︸

φ(s)

dWH(s)

+
r(r − 1)

2

∫ t

0

‖Xn+1(s)−Xn(s)‖
r−2
Lp

∥
∥
∥g(s,Xn(s))− g(s,Xn−1(s))

∥
∥
∥

2

γ(H,Lp)
ds

= An(t) +Bn(t) + Cn(t).(5.7)

Using Hypothesis 5.1(b) for the first term, An(t), we find

An(t) ≤ rM

∫ t

0

‖Xn+1(s)−Xn(s)‖
r
Lpds·(5.8)

Moreover, using Theorem 2.2 for the second term, Bn(t), yields us

E sup
0≤θ≤t

|Bn(θ)| ≤ rDE‖φ‖γ(L2(0,t;H),R),

in which D is a constant. By an argument similar to that of the proof of Theorem
3.2 (Step 2), one can see that

E sup
0≤θ≤t

|Bn(θ)| ≤ rDE

(∫ t

0

‖φ(s)‖2ds

)1/2

.
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From Hypothesis 5.1(c), we obtain that the right hand side is

≤ rDE

[ ∫ t

0

∥
∥Xn+1(s)−Xn(s)

∥
∥
2r−2

Lp

∥
∥Xn(s)−Xn−1(s)

∥
∥
2

Lpds

]1/2

≤ rDE

[

sup
0≤s≤t

‖Xn+1(s)−Xn(s)‖
r/2
Lp ×

(∫ t

0

‖Xn+1(s)−Xn(s)‖
r−2
Lp ‖Xn(s)−Xn−1(s)‖

2
Lpds

)1/2 ]

Using the elementary inequality ab ≤ 1
2 (k

−1a2 + kb2) which is true for any a, b ∈ R

and k > 0 with k = rD, we obtain

E sup
0≤θ≤t

|Bn(θ)| ≤
1

2
E sup

0≤s≤t

∥
∥Xn+1(s)−Xn(s)

∥
∥
r

Lp

+
r2D2

2
E

∫ t

0

∥
∥Xn+1(s)−Xn(s)

∥
∥
r−2

Lp

∥
∥Xn(s)−Xn−1(s)

∥
∥
2

Lpds.

Applying the inequality u1−αvα ≤ (1 − α)u + αv which holds for all u, v ≥ 0 and
0 ≤ α ≤ 1, we deduce that

E sup
0≤θ≤t

|Bn(θ)| ≤
1

2
E

(

sup
0≤s≤t

∥
∥Xn+1(s)−Xn(s)

∥
∥
r

Lp

)

+
r(r − 2)D2

2

∫ t

0

E

(

sup
0≤θ≤s

∥
∥Xn+1(θ)−Xn(θ)

∥
∥
r

Lp

)

ds

+ rD2

∫ t

0

E

(

sup
0≤θ≤s

∥
∥Xn(θ) −Xn−1(θ)

∥
∥
r

Lp

)

ds.(5.9)

Similarly, by Hypothesis 5.1(c) one can show that

E sup
0≤θ≤t

|Cn(θ)| ≤
(r − 1)(r − 2)

2
C

2

∫ t

0

E

(

sup
0≤θ≤s

∥
∥
∥Xn+1(θ)−Xn(θ)

∥
∥
∥

r

Lp

)

ds

+ (r − 1)C2

∫ t

0

E

(

sup
0≤θ≤s

∥
∥
∥Xn(θ)−Xn−1(θ)

∥
∥
∥

r

Lp

)

ds.(5.10)

Now, we define

hn(t) = E

(

sup
0≤s≤t

∥
∥Xn+1(s)−Xn(s)

∥
∥
r

Lp

)

, t ∈ [0, T ].

Note that hn(t) < ∞ for all t ∈ [0, T ] and hence by substituting (5.8), (5.9) and
(5.10) in the right hand side of (5.7), we obtain

hn(t) ≤ α

∫ t

0

hn(s)ds+ β

∫ t

0

hn−1(s)ds,

where
α = 2rM + r(r − 2)D2 + (r − 1)(r − 2)C2,
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and

β = 2rD2 + 2(r − 1)C2.

Therefore, by Gronwall’s inequality

hn(t) ≤ βeαt
∫ t

0

hn−1(s)ds·

We know h0(t) ≤ h0(T ) = E sup
0≤s≤T

‖X1(s)‖
r
Lp < ∞. Thus, if γ = h0(T ) it follows

inductively that

hn(t) ≤ γ
(βeαT t)n

n!
, n ≥ 1.

Hence, {Xn} is a Cauchy sequence in Lr(Ω, C(0, T ;Lp)) and so there exists a con-
tinuous adapted process X(t) with

E

(

sup
0≤s≤t

∥
∥X(s)

∥
∥
r

Lp

)

<∞,

such that E
(

sup0≤s≤t

∥
∥Xn(s) −X(s)

∥
∥
r

Lp

)

−→ 0. To complete the proof, we show

that X(t) is the mild solution of (5.1). Consider

R(t) = X(t)−

∫ t

0

S(t− s)f(s,X(s))ds−

∫ t

0

S(t− s)g(s,X(s))dWH(s),

and

Rn(t) = Xn+1(t)−

∫ t

0

S(t− s)f(s,Xn+1(s))ds−

∫ t

0

S(t− s)g(s,Xn(s))dWH(s).

We know that Rn(t) = 0 for all t ∈ [0, T ]. Let x ∈ Lq and t ∈ [0, T ]. We show
that 〈R(t), x〉 = 0 a.s., which implies R(t) = 0 a.s. Then letting t ranges over all
rational numbers and using continuity of R, it follows that R(t) = 0 for all t ∈ [0, T ]
w.p.1. First, by passing to a subsequence if necessary, we may assume that

sup
0≤s≤T

∥
∥Xn(s)−X(s)

∥
∥
Lp −→ 0, a.s.

Consequently

〈Xn+1(t), x〉 −→ 〈X(t), x〉, a.s.(5.11)

Now, since

∫ T

0

‖Xn+1(s)−X(s)‖2Lpds ≤ T sup
0≤s≤T

‖Xn+1(s)−Xn(s)‖
2
Lp −→ 0, a.s.

we have

Xn+1 −→ X in L2(0, T ;Lp) a.s.
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Moreover, by Hypothesis 5.1(b),

∫ T

0

∥
∥f(s,Xn+1(s))

∥
∥
2

Lpds ≤ TC
(
1 + sup

0≤s≤T
‖Xn+1(s)‖Lp

)2

≤ TC
(
2 + sup

0≤s≤T
‖X(s)‖Lp

)2
<∞,

for large enough n. This shows that f(·, Xn+1(·)) is a bounded sequence in L2(0, T ;Lp).
So, by passing to a subsequence, we may assume that f(·, Xn+1(·)) is weakly con-
vergence in L2(0, T ;Lp). Hence, it follows from weakly closedness of f (Hypothesis
5.1(b)) that

f
(
·, Xn+1(·)

)
⇀ f(·, X(·))

weakly in L2(0, T ;Lp). Therefore,

∫ T

0

〈
f(s,Xn+1(s)) − f(s,X(s)), v(s)

〉
−→ 0,

for all v ∈ L2(0, T ;Lp). Thus,

∫ t

0

〈

S(t− s)
(

f(s,Xn+1(s))− f(s,X(s))
)

, x
〉

ds

=

∫ T

0

〈

f(s,Xn+1(s))− f(s,X(s)), S∗(t− s)x1[0,t](s)
〉

ds −→ 0.(5.12)

At last, by Theorem 2.2 and Hypothesis 5.1(c), there exist constants K and C such
that

E

∥
∥
∥
∥

∫ t

0

S(t− s)
(
g(s,Xn(s)) − g(s,X(s))

)
dWH(s)

∥
∥
∥
∥

r

Lp

≤ KE

( ∫ T

0

∥
∥g(s,Xn(s)) − g(s,X(s))

∥
∥
2

γ(H,Lp)

)r/2

≤ KC E

(

sup
0≤s≤T

‖Xn(s)−X(s)‖rLp

)

−→ 0.

Consequently, after choosing a subsequence, we have

〈∫ t

0

S(t− s)
(
g(s,Xn(s))− g(s,X(s))

)
dWH(s), x

〉

−→ 0.(5.13)

From (5.11) , (5.12) and (5.13), we get that

〈R(t), x〉 = lim
n→∞

〈Rn(t), x〉 = 0 ·

The proof is now complete.
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3. Z. Brzeźniak: Stochastic partial differential equations in M-type 2 Banach

spaces. Potential Anal. 4 (1995), no.1, 1–45.
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Abstract. A group H is said to be capable, if there exists another group G such

that G
Z(G)

∼= H , where Z(G) denotes the center of G. In a recent paper [5], the

authors considered the problem of capability of five non-abelian p−groups of order p4

into account. In this paper, we try to solve the problem of capability by considering

three other groups of order p4. It is proved that the group

H6 = 〈x, y, z | xp2

= y
p
= z

p
= 1, yx = x

p+1
y, zx = xyz, yz = zy〉

is not capable. Moreover, if p > 3 is a prime number and d 6≡ 0, 1 (mod p) then the

following groups are not capable:

H
1
7 = 〈x, y, z | x9

= y
3
= 1, z

3
= x

3
, yx = x

4
y, zx = xyz, zy = yz〉,

H
2
7 = 〈x, y, z | xp2

= y
p
= z

p
= 1, yx = x

p+1
y, zx = x

p+1
yz, zy = x

p
yz〉,

H
1
8 = 〈x, y, z | x9

= y
3
= 1, z

3
= x

−3
, yx = x

4
y, zx = xyz, zy = yz〉,

H
2
8 = 〈x, y, z | xp2

= y
p
= z

p
= 1, yx = x

p+1
y, zx = x

dp+1
yz, zy = x

dp
yz〉.

Keywords: Capable group; p−group; non-abelian p−groups; center.

1. Introduction

A group H is said to be capable if there exists another group G such that
G

Z(G)
∼= H , or equivalently H can be represented as the inner automorphism group

of a given group G. The capability of groups was first studied by Baer [1] who was
asked the question “which conditions a group H must fulfill in order to be the group
of inner automorphisms of a group G?”. In the mentioned paper, he determined
all capable groups which are direct products of cyclic groups. Since the time that
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Hall and Senior published their inovating work [3], such groups are called capable.
It is well-known that the classification of capable groups is the first step towards
the classification of prime power order groups [4]. The following theorem of Baer is
well-known in the context of capable groups.

Theorem 1.1. Let A be a finite abelian group written as A = Zn1
⊕Zn2

⊕· · ·⊕Znk

such that each integer ni+1 is divisible by ni. Then A is capable if and only if k ≥ 2
and nk−1 = nk.

Burnside [2] was classified all p−groups of order p4 which p is an odd prime
number. This classification is expressed in the following theorem:

Theorem 1.2. Suppose p is an odd prime number and d 6≡ 0, 1 (mod p). Then
there are fifteen different groups of order p4 up to isomorphisms. Five of those are
abelian and the non-abelian groups are in the list below.

H1 = 〈x, y | xp3 = yp = 1, yxy−1 = xp2+1〉,

H2 = 〈x, y, z | xp2 = yp = zp = 1, xy = yx, xz = zx, zyz−1 = xpy〉,

H3 = 〈x, y | xp2 = yp
2

= 1, yxy−1 = xp+1〉,

H4 = 〈x, y, z | xp2 = yp = zp = 1, xy = yx, yz = zy, zxz−1 = xp+1〉,

H5 = 〈x, y, z | xp2 = yp = zp = 1, xy = yx, yz = zy, zxz−1 = xy〉,

H6 = 〈x, y, z | xp2 = yp = zp = 1, yxy−1 = xp+1, zxz−1 = xy, yz = zy〉,

H1
7 = 〈x, y, z | x9 = y3 = 1, [y, z] = 1, z3 = x3, y−1xy = x4, z−1xz = xy−1〉,

H2
7 = 〈x, y, z | xp2 = yp = zp = 1, yxy−1 = xp+1, zxz−1 = xp+1y, zyz−1 = xpy〉 p > 3,

H1
8 = 〈x, y, z | x9 = y3 = 1, [y, z] = 1, z3 = x−3, y−1xy = x4, z−1xz = xy−1〉,

H2
8 = 〈x, y, z | xp2 = yp = zp = 1, yxy−1 = xp+1, zxz−1 = xdp+1y, zyz−1 = xdpy〉 p > 3,

H9 = 〈x, y, z, t | xp = yp = zp = tp = [x, y] = [x, z] = [x, t] = [y, z] = [y, t] = 1, tzt−1 = xz〉,

H1
10 = 〈x, y, z | x9 = y3 = z3 = 1, xy = yx, z−1xz = xy, z−1yz = x−3y〉,

H2
10 = 〈x, y, z, t | xp=yp=zp= tp=[x, y]=[x, z]=[x, t]=[y, z]=[t, y]x−1=[t, z]y−1= 1〉 p > 3.

Zainal et al. [5] examined the capability of five groups out of ten non-abelian
groups of order p4 and proved that among first five groups the previous theorem,
only the group number 3 is capable. We record this result in the following theorem:

Theorem 1.3. (See [5]) The groups Hi, 1 ≤ i ≤ 5, is capable if and only if i = 3.

2. Main Results

Our aim in this section is to prove the groups numbers 6, 7 and 8 in Theorem 1.2
are not capable.

Theorem 2.1. The group H6 is not capable.
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Proof. By definition of H6 and some calculations we have the following equations,

yjxi = xijp+iyj(2.1)

zkxi = x
i(i−1)

2
kp+iyikzk(2.2)

We put i = p and j = k = 1 in Equations 2.1 and 2.2. Since p is odd and
xp2

= yp = 1, yxp = xpy and zxp = xpz. Thus 〈xp〉 ≤ Z(H6) and |Z(H6)| = p or
p2. Suppose |Z(H6)| = p2. Then for every h ∈ H6 \ Z(H6), Z(H6)〈CH6

(h)〉 ≤ H6

and so |CH6
(h)| = p3. This proves that the conjugacy class hH6 has size p. Choose

j, k with this condition that 0 ≤ j, k ≤ p−1. Since x is not central and by Equations
2.1 and 2.2, yjxy−j = xjp+1 and zkxz−k = xyk, we find that |xH6 | > p which is
not possible. Therefore |Z(H6)| = p and Z(H6) = 〈xp〉.

If H6 is capable then there exists a non-abelian group G with center Z such that
H6

∼= G
Z
. Since G is not centerless, there are elements a, b, c ∈ G \ Z such that

G

Z
=

〈

aZ, bZ, cZ | (aZ)p
2

= (bZ)p = (cZ)p = 1, (bZ)(aZ) = (aZ)p+1(bZ),
(cZ)(aZ) = (aZ)(bZ)(cZ), (bZ)(cZ) = (cZ)(bZ)

〉

.

By definition, ap
2

, bp, cp ∈ Z and by Equation 2.1 one can see the following
equation:

(2.3) bap = apb.

By Equation 2.2 and some calculations, we have:

(2.4) (aZcZ)n = (aZ)tnp(aZ)n(bZ)
n(n−1)

2 (cZ)n

in which tn = n(n−1)(n−2)
6 . By substituting n = p in Equation 2.4, we obtain the

following equality:

(2.5) (aZcZ)p = (aZ)tpp(aZ)p.

We now consider two cases that p = 3 or p > 3.

1. p > 3. Then p | tp and so by Equation 2.5 and this fact that ap
2

∈ Z,

(ac)pZ = (acZ)p

= (aZcZ)p

= (aZ)tpp(aZ)p

= (aZ)p

= apZ.

Hence there exists z ∈ Z such that (ac)p = apz and so cap = apc. Finally, we
apply Equation 2.3 to conclude that ap ∈ Z which is a contradiction.
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2. p = 3. Then tp = 1 and by Equation 2.5, (ac)3Z = (aZcZ)3 = (aZ)3(aZ)3

= (aZ)6 = a6Z. Hence there exists z ∈ Z such that (ac)3 = a6z and so
ca6 = a6c. By these equations and and Equation 2.3, we conclude that a6 ∈ Z

which is our final contradiction.

Therefore, the group H6 is not capable.

Theorem 2.2. The group H1
7 is not capable.

Proof. By definition of H1
7 and some tedious calculations, one can see that

yjxi = x3ij+iyj(2.6)

zkxi = x3k i(i−1)

2
+iyikzk(2.7)

We put i = 3 and j = k = 1 in Equations 2.6 and 2.7. Since x9 = y3 = 1,
yx3 = x3y and zx3 = x3z and so 〈x3〉 ≤ Z(H1

7 ). On the other hand, |H1
7 | = 34 and

hence |Z(H1
7 )| = 3 or 9. Suppose |Z(H1

7 )| = 9. Then for every h ∈ H1
7 \ Z(H1

7 ),

Z(H1
7 )〈CH1

7

(h)〉 ≤ H1
7 which implies that |CH1

7

(h)| = 33 or equivalently |hH1

7 | = 3.

Note that x ∈ H1
7 \ Z(H1

7 ). Choose j, k such that 0 ≤ j, k ≤ 2. By Equations

2.6 and 2.7, yjxy−j = x3j+1 and zkxz−k = xyk which shows that |xH1

7 | > 3. This
contradiction implies that |Z(H1

7 )| = 3 and Z(H1
7 ) = 〈x3〉. If H1

7 is capable, there is
a non-abelian group G with center Z such that H1

7
∼= G

Z
. Since G is not centerless,

there are elements a, b, c ∈ G \ Z such that

G

Z
=

〈
aZ, bZ, cZ | (aZ)9 = (bZ)3 = 1, (cZ)3 = (aZ)3, (bZ)(aZ) = (aZ)4(bZ),

(cZ)(aZ) = (aZ)(bZ)(cZ), (cZ)(bZ) = (bZ)(cZ)

〉

.

Obviously a9, b3, c9 ∈ Z and by Equation 2.6,

(aZbZ)n = (aZ)3
n(n−1)

2 (aZ)n(bZ)n.

In above equation, we put n = 3. Since a9, b3 ∈ Z, (ab)3Z = (abZ)3 = (aZbZ)3 =
(aZ)9(aZ)3(bZ)3 = (aZ)3 = a3Z and so there exists z ∈ Z such that (ab)3 = a3z.
Therefore,

ba3 = a3b(2.8)

On the other hand, a3Z = c3Z and so there exists z1 ∈ Z such that

(2.9) a3 = c3z1

Put k = 1 and i = 3 in Equation 2.7. Since o(aZ) = 9 and o(bZ) = 3,

ca3Z = (cZ)(aZ)3

= (aZ)9(aZ)3(bZ)3(cZ)

= (aZ)3(cZ)

= a3cZ.
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Thus there exists z2 ∈ Z such that

(2.10) ca3 = a3cz2.

Now by inserting the Equation 2.9 in 2.10, cc3z1 = c3z1cz2 which shows that z2 = 1.
Apply again Equation 2.10 to conclude that ca3 = a3c. Now by Equation 2.8 a3 ∈ Z

and hence (aZ)3 = Z which is our final contradiction.

Theorem 2.3. The group H2
7 is not capable.

Proof. By presentation of H2
7 and some tedious calculations one can see that

yjxi = xijp+iyj,(2.11)

zkxi = x
i(i+1)

2
kp+ k(k−1)

2
ip+iyikzk,(2.12)

zkyj = xjkpyjzk.

By substituting i = p and j = k = 1 in Equations 2.11 and 2.12 we have yxp = xpy

and zxp = xpz. Hence 〈xp〉 ≤ Z(H2
7 ) and arguments similar to the proof of Theorem

2.1 show that Z(H2
7 ) = 〈xp〉. If H2

7 is capable, there is a non-abelian group G with
center Z such that and H2

7
∼= G

Z
. Since G is not centerless, there are elements

a, b, c ∈ G \ Z such that

G

Z
=

〈

aZ, bZ, cZ | (aZ)p
2

= (bZ)p = (cZ)p = 1, (bZ)(aZ) = (aZ)p+1(bZ),
(cZ)(aZ) = (aZ)p+1(bZ)(cZ), (cZ)(bZ) = (aZ)p(bZ)(cZ)

〉

.

Thus ap
2

, bp, cp ∈ Z. Now by Equation 2.11 and a similar argument as Theorem
2.1,

(2.13) bap = apb.

Apply Equation 2.12 to conclude that

(aZcZ)n = (aZ)knp(aZ)n(bZ)
n(n−1)

2 (cZ)n

in which kn = n(n−1)(2n−1)
6 . Next we assume that n = p. Since bp, cp are central,

(ac)pZ = (acZ)p = (aZcZ)p

= (aZ)kpp(aZ)p(bZ)
p(p−1)

2 (cZ)p

= (aZ)(kp+1)p = a(kp+1)pZ.

Hence there exists z ∈ Z such that

(2.14) (ac)p = a(kp+1)pz.

It is clear that p | 6kp. Since p > 3, p | kp and so p ∤ kp + 1. Since (ac)p(ac) =
(ac)(ac)p, Equation 2.14 implies that ca(kp+1)p = a(kp+1)pc and by Equation 2.13,
a(kp+1)p ∈ Z. So, (aZ)(kp+1)p = Z. But o(aZ) = p2 and hence p2 | (kp + 1)p which
implies that p | kp + 1. This contradiction completes the proof.
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Theorem 2.4. The group H1
8 is not capable.

Proof. By presentation of H1
8 we have:

yjxi = x3ij+iyj,(2.15)

zkxi = x3k i(i−1)

2
+iyikzk.(2.16)

Again substitute i = 3 and j = k = 1 in Equations 2.15 and 2.16. Since x9 = y3 = 1,
yx3 = x3y and zx3 = x3z. Thus 〈x3〉 ≤ Z(H1

8 ). Similar to the proof of Theorem
2.2, Z(H1

8 ) = 〈x3〉. If H1
8 is capable, there is a non-abelian group G with center Z

such that H1
8
∼= G

Z
. Since G is not centerless, there are elements a, b, c ∈ G \Z such

that

G

Z
=

〈
aZ, bZ, cZ | (aZ)9 = (bZ)3 = 1, (cZ)3 = (aZ)−3, (bZ)(aZ) = (aZ)4(bZ),

(cZ)(aZ) = (aZ)(bZ)(cZ), (cZ)(bZ) = (bZ)(cZ)

〉

.

Obviously, a9, b3, c9 ∈ Z and by Equation 2.15,

(aZbZ)n = (aZ)3
n(n−1)

2 (aZ)n(bZ)n.

Put n = 3. Since a9, b3 ∈ Z,

(ab)3Z = (abZ)3 = (aZbZ)3 = (aZ)9(aZ)3(bZ)3 = (aZ)3 = a3Z.

Hence there exists z ∈ Z such that (ab)3 = a3z and so

ba3 = a3b.(2.17)

On the other hand, c3Z = a−3Z and so there exists z1 ∈ Z such that

a3 = c−3z1.(2.18)

Since o(aZ) = 9 and o(bZ) = 3, by Equation 2.16 and substituting k = 1 and i = 3,
we can see that

ca3Z = (cZ)(aZ)3

= (aZ)9(aZ)3(bZ)3(cZ)

= (aZ)3(cZ) = a3cZ

and so there exists z2 ∈ Z such that

(2.19) ca3 = a3cz2.

We now insert Equation 2.18 in our last equation to deduce that cc−3z1 =
c−3z1cz2. Thus z2 = 1 and by Equation 2.19, ca3 = a3c. Therefore, a3 ∈ Z and
hence 9 = o(aZ) | 3, which is impossible. This completes the proof.

Theorem 2.5. The group H2
8 is not capable.
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Proof. By presentation of H2
8 and some tedious calculations, we have

yjxi = xijp+iyj ,(2.20)

zkxi = x
i(i−1)

2
kp+

k(k+1)

2
idp+iyikzk,(2.21)

zkyj = xjkdpyjzk.

In Equations 2.20 and 2.21, we insert i = p and j = k = 1. It is clear that
yxp = xpy and zxp = xpz and so 〈xp〉 ≤ Z(H2

8 ). Similar to Theorem 2.1, we can
see that Z(H2

8 ) = 〈xp〉. If H2
8 is capable, there is a non-abelian group G with center

Z such that H2
8
∼= G

Z
. Since G is not centerless, there are elements a, b, c ∈ G \ Z

such that

G

Z
=

〈

aZ, bZ, cZ | (aZ)p
2

= (bZ)p = (cZ)p = 1, (bZ)(aZ) = (aZ)p+1(bZ),
(cZ)(aZ) = (aZ)dp+1(bZ)(cZ), (cZ)(bZ) = (aZ)dp(bZ)(cZ)

〉

,

where d 6≡ 0, 1(mod p). It is obvious that ap
2

, bp, cp ∈ Z and by Equations 2.20 and
a similar argument used in the proof of the Theorem 2.1,

(2.22) bap = apb.

Moreover, by Equation 2.21,

(2.23) (aZcZ)n = (aZ)sndp(aZ)tnp(aZ)n(bZ)
n(n−1)

2 (cZ)n

in which sn = n(n−1)(n+1)
6 and tn = n(n−1)(n−2)

6 . It is easy to see that p | sp and
p | tp. Also by inserting n = 1 in Equation 2.23,

(ac)pZ = (acZ)p = (aZcZ)p

= (aZ)spdp(aZ)tpp(aZ)p(bZ)
p(p−1)

2 (cZ)p

= (aZ)p = apZ.

Hence there exists z ∈ Z such that (ac)p = apz and so cap = apc. This implies that
ap ∈ Z and therefore p2 = o(aZ) | p, which is our final contradiction.

3. Concluding Remarks

In this paper the authors continued a recently published paper of Zainal et al. [5]
in investigating finite p−groups of order p4. It is proved that three non-abelian
groups of this order are not capable. By results of [5] and our results to complete
the classification of capable group of order p4 it is enough to investigate the groups
H9 and H10 in Theorem 1.2. Our calculations with computer algebra software GAP
in working with small groups of order p4 suggests the following conjecture:

Conjecture 3.1. The groups H9 and H10 are not capable.

Acknowledgment. The authors would like to thank the referee for several insight-
ful remarks and comments, that led to a significant clarification and improvement
of this work.
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Abstract. Let G be a finite group and ω(G) be the set of element orders of G. Let k ∈
ω(G) and mk be the number of elements of order k in G. Let nse(G) = {mk|k ∈ ω(G)}.
The aim of this paper is to prove that, ifG is a finite group such that nse(G)=nse(U4(2)),

then G ∼= U4(2).

Keywords. element order; number of elements of the same order; projective special

unitary group; simple Kn - group.

1. Introduction

This section contains the relevant definitions, some standard facts on nse, and a
brief exposition of nse history. Throughout this paper, G is a finite group. We
denote by π(G) the set of prime divisors of |G|, and by ω(G), we introduce the
set of order of elements from G. Set mk = mk(G) = |{g ∈ G|o(g) = k}|, and
nse(G)={mk|k ∈ ω(G)}. In fact, mk is the number of elements of order k in G and
nse(G) is the set of sizes of elements with the same order in G.

To the world’s mathematics and researchers, one of the important problems in
group theory is characterization of a group by a given property, that is, to prove
there exists only one group with a given property (up to isomorphism). Until now,
different characterizations are investigated for finite simple groups. For instance,
in [21, 22] motivated by one of the Thompson’s problem, the authors introduced a
new characterization for the finite simple group G by nse(G) and |G|. In fact, they
proved that if G is a simple Ki- group (i = 3, 4), then G is characterizable by nse(G)
and |G| (The simple group G is called simple Kn-group if |π(G)| = n). Following
this result, several groups were characterized by nse and order. For example, in
[5, 11], it is proved that Suzuki group, and sporadic groups are characterizable by
nse and order.
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We remark here that not all groups can be characterized by their group orders
and the set nse. As an illustration, letH1 = C4×C4 andH2 = C2×Q8, where C2 and
C4 are cyclic groups of order 2 and 4 respectively, and Q8 is a quaternion group of
order 8. It is easy to see that nse(H1) = nse(H2) = {1, 3, 12} and |H1| = |H2| = 16
but H1 6∼= H2.

However, it is claimed that some simple groups could be characterized by ex-
actly the set nse without considering the order of group. In fact, a finite non-
abelian simple group H is called characterizable by nse, if every finite group G

with nse(G) = nse(H) implies that G ∼= H . In [7, 8, 9, 10, 12, 13, 24] it is
proved that the alternating groups An, where n ∈ {7, 8}, the symmetric groups
Sn where n ∈ {3, 4, 5, 6, 7}, M12, L2(27), L2(q) where q ∈ {16, 17, 19, 23}, L2(q)
where q ∈ {7, 8, 11, 13}, L2(q) where q ∈ {17, 27, 29}, are uniquely determined by
nse(G). Besides, in [1, 14, 15, 16] it is proved that U3(4), L3(4), U3(5), L3(5), are
uniquely determined by nse(G). Recently, in [3, 6, 18, 19], it is proved that the
simple groups U3(3), L3(3), G2(4), L2(3

n), where |π(L2(3
n))| = 4, and L2(2

m),
where |π(L2(2

m))| = 4, are uniquely determined by nse(G). Therefore, it is natural
to ask what happens with other kinds of simple groups.

In an effort to fill some of the empty ground about the characterization of simple
groups by nse, in this paper we will prove the following main theorem.
Main Theorem. Let G be a group such that nse(G) = nse(U4(2)). Then G is
isomorphic to U4(2).

2. Notation and Preliminaries

Before we get started, let us fix some notations that will be used throughout the
paper. For a natural number n by π(n), we mean the set of all prime divisors of n,
so it is obvious that if G is a finite group, then π(G) = π(|G|). A Sylow r-subgroup
of G is denoted by Pr and by nr(G), we mean the number of Sylow r- subgroup of
G. Also the largest element order of Pr is signified by exp(Pr). Moreover, we denote
by φ the Euler function. In the following, we bring some useful lemmas which be
used in the proof of the main theorem.

Lemma 2.1. [25]. Let G be a group containing more than two elements. If the
maximal number s of elements of the same order in G is finite, then G is finite and
|G| 6 s(s2 − 1).

Lemma 2.2. [24]. Let G be a group. If 1 6= n ∈ nse(G) and 2 ∤ n, then the
following statements hold:
(1) 2||G|;
(2) m2 = n;
(3) for any 2 < t ∈ ω(G), mt 6= n.

Lemma 2.3. [2]. Let G be a finite group and m be a positive integer dividing |G|.
If Lm(G) = {g ∈ G|gm = 1}, then m||Lm(G)|.
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Lemma 2.4. [23]. Let G be a group and P be a cyclic Sylow p-group of G of order
pα. If there is a prime r such that pαr ∈ ω(G), then mpαr = mr(CG(P ))mpα . In
particular φ(r)mpα |mpαr, where φ(r) is the Eular function of r.

Lemma 2.5. [17]. Let G be a finite group and p ∈ π(G) be odd. Suppose that P
is a Sylow p-subgroup of G and n = psm, where (p,m) = 1. If P is not cyclic group
and s > 1, then the number of elements of order n is always a multiple of ps.

We say that a group G acts semi regularly on set X if G acts on X in such a
way that Gx = 1 for all x ∈ X .

Lemma 2.6. [20]. Let the finite group G acts on the finite set X. If the action is
semi regular, then |G| | |X |.

Let us mention the structure of simple K3-groups, that will be needed in Section
3.

Lemma 2.7. [4]. If G is a simple K3-group, then G is isomorphic to one of the
following groups:

A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3), U4(2).

Lemma 2.8. [22]. Let G be a group and M a simple K3-group. Then G ∼= M if
and only if the following hold: (1) |G| = |M | , (2) nse(G) = nse(M).

3. Main Theorem and its Proof

Suppose G is a group such that nse(G) = nse(U4(2)). By Lemma 2.1, we can
assume that G is finite. Let mn be the number of elements of order n. We notice
that mn = kφ(n), where k is the number of cyclic subgroups of order n in G. In
addition, we notice that if n > 2, then φ(n) is even. If n ∈ ω(G), then by Lemma
2.3 and the above argument, we have

{
φ(n)|mn

n|
∑

d|nmd
(3.1)

In the proof of the main theorem, we often apply formula (3.1) and the above
comments.

Proof of the Main Theorem. Let G be a group with

nse(G) = nse(U4(2)) = {1, 315, 800, 3780, 4320, 5184, 5760}

where U4(2)) is the projective special unitary group of degree 4 over field of order
2. We have divided the proof into a sequence of lemmas.
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Remark 3.1. Let 2 6= p ∈ π(G), by formula (3.1), p|(1 + mp) and (p − 1)|mp, which

implies that p ∈ {3, 5, 7, 17, 19}.

In the following lemma, we prove some basic properties of group G:

Lemma 3.1. If p ∈ π(G) and p ∈ {2, 3, 5}, then

(1) 2 ∈ π(G) and m2 = 315;

(2) m3 = 800, m5 = 5184;

(3) {52, 36, 29}
⋂
ω(G) = Ø;

(4) |P2||2
9.

Proof. The proof is straightforward according to Lemma 2.2, Lemma 2.3, and for-
mula (3.1).

Lemma 3.2. {17, 19}
⋂
π(G) = Ø.

Proof. We prove that 17 /∈ π(G). Conversely, suppose that 17 ∈ π(G). Then
formula (3.1) implies m17 = 5184. On the other hand, by formula (3.1), we conclude
that if 2.17 ∈ ω(G), then m2.17 ∈ {800, 4320, 5184, 5760} and 2.17|1 +m2 +m17 +
m2.17(= 6300, 9820, 10684, 11260), which is a contradiction, and hence 2.17 /∈ ω(G).
Since 2.17 /∈ ω(G), the group P17 acts fixed point freely on the set of elements
of order 2 of G and by Lemma 2.6, |P17||m2, which is a contradiction. Hence,
17 /∈ π(G). Similarly, we can prove that 19 /∈ π(G).

To remove the prime 7, let us first show that 5 ∈ π(G).

Lemma 3.3. {5}
⋂
π(G) = {5}.

Proof. Assume that 5 /∈ π(G).
• If 3, 7 /∈ π(G), thenG is a 2-group. Since 29 /∈ ω(G), we have ω(G) ⊆ {1, 2, 22, · · · , 28}.
Hence |G| = 2m = 20160 + 800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5, where
k1, k2, k3, k4, k5 and m are non-negative integers, and 0 6 k1+k2+k3+k4+k5 6 2.
It is obvious that 20160 6 |G| 6 20160 + (k1 + k2 + k3 + k4 + k5)5760 and so
20160 6 |G| 6 20160 + 2.5760. Now, it is easily seen that the equation has no
solution.
Hence 3 or 7 belongs to π(G), and the following cases are considered.
• If 7 ∈ π(G), by formula (3.1) m7 = 5760, then as exp(P7) = 7, |P7||1 +m7 and
so |P7| = 7. Since n7 = m7

φ(7) = 26.3.5||G|, it follows that 5 ∈ π(G), which is a

contradiction.
• If 3 ∈ π(G), then exp(P3) = 3, 32, 33, 34, 35.

⋆ If exp(P3) = 3, then by Lemma 2.3, |P3||(1 + m3) and so |P3||3
2. We will

consider two cases for |P3|.
Case 1 If |P3| = 3, then since n3 = m3

φ(3) = 23.53||G|, 5 ∈ π(G) which is a contradic-
tion.
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Case 2 If |P3| = 32, then since 5, 7 /∈ π(G) and π(G) ⊆ {2, 3, 5, 7}, we can assume
that {2} ⊆ π(G) ⊆ {2, 3}, and so we have

ω(G) ⊆ {1, 2, · · ·28} ∪ {3, 3.2, 3.22, 3.23, · · · , 3.27}

(28.3 /∈ ω(G) by formula (3.1)) and |ω(G)| 6 17. Therefore 20160+800k1+3780k2+
4320k3+5184k4+5760k5 = |G| = 2a.9 where k1, k2, k3, k4, k5, and a are non-negative
integers and 0 6 k1+k2+k3+k4+k5 6 10. Since 20160 6 2a.9 6 20160+10.5760,
we have a = 12, or a = 13. If a = 12, then since |P2||2

9, we have a contradiction.
Similarly, we can rule out a = 13.

⋆ If exp(P3) = 32, then, by Lemma 2.3, |P3||(1 +m3 +m32) and so |P3||3
8. (for

example, when m9 = 5760 ). We will consider seven cases for |P3|.
Case 1 . If |P3| = 32, then n3 = m9

φ(9) , since m9 ∈ {3780, 4320, 5184, 5760}, n3 =

32.2.5.7, n3 = 24.32.5, or n3 = 26.3.5, and so 5 ∈ π(G), which is a contradiction,
and if n3 = 25.33, since n3 6≡ 1 (mod 3), we have a contradiction.
Case 2 . If |P3| = 33, then since 5, 7 /∈ π(G), we can assume that {2} ⊆ π(G) ⊆ {2, 3}
and so we have ω(G) ⊆ {1, 2, · · ·28}∪{3, 3.2, 3.22, · · · , 3.27}∪{32, 32.2, 32.22, · · · , 32.27}
( 28.3 /∈ ω(G), 28.32 /∈ ω(G) by formula (3.1) ) and |ω(G)| 6 25. Therefore 20160+
800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5 = |G| = 2a.27, where k1, k2, k3, k4, k5,
and a are non-negative integers and 0 6 k1 + k2 + k3 + k4 + k5 6 18. Since
20160 6 2a.27 6 20160 + 18.5760, we have a = 10, a = 11, or a = 12.
If a = 10, then since |P2||2

9, we have a contradiction. Similarly, we can rule out
a = 11 and a = 12.
Case 3 . If |P3| = 34, then since exp(P3) = 32 and 28.3, 28.9 /∈ ω(G), ω(G) ⊆
{1, · · · , 28} ∪ {3, · · · , 3.27} ∪ {32, · · · , 32.27}. On the other hand, if 28 ∈ ω(G) since
28.3 /∈ ω(G), the group P3 acts fixed point freely on the set of elements of order 28.
Hence |P3||m28 = 5760, which is a contradiction. Hence 28 /∈ ω(G) and |ω(G)| 6 24.
Therefore 20160+800k1+3780k2+4320k3+5184k4+5760k5 = |G| = 2a.81, where
k1, k2, k3, k4, k5, and a are non-negative integers and 0 6 k1+k2+k3+k4+k5 6 17.
Since 20160 6 2a.81 6 20160 + 17.5760, we have a = 8, a = 9, or a = 10.
If a = 8, then 576 = 800k1 + 3760k2 + 4320k3 + 5184k4 + 5760k5 where 0 6

k1 + k2 + k3 + k4 + k5 6 17. By a computer calculation, it is easy to see this
equation has no solution.
If a = 9, then 21312 = 800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5 where 0 6

k1 + k2 + k3 + k4 + k5 6 17. The only solution of this equation is (0, 0, 0, 3, 1). We
show this is impossible. Since |ω(G)| = 11 and 28 /∈ ω(G), exp(P2) = 2i, where
3 6 i 6 7. Hence, if exp(P2) = 2i where 3 6 i 6 7, then |P2||(1+m2+m4+· · ·+m2i)
by Lemma 2.3. In fact |P2||(1+315+800t1+3780t2+4320t3+5184t4+5760t5) where
t1, t2, t3, t4, t5, are non-negative integers and 0 6 t1 + t2 + t3 + t4 + t5 6 6. Because
k1 = 0 and m3 = 800, m2i 6= 800 for 1 6 i 6 7, t1 = 0. Since k2 = 0, 0 6 t2 6 1.
We claim t2 = 0. Suppose, contrary to our claim, t2 = 1. If m4 = 3780, then since
m9 ∈ {3780, 4320, 5184, 5760}, we have a contradiction and so t2 = 0. If m4 6= 3780,
then by a computer calculation m8 = 3780, since m9 ∈ {3780, 4320, 5184, 5760}, we
have a contradiction and so t2 = 0. Also k3 = 0, k4 = 3, and k5 = 1, thus 0 6 t3 6 1,
0 6 t4 6 4, and 0 6 t5 6 2. By an easy computer calculation, this is impossible.
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If a = 10, then since |P2||2
9, we have a contradiction.

Similarly, we can rule out the other cases.

⋆ If exp(P3) = 33, then by Lemma 2.3, |P3||(1+m3+m32 +m33) and so |P3||3
4

(for example when m9 = 5184 and m27 = 5760). We will consider two cases for
|P3|.
Case 1 . If |P3| = 33, then n3 = m27

φ(27) , since m27 ∈ {3780, 4320, 5184, 5760}, n3 =

2.3.5.7, n3 = 24.3.5, or n3 = 26.5, and so 5 ∈ π(G), which is a contradiction, and if
n3 = 25.32, since n3 6≡ 1 (mod 3), we have a contradiction.
Case 2 . If |P3| = 34, then by Lemma 2.5, 27|m27. Since (27 6| 5760), it is understood
that m27 ∈ {3780, 4320, 5184}). Since 28.3 /∈ ω(G), 28.32 /∈ ω(G), 28.33 /∈ ω(G),
and 28 /∈ ω(G), |ω(G)| 6 32. Therefore 20160+800k1+3780k2+4320k3+5184k4+
5760k5 = |G| = 2a.81, where k1, k2, k3, k4, k5, and a are non-negative integers and
0 6 k1 + k2 + k3 + k4 + k5 6 25. Since 20160 6 2a.81 6 20160 + 25.5760, we have
a = 8 , a = 9, or a = 10.
If a = 8, then 576 = 800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5 where 0 6

k1 + k2 + k3 + k4 + k5 6 25. By a computer calculation, it is easily seen that the
equation has no solution.
If a = 9, then 21312 = 800k1 + 3780k2 + 4320k3 + 5184k4 + 5760k5 where 0 6

k1 + k2 + k3 + k4 + k5 6 25. By a computer calculation, the only solution of
this equation is (0, 0, 0, 3, 1). We show this is impossible. Since |ω(G)| = 11 and
28 /∈ ω(G), exp(P2) = 2i, where 3 6 i 6 7. Hence, if exp(P2) = 2i, where 3 6 i 6 7
then |P2||(1 +m2 +m4 + · · ·+m2i) by Lemma 2.3. In fact |P2||(1 + 315 + 800t1 +
3780t2 + 4320t3 + 5184t4 + 5760t5) where t1, t2, t3, t4, t5, are non-negative integers
and 0 6 t1 + t2 + t3 + t4 + t5 6 6. Because k1 = 0 and m3 = 800, m2i 6= 800
for 1 6 i 6 7, t1 = 0. Since k2 = 0, 0 6 t2 6 1. We claim t2 = 0. Suppose,
contrary to our claim, t2 = 1. If m4 = 3780, then since m27 ∈ {3780, 4320, 5184},
we have a contradiction and so t2 = 0. If m4 6= 3780, then by computer calculation
m8 = 3780, since m27 ∈ {3780, 4320, 5184}, we have a contradiction and so t2 = 0.
Also k3 = 0, k4 = 3, and k5 = 1, thus 0 6 t3 6 1, 0 6 t4 6 4, and 0 6 t5 6 2. By
an easy computer calculation, this is impossible.
If a = 10, then since |P2||2

9, we have a contradiction.

⋆ If exp(P3) = 34, then by Lemma 2.3, |P3||(1 +m3 +m32 +m33 +m34) and so
|P3||3

4 (for example when m9 = 5760, m27 = 3780 ,and m81 = 4320).
If |P3| = 34, then n3 = m81

φ(81) , since m81 ∈ {3780, 4320, 5184}, n3 = 24.5, or n3 =

2.5.7, and so 5 ∈ π(G), which is a contradiction, and if n3 = 25.3, since a cyclic
group of order 81 has two elements of order 3, m3 6 25.3.2 = 192, which is a
contradiction.

⋆ If exp(P3) = 35, then by Lemma 2.3, |P3||(1 +m3 +m32 +m33 +m34 +m35)
and so |P3||3

5 (for example when m9 = 5184, m27 = 5760 ,and m81 = m243 = 5184
). In a similar way we have a contradiction. Therefore, 5 ∈ π(G).

Lemma 3.4. {7}
⋂
π(G) = Ø.

Proof. By Lemma 2.3 |P5||1 + m5 and so |P5| = 5. In the following, that the
prime 7 do not belong to π(G) is proved. Let 7 ∈ π(G). Then formula (3.1) implies
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m7.5 ∈ {4320, 5184, 5760} and 7.5|1+m5+m7+m5.7(= 15256, 16129, 16705), which
is a contradiction, and hence 5.7 /∈ ω(G). It follows that the Sylow 7-subgroup of
G acts fixed point freely on the set of elements of order 5 and so |P7||m5, which is
a contradiction. Hence 7 /∈ π(G).

From what has already been proved, we conclude 2,5 ∈ π(G), so the following
cases will be considered {2, 5}, {2, 3, 5}.

Lemma 3.5. π(G) = {2, 3, 5}.

Proof. If π(G) = {2, 5}, since exp(P5) = 5, then by Lemma 2.3, |P5||1 + m5, and
so |P5| = 5. Since n5 = m5

φ(5) = 24.34, it follows that 3 belongs to π(G), which is

a contradiction. Hence π(G) = {2, 3, 5}. The proof is completed by showing that
|G| = |U4(2)|.

Lemma 3.6. G ∼= U4(2).

Proof. First, we show that |G| = |U4(2)|. From the above arguments, we have |P5| =
5. Now, we prove 10 /∈ ω(G). Conversely, suppose that 10 ∈ ω(G). Then formula
(3.1) implies m10 ∈ {800, 3780, 4320, 5760}. On the other hand, if 2.5 ∈ ω(G), then
by Lemma 2.4, m2.5 = m5.φ(2).t for some integer t, which is a contradiction and
hence 2.5 /∈ ω(G). Since 2.5 /∈ ω(G), the group P2 acts fixed point freely on the set
of elements of order 5, and so |P2||m5, hence |P2||3

4.26. In fact |P2||2
6. In the same

way, since 15 /∈ ω(G), |P3||m5 and hence |P3||3
4.26. In fact |P3||3

4. Therefore we
have |G| = 2m.3n.5. Since 20160 = 26.32.5.7 6 |G| = 2m.3n.5, |G| = 26.34.5. Hence
|G| = 26.34.5 = |U4(2)| and by assumption nse(G) = nse(U4(2)), so by Lemma 2.8,
G ∼= U4(2) and the proof is completed.
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Abstract. Let G be a finite group. The set D ⊆ G with |D| = k is called a (n, k, λ, µ)-
partial difference set (PDS) in G if the differences d1d

−1
2 , d2, d2 ∈ D, d1 6= d2, rep-

resent each non-identity element in D exactly λ times and each non-identity element
in G − {D} exactly µ times. In the present paper, we determine for which group
G ∈ {D2n, T4n, U6n, V8n} the derangement set is a PDS. We also prove that the de-
rangement set of a Frobenius group is a PDS.
Keywords. Finite group; Frobenius group; derangement set.

1. Introduction

Let G be a finite group. A symmetric subset of group G is a subset S ⊆ G, where
1 6∈ S and S = S−1. The Cayley graph Γ = Cay(G,S) with respect to S is a graph
whose vertex set is V (Γ) = G and two vertices x, y ∈ V (Γ) are adjacent if and only
if yx−1 ∈ S. It is a well-known fact that a Cayley graph is connected if and only
if G = 〈S〉. Also a Cayley graph is a regular graph (every vertex has the same
degree).

A derangement is a permutation with no fixed points. The set D of permu-
tation group is derangement if all elements of D are derangements. Suppose G is
a permutation group and D ⊆ G is a derangement set. The derangement graph
ΓG = Cay(G,D) has the elements of G as its vertices and two vertices are adjacent
if and only if they do not intersect.

Suppose G is a permutation group of degree n. A subset S of G is said to be
intersecting if for any pair of permutations σ, τ ∈ S there exists i ∈ {1, 2, . . . , n}
such that στ−1(i) = i. A group G has the Erdös-Ko-Rado (ekr) property, if for
any intersecting subset S ⊆ G, |S| is bounded above by the size of the largest point
stabilizer in G. The maximal intersecting set is one with maximum size. A group
can have the property under one action while it fails to have this property under
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another action. We refer to [1, 2, 8, 9, 13, 17] for background information about the
history of this intresting problem.

Section 2 includes the ekr properties of well-known groups. In section 3, the
derangement set of well-known groups are studied.

2. Erdös-Ko-Rado property

For the subgroupH of groupG and the element g ∈ G, the conjugate of subgroupH

in G is denoted by Hg = g−1Hg. Suppose G ≤ Sym(n) is a transitive permutation
group, then G is called a Frobenius group if it has a non-trivial subgroup H , where
H ∩Hg = {1}, for all g ∈ G \H . The kernel of Frobenius group G is defined as

K = (G \ ∪g∈GH
g) ∪ {1}.

It is not difficult to see that all non-identity elements of K are all derangement
elements of G. In other words, let G be a non-trivial permutation group and
G∗ = G − {1}. If G is a Frobenius group then for all g ∈ G∗, |fix(g)| ≤ 1 and at
least there exist an element g0 ∈ G∗ such that |fix(g0)| = 1.

Theorem 2.1. [16] (Frobenius Theorem) Suppose H is a proper non-identity
subgroup of G such that for all g ∈ G \ H, we have H ∩ g−1Hg = {1}. Let
K = G \ ∪g∈Gg

−1(H \ {1})g, then K ✁G, G = KH and H ∩K = {1}.

Proposition 2.1. [2] Every Frobenius group has the ekr property.

Theorem 2.2. Let G ≤ Sym(n) and the derangement graph Cay(G,D) be the
disjoint union of n-cliques. Then G has the ekr property.

Proof. Let {k1, k2, . . . , kn−1} be the set of derangements of G and {gi, gik1, . . . , gi
kn−1} be the vertices of the i-th clique in derangemen graph Cay(G,D), where
gi ∈ G. Since each clique has size n and G acts on n elements, every elemen of each
clique has exactly one fixed point and every pair of elements in a clique has no same
fixed point. Let H be the set of all vertices in Cay(G,D) that fixes point x. Suppose
1 6= grkt ∈ H and (grkt)

g ∈ H , where g ∈ G − H . So g−1grktg(x) = x and thus
grktg(x) = g(x). This means that grkt fixes g(x) while g(x) 6= x, a contradiction.
The proof is completed.

A group G acting on a set X is transitive if for every pair of points (a, b) ∈ X

there exist x ∈ G such that x.a = b. The permutation group G is regular if G acts
transitively on X and for all x ∈ X , Gx = 1. A group G is 2–transitive if for any
two ordered pairs (a, r), (b, s) ∈ X , with a 6= r and b 6= s there exists x ∈ G such
that x.a = b and x.r = s . We say that G is sharply 2-transitive if G is 2-transitive
and for any two points x, y ∈ X , Gx,y = 1. In this paper by, (G|X) we mean that
the group G acts on the set X .
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Theorem 2.3. [5] Let (G|X) be transitive and x ∈ X. Then (G|X) is 2-transitive
if and only if Gx acts transitvely on the set X − {x}.

Theorem 2.4. [5] (The orbit-stabilizer property) Let (G|X) and x ∈ X. If G is
finite, then |xG||Gx| = |G|.

Theorem 2.5. [5] (Galois Theorem). Let (G|X) be a transitive permutation
group of degree a prime number. Then the group G is solvable if and only if for all
x, y ∈ X, x 6= y, we have Gx,y = 1.

Theorem 2.6. Let (G|X) be a 2-transitive permutation group of degree n and
(x1, x2) ∈ X2. Then |G| = n(n− 1)|Gx1,x2

|.

Proof. Suppose the group G acts on X , transitively. So the action of G on X has
one orbit. Then by Theorem 2.4, |G| = n|Gx1

|. On the other hand, by Theorem 2.3
group Gx1

acts transitively on the set X−{x1}, and by the orbit-stabilizer property
|Gx1

| = (n− 1)|Gx1,x2
|. This completes the proof.

Theorem 2.7. Let (G|X) be a transitive non-regular group of degree a prime num-
ber. If G is solvable then G has the ekr property.

Proof. Since G is non-regular, there exist x ∈ X such that Gx 6= 1. By Theorem
2.5, for x, y ∈ X we have Gx,y = 1 and this means that every non-identity element
of G fixes at most one element. If every non-identity element of G fixes no element
of X , then |G| = |X | and it is contradict with the non-regularity of G. So there
exist at least one 1 6= x ∈ X such that |Gx| = 1. Hence, G is Frobenius group and
by Proposition 2.1, it has the ekr property.

Theorem 2.8. Let (G|X) be a transitive permutation group such that the action
G is non-regular and for all x, y ∈ X, x 6= y, we have Gx,y = 1. Then G has the
ekr property.

Proof. Similar to the proof of theorm 2.7, we can conclude that G is Frobenius
group and the result follows.

Theorem 2.9. [5] Let (G|X) and the act of G be 2-transitive. Then the action
of G on X is sharply 2-transitive if and only if |G| = n(n− 1).

Theorem 2.10. Let (G|X) be 2-transitive non-regular permutation group of degree
n such that |G| = n(n− 1). Then G has the ekr property.

Proof. By Theorem 2.9, G is a sharply 2-transitive group and so for x, y ∈ X(x 6= y),
we have Gx,y = 1. Now, similar to the proof of Theorem 2.7, G is a Frobenius group
and thus it has the ekr property.
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Let ρ : G → GL(n,F) be a representation with ρ(g) = [g]β . The character
χρ : G → C of ρ is defined as χρ(g) = tr([g]β) for some basis β. The character χ
of an irreducible representation is called the irreducible character and χ is linear, if
χ(1) = 1. The set of all irreducible characters of group G is denoted by Irr(G).

Let (G|X) and fix(g) = {x ∈ X |g(x) = x}. The character π such that π(g) =
|fix(g)| is called permutation character and the character χ = |fix(g)| − 1 is called
standard character.

Theorem 2.11. [12] Let G be 2-transitive group, then the standard character of
G is irreducible character.

Theorem 2.12. [6] Let G be a finite group with a normal symmetric subset S.
Let A be the adjacency matrix of graph Cay(G,S). Then the eigenvalues of A are
given by

[λχ]
χ(1)2 , χ ∈ Irr(G)

where λχ = 1
χ(1)

∑

s∈S χ(s).

Theorem 2.13. The derangement graph of any 2-transitive group is not a bipar-
tite graph.

Proof. Let G acts 2-transitive on n elementsa and complete bipartite graph Kr,s be
the derangement graph of G. Since the derangement graph is a regular graph, we
have r = s. The eigenvalues of Kr,r are {[−r]1, [0]2r−2, [r]1}. On the other hand by
Theorem 2.11, the standard character π of a 2-transitive group is irreducible. So by

Theorem 2.12, we have λχ = −|D|
χ(1) = −r

n−1 . Since the rational eigenvalues of a graph

are integers, we have n = 2 and then G ∼= Z2 or G ∼= {1}.

3. Partial difference set

Let G be a finite group and D ⊆ G. Then D is a (n, k, λ, µ)-partial difference set
(PDS) in G if and only if DD−1 = γ1G+λD+µ(G−D), where γ = k−µ if 1G 6∈ D

and γ = k − λ if 1G ∈ D. We will usually assume that 1G 6∈ D and D(−1) = D, in
which case, we have

D2 = (k − µ)1G + (λ− µ)D + µG.

Partial difference sets were named by I. M. Chakravarti, 1969 [4], but introduced
by Bose and Cameron, 1965 [3] in their studies of calibration designs and the bridge
tournament problem. D is called abelian if G is abelian. It is well known that a
PDS D with 1 6∈ D and {d−1 : d ∈ D} = D is equivalent to a strongly regular
Cayley graph, such a PDS is called regular. The study of partial difference sets is
closely related to partial geometries, Schur rings, strongly regular Cayley graphs
and two-weight codes. Asurvey of Ma [15] contains very detailed descriptions of
these connections.
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Theorem 3.1. Let G = HK ≤ Sym(n) be a Frobenius group with kernel K. The
derangement set of G is a (n|H |, n− 1, n− 2, 0)-PDS.

Proof. We know that |K| = n. Every non-identity element of kernel G is a derange-
ment of G and D ∪ {1} is a subgroup. This implies that the derangement set of G
is a (n|H |, n− 1, n− 2, 0)-PDS.

Theorem 3.2. Consider the dihedral group D2n with derangement set D. If n is
odd, then D is a PDS and if n is even, then D is not a PDS.

Proof. Consider the dihedral group D2n = 〈a, b|an = b2 = 1, aba−1 = a−1〉.
If n is odd, then D2n is a Frobenius group and by Theorem 3.1 the derange-
ment set is a PDS. Now, let n be even. Suppose that a = (1, 2, 3, . . . , n) and
b = (1, 2)(3, n) . . . (n2 + 1, n

2 + 2) is permutation presentation of generators of D2n.
The derangement set of D2n is

D = {a, a2, . . . , an−1, b, a2b, a4b, . . . , an−2b}.

If aia−j = a2, then i− j ≡ 2(mod n) and {(3, 1), (4, 2), . . . , (n− 1, n− 3)} are n− 3
solutions for (i, j). On the other hand, if (aib)(ajb)−1 = a2(i, j are even), then
aia−j = a2 and so i − j ≡ 2(mod n). Thus {(4, 2), (6, 4), . . . , (n − 2, n − 4)} are
n/2 − 2 solutions for (i, j). One can see that a(an−1)−1 = a2, b(an−2b)−1 = a2

and (a2b)b−1 = a2. Let (aib)a−j = a2, by using the relation of group, we have
ai−jb = a2 and this is impossible. The equation ai(ajb)−1 = a2 is impossible, too.
So if di, dj ∈ D, then did

−1
j = a2 has (3n/2) − 2 solutions. If aia−j = a, then

i − j ≡ 1(mod n) and {(2, 1), (3, 2), . . . , (n − 1, n − 2)} are the solutions for (i, j).
By the relation of D2n, there is no other solutions for did

−1
j = a. So in this case

there are n− 2 solutions. Then we conclude that the derangement set of dihedral
group in this case is not a PDS.

Consider the dicyclic group T4n, U6n and V8n by the following presentations:

T4n = 〈a, b|a2n = e, an = b2, b−1ab = a−1〉,

U6n = 〈a, b|a2n = b3 = e, an = b2, a−1ba = b−1〉,

V8n = 〈a, b|a2n = b4 = e, aba = b−1, ab−1a = b−1〉.

Theorem 3.3. The derangement set of dicyclic group T4n is a (4n, 4n − 1, 4n−
2, 0)-PDS.

Proof. In [7] Darafsheh proved that two elements a = (1, 2, 3, . . . , 2n)(2n+ 1, 2n+
2, 2n + 3, . . . , 4n) and b = (1, 2n + 1, n + 1, 3n + 1)(2, 4n, n + 2, 3n)(3, 4n − 1n +
3, 3n− 1), . . . , (n− 1, 3n+3, 2n− 1, 2n+3)(n, 3n+2, 2n, 2n+2) are the generators
of T4n. All elements of T4n have no fixed point. Then D = T4n − {e} which is a
(4n, 4n− 1, 4n− 2, 0)-PDS.
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Theorem 3.4. The derangement set of U6n(n ≥ 4) is not a PDS set.

Proof. Let a = (1, 2, 3, . . . , 2n)(2n+1, 2n+2) and b = (2n+1, 2n+2, 2n+3) be the
permutation peresentations of generators of U6n [7]. One can see that the derange-
ment set of U6n is D = {aib, aib2|2 ≤ i ≤ 2n− 2 and i is even}. Let aibj , arbs ∈ D
and (aibj)(arbs)−1 = b. Then we have aibj−sa−r = b and so a−ibar = bj−s. Thus
ar−ia−rbar = bj−s and by using the relation of U6n, we have ar−ib(−1)r = bj−s.
This yields that

{
r ≡ i (mod 2n)
j − s = 1

.

Hence the relation (aibj)(arbs)−1 = b has n − 1 solutions. On the other hand
(aibj)(arbs)−1 = a has no solution and thus D is not a PDS set.

Theorem 3.5. The derangement set of V8n (n ≥ 3) is not a PDS set.

Proof. For group V8n we can consider two following cases:

• Case 1. Suppose n is an odd number. Let a = (1, 2, 3, . . . , 2n)(2n + 1, 2n +
2, . . . , 4n) and b = (1, 2, 2n + 1, 2n + 2)(3, 2n, 2n + 3, 4n)(4, 4n − 1, 2n + 4, 2n −
1) . . . (n+ 1, 3n+ 2, 3n+ 1, n+ 2) be the permutation peresentations of generators
of V8n [7]. One can see that the derangement set of V8n is

D = {a, a2, . . . , a2n−1, b, b2, b3, aib, aib2, aib3, arb2},

where 2 ≤ i ≤ 2n− 2 (i is even) and 1 ≤ r ≤ 2n− 1 (r is odd).

We are going to show that the number of elements of A = {di, dj ∈ D|did
−1
j = a}

and B = {di, dj ∈ D|di, d
−1
j = a2} are not equal. By considering i − j ≡

1 (mod 2n), the equation ai(aj)−1 = a has 2n − 2 solutions. Similarly, the
equation (aib2)(ajb2)−1 = a has 2n − 2 solutions. On the other hand, we have
b2(a2n−1b2)−1 = a and (ab2)(b2)−1 = a. So the set A has 4n − 2 elements. Now,
we compute the elements of the set B. By considering i − j ≡ 2 (mod 2n), the
equation ai(aj)−1 = a2 has 2n− 3 solutions. Also, (aib2)(ajb2)−1 = a2 has 2n− 3
solutions. Suppose that 4 ≤ i ≤ 2n − 2 (i is even) and j ≡ i − 2 (mod 2n), then
we have (aib)(ajb)−1 = a2 and (aib3)(ajb3)−1 = a2. This means that each of this
equations has n − 2 solutions. On can see that bi(a2n−2bi)−1 = a2 for i = 1, 2, 3.
On the other hand, we have (a2bi)(b−i) = a2(i = 1, 2, 3), (ab2)(a2n−1b2) = a2 and
a(a2n−1)−1 = a2. Then the set B has 6n− 2 elements and the derangement set of
V8n(n is odd) is not a PDS set.

• Case 2. Suppose n is even number. Let a = (1, 2, 3, . . . , 2n)(2n + 1, 2n +
2, . . . , 4n) and b = (1, 2, 2n + 1, 2n + 2)(3, 2n, 2n + 3, 4n)(4, 4n − 1, 2n + 4, 2n −
1) . . . (n, 3n+3, 3n, n+3)(n+1, n+2, 3n+1, 3n+2) be the permutation peresentations
of generators of V8n [7]. One can see that the derangement set of V8n is

D = {a, a2, . . . , a2n−1, b, b2, b3, aib, aib2, aib3, arb, arb2, asb2, asb3},
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where 2 ≤ i ≤ 2n−2 (i is even), r ∈ {1, 5, 9, . . . , 2n−3} and s ∈ {3, 7, 11, . . . , 2n−1}.

Now, we show that the number of elements of E = {di, dj ∈ D|did
−1
j = a} and

F = {di, dj ∈ D|did
−1
j = a4} are not equal. By regarding i − j ≡ 1 (mod 2n),

the equation ai(aj)−1 = a has 2n − 2 solutions. If j ≡ i − 1 (mod n) and i ∈
{2, 5, 6, 9, 10, . . . , 2n − 2}, then the equation (aibs)(ajbs)−1 = a, where s ∈ {1, 2}
has n− 1 solutions. If j ≡ i− 1 (mod n) and i ∈ {3, 4, 7, 8, 11, . . . , 2n− 1}, then the
equation (aibs)(ajbs)−1 = a, where s ∈ {2, 3} has n− 1 solutions. One can see that
(abt)(bt)−1 = a, where t ∈ {1, 2} and bt(a2n−1bt)−1 = a, where t ∈ {2, 3}. Then
the set E has 6n − 2 elements. Now, we compute the elements of the set F . By
considering i − j ≡ 4 (mod 2n) the equation ai(aj)−1 = a4 has 2n − 5 solutions.
It is clear that a1(a2n−3)−1 = a2(a2n−2)−1 = a3(a2n−1)−1 = a4. One can see that
if t ∈ {1, 2, 3} then (a4bt)(bt)−1 = a4, and bt(a2n−4bt)−1 = a4. Let i, j be even,
i − j ≡ 4 (mod 2n) and r ∈ {1, 2, 3}. Then (aibr)(ajbr)−1 = a4 yields 3(n − 1)
solutions. Let i be odd, i− j ≡ 4 (mod 2n) and r ∈ {5, 9, 13, . . . , 2n− 3}. Then by
using (aibr)(ajbr)−1 = a4 we get n − 2 solutions for this equation. Let i be odd,
i− j ≡ 4 (mod 2n) and r ∈ {7, 11, 15, . . . , 2n− 1}. Again by (aibr)(ajbr)−1 = a4 we
acheive n− 2 solutions. If i ∈ {1, 2} then (abi)(a2n−3bi)−1 = a4. If i ∈ {2, 3} then
(a3bi)(a2n−1bi)−1 = a4 and if i ∈ {1, 2, 3} then (a2bi)(a2n−2bi)−1 = a4. So the set
F has 7n − 2 elements. Then the derangement set of V8n(n is odd) is not a PDS
set.
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Abstract. Let G = (V,E) be a simple graph of order n. The total dominating set of

G is a subset D of V that every vertex of V is adjacent to some vertices of D. The

total domination number of G is equal to minimum cardinality of total dominating set

in G and is denoted by γt(G). The total domination polynomial of G is the polynomial

Dt(G, x) =
∑n

i=γt(G) dt(G, i)xi, where dt(G, i) is the number of total dominating sets

of G of size i. A root of Dt(G, x) is called a total domination root of G. The set of total

domination roots of graph G is denoted by Z(Dt(G, x)). In this paper, we show that

Dt(G, x) has δ−2 non-real roots and if all roots of Dt(G, x) are real, then δ ≤ 2, where

δ is the minimum degree of vertices of G. Also we show that if δ ≥ 3 and Dt(G, x)

has exactly three distinct roots, then Z(Dt(G, x)) ⊆ {0,−2±
√
2i, −3±

√
3i

2
}. Finally we

study the location roots of total domination polynomial of some families of graphs.

Keywords. graph; total domination number; total domination polynomial; root.

1. Introduction

Let G = (V,E) be a simple graph. The order of G is the number of vertices of G.
For any vertex v ∈ V , the open neighborhood of v is the setN(v) = {u ∈ V |uv ∈ E}
and the closed neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊂ V , the
open neighborhood of S is the set N(S) =

⋃

v∈S N(v) and the closed neighborhood
of S is the set N [S] = N(S) ∪ S. A leaf (end-vertex) of a graph is a vertex of
degree one, while a support vertex is a vertex adjacent to a leaf. The set D ⊂ V

is a total dominating set if every vertex of V is adjacent to some vertices of D,
or equivalently, N(D) = V . The total domination number γt(G) is the minimum
cardinality of a total dominating set in G. A total dominating set with cardinality
γt(G) is called a γt-set. An i-subset of V is a subset of V of cardinality i. Let
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Dt(G, i) be the family of total dominating sets of G which are i-subsets and let
dt(G, i) = |Dt(G, i)|. The polynomial Dt(G;x) =

∑n
i=1 dt(G, i)xi is defined as total

domination polynomial of G. As an example, Dt(Kn, x) = (x + 1)n − nx − 1 and
Dt(K1,n, x) = x((x+ 1)n − 1). A root of Dt(G, x) is called a total domination root
of G. The set of total domination roots of graph G is denoted by Z(Dt(G, x)).
For many graph polynomials, their roots have attracted considerable attention. For
example in [5] Brown, Hickman, and Nowakowski proved that the real roots of the
independence polynomials are dense in the interval (−∞, 0], while the complex roots
are dense in the complex plane. For matching polynomial, in [14] was proved that
all roots of the matching polynomials are real. Also it was shown that if a graph
has a Hamiltonian path, then all roots of its matching polynomial are simple (see
Theorem 4.5 of [15]). For domination polynomial, Brown and Tufts in [4] studied
the location of domination roots and they proved that the set of all domination
roots is dense in the complex plane. For graphs with few domination roots see [1].
Related to the roots of total domination polynomials there are a few papers. See
[2, 16] for more details. Recently authors in [16] shown that all roots of Dt(G, x)
lie in the circle with center (−1, 0) and radius δ

√
2n − 1, where δ is the minimum

degree of G and n is the order of G. As a consequence, they proved that if δ ≥ 2n
3 ,

then every integer root of Dt(G, x) lies in the set {−3,−2,−1, 0}.

In this paper we show that Dt(G, x) has δ − 2 non-real roots and if all roots of
Dt(G, x) are real, then δ ≤ 2. Also we show that if δ ≥ 3 and Dt(G, x) has exactly

three distinct roots, then Z(Dt(G, x)) ⊆ {0,−2±
√
2i, −3±

√
3i

2 }. Finally we study
the location roots of total domination polynomial of some families of graphs.

2. Main results

In this section we obtain some results on total domination roots. Oboudi in
[20] has studied graphs whose domination polynomials have only real roots. More
precisely he obtained the number of non-real roots of domination polynomial of
graphs. Similarly, we do it for total domination roots, in the next theorem.

Theorem 2.1. Let G be a connected graph of order n ≥ 2.

i) If all roots of G are real, then δ = 1 or 2.

ii) The polynomial Dt(G, x) has at least δ − 2 non-real roots.

Proof. Let g(x) = Dt(G, x) and g(m)(x) be the m-th derivative of g(x) with respect
to x. It is easy to see that if i ≥ n − δ + 1, then dt(G, i) =

(
n
i

)
and if i ≤ n − δ,

then dt(G, i) <
(
n
i

)
, where dt(G, i) is the number of total dominating sets of G with

cardinality i, for every natural number i. Thus there exists a polynomial f(x) with
positive coefficients and with degree n − δ such that Dt(G, x) = (x + 1)n − f(x).
Since all roots of g(x) are real, by Rolle’s theorem we conclude that all roots of
g(n−δ)(x) are real as well. On the other hand g(n−δ)(x) = n!

δ! (x + 1)δ − a(n − δ)!,
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where a is the coefficient of xn−δ in f(x). Since all roots of g(n−δ)(x) are real, this
shows that δ ≤ 2. Since G is connected, so δ = 1 or 2.

Now suppose that g(x) has exactly r real roots. Using Rolle’s theorem one
can see that g(n−δ)(x) has at least r − (n − δ) real roots. On the other hand
g(n−δ)(x) = n!

δ! (x + 1)δ − a(n − δ)!. Thus r − (n − δ) ≤ 2. Therefore g(x) has at
least δ − 2 non-real roots.

Theorem 2.2. [2] If G = (V,E) is a graph of order n with r support vertices, then
dt(G,n− 1) = n− r.

Theorem 2.3. [15] If G is a graph of order n with δ(G) ≥ 3, then γt(G) ≤ n
2 .

The study of graphs which their polynomials have few roots can give sometimes
a surprising information about the structure of the graph. If A is the adjacency
matrix of G, then the eigenvalues of A, λ1 ≥ λ2 ≥ . . . ≥ λn are said to be the
eigenvalues of the graph G. These are the roots of the characteristic polynomial
φ(G, λ) =

∏n
i=1(λ − λi). For more details on the characteristic polynomials. The

characterization of graphs with few distinct roots of characteristic polynomials (i.e.
graphs with few distinct eigenvalues) have been the subject of many researches.
Graphs with three adjacency eigenvalues have been studied by Bridges and Mena
[3] and Klin and Muzychuk [17]. Also van Dam studied graphs with three and four
distinct eigenvalues [6, 7, 8, 9]. Graphs with three distinct eigenvalues and index less
than 8 were studied by Chuang and Omidi in [18]. Graphs with few domination
roots were studied by Akbari, Alikhani and Peng in [1]. In [2], authors studied
graphs with exactly two total domination roots {−3, 0}, {−2, 0} and {−1, 0}. Here
we study graphs with three distinct total domination roots.

Theorem 2.4. Let G be a graph with δ ≥ 3. If Dt(G, x) has exactly three distinct
roots, then

Z(Dt(G, x)) ⊆ {0,−2±
√
2i,

−3±
√
3i

2
}.

Proof. Let G be a connected graph of order n and Z(Dt(G, x)) = {0, a, b} that
a 6= b. Therefore Dt(G, x) = xi(x− a)j(x− b)k, for some i, j, k. So by Theorem 2.2,
we have

(2.1) −(ja+ kb) = n.

Also because dt(G, i) =
(
n
i

)
for i ≥ n− δ + 1, we have

(2.2)

(
j

2

)

a2 +

(
k

2

)

b2 + jkab = dt(G,n− 2) =

(
n

2

)

.

Let P (x) be the minimal polynomial of a over Q. Clearly, all roots of P (x) are
simple. This implies that deg(P (x)) = 1 or 2. We consider two cases.

Case 1. deg(P (x)) = 1. So Dt(G, x) = xi(x − a)j(x − b)k, where −a,−b ∈ N. By
Theorem 2.1, we have δ = 1 or 2, a contradiction.
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Case 2. deg(P (x)) = 2. In this case since Dt(G, x) has three distinct roots, the
minimal polynomial of b over Q is also P (x), Thus we have Dt(G, x) =
xi(x2 + rx + s)j , where P (x) = x2 + rx + s. We have i + 2j = n, and
also by (2.1), −(a+ b)j = n. By Theorem 2.3, i ≤ n

2 . Therefore j ≥
n
4 . Since

−(a + b)j = n and a + b is an integer, we have −(a + b) ∈ {1, 2, 3, 4}. We
consider four cases:

Subcase 2.1. If a+ b = −1, then j = n, a contradiction.

Subcase 2.2. If a+ b = −2, then j = n
2 , a contradiction.

Subcase 2.3. If a+ b = −3, then i = j = n
3 , so we have Dt(G, x) = x

n

3 (x2 + rx+ s)
n

3 . Now,
by (2.2) we have

(n
3

2

)

(a2 + b2) +
n2ab

9
=

(
n

2

)

.

In the other hand, since a + b = −3, we conclude that a2 + b2 = 9 − 2ab.
Thus by simple calculation we obtain nab = 3n. Therefore ab = 3. By using
a+ b = −3, we have

a ∈ {
−3±

√
3i

2
}

Subcase 2.4. Now, suppose that a + b = −4. Then i = n
2 and j = n

4 . With the same
calculations, we have ab = 6. Using the fact that a + b = −4, we have
a ∈ {−2±

√
2i}.

As noted before, in [2], authors studied graphs with exactly two total domination
roots {−3, 0}, {−2, 0} and {−1, 0}. Here we present a family of graphs whose total
domination roots are −1 and 0.

v v

Fig. 2.1: Helm graph H8 and generalized helm graph H8,5, respectively.

The helm graphHn is obtained from the wheel graphWn by attaching a pendent
edge at each vertex of the n-cycle of the wheel. We define generalized helm graph
Hn,m, the graph is obtained from the wheel graph Wn by attaching m pendent
edges at each vertex of the n-cycle of the wheel (Figure 2.1). We recall that corona
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product of two graphs G and H is denoted by G ◦H and was introduced by Harary
[12, 13]. This graph formed from one copy of G and |V (G)| copies of H , where the
i-th vertex of G is adjacent to every vertex in the i-th copy of H . We need the
following theorems:

Theorem 2.5. [10] Let G = (V,E) be a graph and u, v ∈ V two non-adjacent vertices
of the graph with N(u) ⊆ N(v). Then

Dt(G, x) = Dt(G \ v, x) + xDt(G/v, x) + x2
∑

w∈N(v)∩N(u)

Dt(G \N [{v, w}], x).

Theorem 2.6. [16] For any graph G of order n ≥ 2, Dt(G ◦Km, x) = xn(1 + x)mn.

Theorem 2.7. For every natural number n,m, we have

i) Dt(Hn, x) = xn(x+ 1)n+1,

ii) Dt(Hn,m, x) = xn(1 + x)mn+1.

Proof. Let v be the center vertex of wheel in helm graph Hn and Hn,m. By Theo-
rems 2.5 and 2.6 we have

i) Dt(Hn, x) = Dt(Cn ◦K1, x) + xDt(Kn ◦K1, x) = (1 + x)(x(1 + x))n,

ii) Dt(Hn,m, x) = Dt(Cn ◦Km, x) + xDt(Kn ◦Km, x) = (1 + x)(x(1 + x)m)n.

So we have the result.

The lexicographic product is also known as graph substitution, a name that
bears witness to the fact that G[H ] can be obtained from G by substituting a copy
Hu of H for every vertex u of G and then joining all vertices of Hu with all vertices
of Hv if {u, v} ∈ E(G).

Theorem 2.8. Let Km, Kn be complete graphs of order m and n. The total domi-
nation polynomial of lexicographic product of Km and Kn is

Dt(Km[Kn], x) = Dt(Km, D(Kn, x)) +mDt(Kn, x).

Proof. Note that Km[Kn] ∼= Kmn, So the result is obtained.

The generalized friendship graph Fn,q is a collection of n cycles (all of order q),
meeting at a common vertex (see Figure 2.4). The generalized friendship graph may
also be referred to as a flower [19]. For q = 3 the graph Fn,q is denoted simply by
Fn and is friendship graph. The total domination polynomial of Fn and its roots
studied in [16]. Here, we compute the total domination number of Fn,4. To study
the total domination roots of Fn,4 we first obtain a formula for the total domination
polynomial of graph Gn depicted in Figure 2.2. We need the following theorem:

Theorem 2.9. [10]
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K2n

Fig. 2.2: Graphs G4 and Gn in proof of Theorem 2.9, respectively.

(i) For any vertex u in the graph G we have

Dt(G, x) = Dt(G \ u, x) + xDt(G/u, x) + x2
∑

v∈N(u)

Dt(G \N [{u, v}], x)

−(1 + x)pu(G),

where pu(G, x) is the polynomial counting the total dominating sets of G \ u
which do not contain any vertex of N(u) in G.

(ii) Let u, v ∈ V (G) be two non-adjacent vertices of G with N(v) ⊆ N(u). Then
Dt(G, x)

= Dt(G \ u, x) + xDt(G/u, x) + x2
∑

w∈N(u)∩N(v)Dt(G \N [{u,w}], x).

Theorem 2.10. For any n ∈ N, Dt(Gn, x) = (x(x + 1)(x+ 2))n.

Proof. Consider the graph Gn shown in Figure 2.2 and v be a vertex of degree two
of this graph. By Theorem 2.9(i) and the fact that pv(Gn, x) = Dt(Gn−1, x) and
Gn − v ∼= Gn/v, we have

Dt(Gn, x) = (x+ 1)Dt(Gn − v, x)− (x+ 1)Dt(Gn−1, x).

Now by Theorem 2.9(ii) for graph Gn − v and the vertex u of this graph (see figure
2.3):

Dt(Gn, x) = (x + 1)2Dt(Gn − v/u, x)− (x+ 1)Dt(Gn−1, x).

Again by Theorem 2.9(ii) for the vertex w of the graph Gn − v/u shown in figure
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K2n

Gn − v

K2n−1

Gn − v/u

w
u

Fig. 2.3: Graphs in proof of Theorem 2..

2.3, we have the following equations.

Dt(Gn, x) = (x+ 1)2Dt(Gn − v/u, x)− (x+ 1)Dt(Gn−1, x)

= (x+ 1)3Dt(Gn−1, x)− (x+ 1)Dt(Gn−1, x)

= x(x + 1)(x+ 2)Dt(Gn−1, x)

= (x(x + 1)(x+ 2))n

So we have result.

v

Fig. 2.4: Friendship graphs F2,4, F3,4, F4,4 and Fn,4, respectively.

Theorem 2.11. For every natural number n, total domination polynomial of gener-
alize friendship graph Fn,4 is

Dt(Fn,4, x) = xn+1(x+ 2)n((x + 1)n + xn−1).

Proof. Let v be center vertex of Fn,4. By theorem 2.5 we have

Dt(Fn,4, x) = (Dt(P3, x))
n + xDt(Gn, x)

where Gn is graph in Figure 2.2 and so by Theorem 2.10 we have the result.
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We need the following lemma to obtain more results:

Lemma 2.12.[4] limn→∞ln(n)
(

ln(n)−1
ln(n)

)n

= 0.

The basic idea of the following result follows from the proof of Theorem 8 in [4].

Theorem 2.13. For natural number n ≥ 2,

i) The total domination polynomial of the generalized friendship graph, Dt(Fn,4, x),
has a real root in the interval (−1, 0)

ii) The total domination polynomial of the generalized friendship graph, Dt(Fn,4, x),
has a real root in the interval (−n,−ln(n)), for n sufficiently large.

Proof. i) Let f(x) = (x+ 1)n + xn−1. So f(0) = 1 and f(−1) = (−1)n−1 = −1.
By the intermediate value theorem, we have result.

ii) Suppose that

f2n(x) = xn+1((x + 1)n + xn−1).

Observe that

f2n(x) = x2n+1+(n+1)x2n+

(
n

n− 2

)

x2n−1+

(
n

n− 3

)

x2n−2+...+nxn+2+xn+1.

Consider

f2n(−n) = (−1)2n+1n2n+1
(

1−
n+ 1

n
+

(
n
2

)

(n)2
− ...+

(−1)n

(n)n

)

.

So f2n(−n) < 0 for n sufficiently large, because the following inequality is
true for n sufficiently large,

n+ 1

n
−

(
n
2

)

(n)2
+ ...−

(−1)n

(n)n
< 1.

Now consider

f2n(−ln(n)) = (−ln(n))n+1(1 − ln(n))n + (−ln(n))2n

= (ln(n))2n
(

1− ln(n)
( ln(n)− 1

ln(n)

)n)

.

From Lemma 2.12, we have ln(n)
(

ln(n)−1
ln(n)

)n

→ 0, as n → ∞ which implies

that f2n(−ln(n)) > 0. By the Intermediate Value Theorem, for sufficiently
large n, f2n(x) = Dt(Fn, x) has a real root in the interval (−n,−ln(n)).
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Fig. 2.5: Total domination roots of Fn,4, for 2 ≤ n ≤ 30.

Fig. 2.6: Total domination roots of K1,n[K2] and K1,n[K7], for 2 ≤ n ≤ 30, respec-
tively.

Figure 2.5 shows the total domination roots of Fn,4 for 2 ≤ n ≤ 30.

Theorem 2.14. Let G and H be two graphs of order m and n, respectively. The
total domination polynomial of join of these two graphs is

Dt(G ∨H) = ((1 + x)m − 1)((1 + x)n − 1) +Dt(G, x) +Dt(H,x).

Theorem 2.15. For every natural numbers m,n,

Dt(K1,n[Km], x) = (1 + x)mn((1 + x)m − 1) + ((1 + x)m −mx− 1)n −mx.

Proof. For two natural numbers m,n, K1,n[Km] ∼= km∨nKm. So by Theorem 2.14,
it is easy to see the equation is true.

Using Maple we think that for two natural numbers m,n, if m and n are even
or n is odd, then the total domination polynomial of K1,n[Km] has no real roots.
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However, until now all attempts to prove this failed. See the total domination roots
of K1,n[K2] and K1,n[K7] for 2 ≤ n ≤ 30 in Figure 2.6.

REFERENCES

1. S. Akbari and S. Alikhani and Y. H. Peng: Characterization of graphs using

domination polynomials. Eur. J. Combin. 31 (2010), 1714–1724.

2. S. Alikhani and N. Jafari: Some new results on the total domination polynomial

of a graph. Ars Combin. In press. Available at http://arxiv.org/abs/1705.00826.

3. W. G. Bridges and R. A. Mena: Multiplicative cones- a family of three eigenvalue

graph. Aequationes Math. 22 (1981), 208–214.

4. J. I. Brown and J. Tufts: On the roots of domination polynomials. Graphs Combin.

30 (2014), 527–547.

5. J. I. Brown and C. A. Hickmanand R. J. Nowakowski: On the location of roots

of independence polynomials. J. Algebraic Combin. 19 (2004), 273–282.

6. E. R. Van Dam: Regular graphs with four eigenvalues.Linear Algebra Appl, 226/228

(1995), 139–162.

7. E. R. Van Dam: Graphs with few eigenvalues, An Interplay between Combinatorics

and Algebra, Center Dissertation Series 20, Thesis, Tilburg University, 1996.

8. E. R. Van Dam: Nonregular graphs with three eigenvalues. J. Combin. Theory Ser,

B 73 (1998), 101–118.

9. E. R. Van Dam and W. H. Haemers: Which graphs are determined by their spec-

trum?. Linear Algebra Appl, 373 (2003), 241–272.

10. M. Dod: The total domination polynomial and its generalization. In: Congressus

Numerantium, 219 (2014), 207–226.

11. C. D. Godsil: Algebraic Combinatorics. Chapmanand Hall, NewYork. 1993.

12. F. Harary: On the group of the composition of two graphs. Duke Math. J.26 (1959),

29–36.

13. F. Harary: Graph Theory. Addison-Wesley, Reading, MA (1969).

14. O. J. Heilmann and E. H. Lieb: Theory of monomer-dimer systems, Comm. Math.

Phys. 25 (1972), 190–232.

15. M. A. Henning and A. Yeo: Total domination in graphs . Springer Monographs in

Mathematics, 2013.

16. N. Jafari and S. Alikhani: On the roots of total domination polynomial of graphs,

J. Discrete Math. Sci. Crypt., https://doi.org/10.1080/09720529.2019.1616908.

17. M. Klin and M. Muzychuk: On graphs with three eigenvalues. Discrete Math. 189

(1998), 191–207.

18. H. Chuang and G. R. Omidi: Graphs with three distinct eigenvalues and largest

eigenvalue less than 8. Linear Algebra Appl. 430 (2009), 2053–2062.
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Abstract. In this paper we define an equivalence relation on the set of all possible geo-

metrical models of M(n, k) containing n points in 3D Euclidean space having k distinct

distances. We investigate the number of geometrical models for M(4, 2), M(5, 2) and

M(6, 2) up to the mentioned equivalence relation.

Keywords. Constructible models; distinct distances; partition-equivalent; geometrical

model.

1. Introduction

Distance geometry has considered two main problems since its inception. One of
these problems is the study of the embedding of a semimetric space in an Euclidean
space. From the empirical point of view, R3 is the most important Euclidean space,
especially in several applications such as molecular conformation, wireless sensor
networks, statics, dimensionality reduction, and robotics. In these applications
input data is a set of points and their pair-wise distances(a semimetric space) and
the output is a set of points in R

3 realizing those given distances.

Our task is to focus on the number of distinct distances in a semimetric space. A
semimetric space with n points and k distinct distances may be embedable in R

3 or
not. Such space is denoted by M(n, k) and if it can be embedded in R

3, we say that
M(n, k) is constructible. Such problems have been extensively researched, and yet
in many cases are still wide open (see for example [4, 3, 7]). Some computational
theorems have been proved in [5] for M(n, k). In [6] an equivalence relation was
introduced for all models of M(n, k) and the author classified all possible models
for M(4, 2) and M(5, 2). In this paper we define a new equivalence relation in term
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of the partitions of a natural number and find the number of the equivalence classes
for M(4, 2), M(5, 2), and M(6, 2).

The paper has been organized as follow: First we provide some preliminaries
and definitions. Using the partition of a number, we then define an equivalence
relation to classify the models of M(n, k). Finally we will investigate M(6, 2) in
term of the mentioned equivalence relation.

2. Definitions and Notations

In this section we introduce the basic concepts which are used through the paper.
Some of these preliminaries have been defined in [1, 6, 5].

Definition 2.1. A semimetric on a set S is a function d : S × S → [0,∞) which
satisfies the following properties:

• d(x, y) = d(y, x) for all x, y ∈ S.

• d(x, y) = 0 if and only if x = y.

A semimetric space is a pair (S, d) where S is a set and d is a semimetric on it.

When d is understood, we usually omit mention of it and just say “S is a semimetric
space.” In some literature d is called the distance function. The distance between
two points p and q is denoted in both notations d(p, q) or pq.

The problem of embedding an arbitrary semimetric space isometrically into R
3

is an interesting task in Distance Geometry. A necessary condition for embedding
can be stated in term of Cayley-Menger determinant.

Definition 2.2. Let {p0, p1, . . . , pk} be a semimetric space. The Cayley-Menger
determinant for this k + 1-tuple is defined as

D(p0, ..., pk) =

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 ... 1
1 0 p0p

2
1 ... p0p

2
k

... ... ... ... ...

1 pkp
2
0 pkp

2
1 ... 0

∣
∣
∣
∣
∣
∣
∣
∣

Theorem 2.1. [1] A necessary condition that a semimetric r+1-tuple {p0, p1, . . . , pr}
be isometrically embedded in an Euclidean space R

n is that for every k = 1, 2, . . . , r
the determinant D(p0, ..., pk) either vanish or have the sign of (−1)k+1. If n < r,
then D(p0, ..., pk) = 0 (n < k 6 r).

We will consider this theorem for n = 3 and r = 5. Note that if a five-points
semimetric space {p0, . . . , p4} can an embedded in R

3, then a necessary condition
for embedding six points {p0, p1, . . . , p5} in R

3 is that D(p0, . . . , p5) = 0.
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Definition 2.3. Let S = {p1, p2, . . . , pn} be a semimetric space such that

card{d(pi, pj) | i 6= j, i, j = 1, 2, . . . , n} = k

(d is the distance function). Then S is called a model with n points and k distances
and is denoted by M(n, k). If S can be isometrically embedded in R

3, then we say
M(n, k) is constructible .

For example M(5, 1) is not constractible, while M(4, 1) is constructible. In [6]
M(n, 2) was investigated for n 6 5. Here we consider the case n = 6. Note that
M(n, 2) is not constructible for n > 6 [2].

Definition 2.4. [5] Let m,m1,m2, . . . ,mk are natural numbers such that

m = m1 +m2 + · · ·+mk, 1 6 m1 6 m2 6 . . . 6 mk.

Then the summand m1 +m2 + · · ·+mk is called a k-partition for m.

For example 1+9, 2+8, 3+7, 4+6, and 5+5 are 2-partitions for 10. Similarly, 2-
partitions for 15 are 1+14, 2+13, and so on.
Notation. We correspond to each model M(n, k), a k-partition of m = n(n− 1)/2
(the number of edges) as follow. Let d1, d2, . . . , dk be the distances in this model
and mj be the number of edge with length dj . Without loss of generality we can
assume m1 6 m2 6 . . . 6 mk. Then the number of all edges is

m = m1 +m2 + · · ·+mk.

We also correspond to each model M(n, k), a colored graph with n vertices in which
the edges with same length have same color.

Definition 2.5. Two models forM(n, k) are said to be partition-equivalent if their
k-partitions are same.

For example the following models forM(5, 2) are partition-equivalent with 2-partitions
4+6:

In (a), the points A, C, E, and D are vertices of a regular tetrahedron and B is its
center, while in (b), the points A, B, C, D, and E are the vertices of a right pyramid
whose base is a unit squar with edge length equal to

√
2.

One can easily show that partition-equivalence is an equivalence relation on the
set of all constructible models for M(n, k).

It was shown that all 2-partitions of 10 concerning to M(5, 2) are constructible
[6]. So up to partition-equivalence there are exactly 5 geometrical models for
M(5, 2). Similarly all 2-partitions of 6 concerning to M(4, 2) are constructible,
so there are exactly 3 geometrical model for M(4, 2) up to partition-equivalence.
In the next section we complete our task to classify all models for M(n, 2) up to
partition-equivalence by considering M(6, 2).
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3. Partition-Equivalent Models for M(6, 2)

For 6 points in R
3 the number of edges is

(
6

2

)

= 15.

As we see before, there are seven 2-partitions for 15: 1+14, 2+13, 3+12, 4+11,
5+10, 6+9, and 7+8. So one can say that there are at most seven constructible
model for M(6, 2) up to partition-equivalence. But as we will see some of these
partitions are not constructible. Our goal is to determine which of these partitions
are constructible. The construction is as follow: starting with all possible graphs
for each partition m+ n = 15, we next investigate which graph is constructible. In
the rest of paper we use the notation P (m,n) for the partition m+ n = 15.

First we show that P (3, 12), P (5, 10), and P (6, 9) are constructible.

Proposition 3.1. P (3, 12) is constructible for M(6, 2).

Proof. Let the points A, B, C, D, E, and F are the vertices of a regular octahedron
as follows:

If we take d(A,B) = 1 as other edges, then d(B,D) = d(C,E) = d(A,F ) =
√
2.

In fact this shape is the geometrical realization for the following graph whose 2-
partition is P (3, 12).

This completes our argument.

Note that for P (3, 12) we have some other graphs. But to be constructible, it is
sufficient to find one graph having a geometric realization as above.

Proposition 3.2. P (5, 10) is constructible for M(6, 2).
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Proof. Take the points A, B, C, D, E, and F as the vertices of a regular pyramid
whose base is a regular pentagon as follow.

If we assume for example d(A,B) = 1 (and the same for other edges), then d(B,D) =
d(C,E) = d(A,D) = d(B,E) = d(A,C) =

√

2− 2 cos 3π/5. So this is a geometrical
realization for the foolowing graph of P (5, 10).

This completes our argument.

Proposition 3.3. P (6, 9) is constructible for M(6, 2)

Proof. Let A, B, C, D, E, and F are the vertices of a right prism as follow:

Take d(A,B) = 1 (and the same for other edges), then d(B,D) = d(A,E) =
d(A,D) = d(B,F ) = d(E,C) = d(A,F ) = d(C,D) =

√
2. The above shape is a

realization for the following graph of P (6, 9).

This completes our argument.

Now we continue with non-constructible partitions.

Proposition 3.4. P (1, 14) is not constructible for M(6, 2).

Proof. The corresponding graph for P (1, 14) is as follow.
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If this graph have a geometric realization, then the five points A,C,D,E, F have
equal pair-wise distances, which is impossible, because in R

3 there are at most four
points with this property.

Proposition 3.5. P (2, 13) is not constructible for M(6, 2)

Proof. For P (2, 13) there are two non-isomorphic graphs as follows:

Graph (1) has no geometrical realization, because it is impossible that five points
B, C, D, E, and F have same pair-wise distances.

We show the same statement for graph (2). If graph (2) has a geometrical
realization then the points B, C, D, and E are vertices of a regular tetrahedron and
so are F, D, C, and B.These two pyramids have the common triangle BCD as a
common face and hence the only possible geometric structure for these five points
is as follows:

If we assume d(B,D) = 1, then d(B,F ) = 2
√

2/3. It means that d(B,D) 6=
d(B,F ), while these two edges in graph (2) have same length. So the graph (2) has
no geometrical realization.

The argument used in the above proposition will be used in next proposition. We
will recall this argument as two regular pyramids with a common face.

Proposition 3.6. P (4, 11) is not constructible for M(6, 2).

Proof. All possible graphs for P (4, 11) have been presented in the following figure:
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We show that these graphs have no realizations in R
3. In graphs (2), (4), and

(7) we have two regular pyramids with a common face. Due to the length of the
other edges, it follows that these graphs have no realization in R

3.

Graphs (3) is not constructible since the points A,B,C,D, and E have same
pair-wise distances which is impossible in R

3.

Now consider the graph (1). We have two regular pyramids ABCE and BCDF

with common edgeBC. Since ED = AF , the position of two pyramids is symmetric.
Without lose of generality to construct these pyramids one can take the vertices as
follows:

A = (12 , 0,
√
2
2 ), B = (0,− 1

2 , 0), C = (0, 1
2 , 0),

D = (− 1
2 , 0,−

√
2
2 ), E = (− 1

2 , 0,
√
2
2 ), F = (12 , 0,−

√
2
2 ).

By simple calculation one can see that AF = ED =
√
2 and AD =

√

3/2, so
AD 6= AF , while in (1) we have AD = AF .

For the remaining graphs, we use Theorem 2.1. First consider the graph (5).
Omit the point E for a moment, the remaining points A, B, C, D, and F are vertices
of a right pyramid whose base is a square of side 1 (B is the apex of pyramid), so
AF = DC =

√
2. If this garph has a realization in R

3, then its Cayley-Menger
determinant must be zero. But we have

D(A,B,C,D,E, F ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1 1 1
1 0 1 1 1 1 2
1 1 0 1 1 1 1
1 1 1 2 0 2 1
1 1 1 1 2 0 2
1 2 1 1 1 2 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 5 6= 0.

Same argument can be applied for the graphs (6) and (8) by disregarding the
point D. It is easy to see that D(A,B,C,D,E, F ) = −4 for graph (6), and
D(A,B,C,D,E, F ) = −16 for graph (8). So the necessary condition in Theorem
2.1 does not hold for these cases.
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The only partition which has not been specified is P (7, 8). Because of its variety,
the investigation of P (7, 8) requires a separate research (there are at least 19 non-
isomorphic graphs for P (7, 8)). The author’s research for P (7, 8) has been led to
the following conjecture:

Conjecture 3.1. P (7, 8) is not constructible for M(6, 2).

Regardless of whether the above conjecture is correct or not we have already proved
the following important theorem:

Theorem 3.1. Up to partition-equivalence, there are at least 3 constructible mod-
els for M(6, 2).
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Abstract. Let G be a finite group and cd(G) be the set of irreducible character degree

of G. In this paper we prove that if p is a prime number, then the simple group PSL(4,p)

are uniquely determined by its order and some its character degrees.

Keywords. Character degrees; order; projective special linear group.

1. Introduction

All groups considered are finite and all characters are complex characters. Let
G be a group. Denote by Irr(G) the set of all irreducible characters of G. Let cd(G)
be the set of all irreducible character degree of G

Many authors were recently concerned with the following question:
What can be said about the structurs of a finite group G , if some information is
known about the arithmetical structure of the degree of the irreducible characters of
G (see[16,17])?A finite group G is called a K3-group if |G| has exactly three distinct
prime divisors.Yan et all. in[16] and [17] proved that all simple k3-group and the
Mathieu groups are uniquely determined by their orders and some its character
degrees. Also Khosravi et all. in [9] and [10] proved that the simple groups PSL(2, p)
and PSL(2, p2) are uniquely determined by its order and its largest and second
largest irreducible character degrees, where p is an odd prime. Also Hung and
Thamson in[13] proved that the simple group PSL(4, q) whit q ≥ 13 are determined
by the set of their character degrees.

The goal of this paper is to introduce a new characterization for the finite group
PSL(4, p), where p is prime, by its order and some its character degrees. In fact we
prove the following theorem.
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Theorem 1.1. (Main Theorem) Let p > 7 be a prime. If G is a finite group such
that the following statments hold, then G is isomorphic to PSL(4, p).

(i ) |G| = |PSL(4, p)|

(ii) kp6 ∈ cd(G) if only if k = 1, where k is an integer number.

(iii) p(p2 + p+ 1) is the smallest nonlinear character degree of G

(iv) {p(p+ 1)2(p2 + 1), (p+ 1)(p2 + 1)} ⊂ cd(PSL(4, p)).

2. Notation and Preliminary

We know that if p is an odd prime, then

|PSL(4, p)| =
p6(p2 − 1)(p3 − 1)(p4 − 1)

(4, p− 1)
.

and

{p6, p(p2 + p+ 1), p(p+ 1)2(p2 + 1), (p+ 1)(p2 + 1)} ⊂ cd(PSL(4, p)).

and the smallest nonlinear character degrees of PSL(4, p) is p(p2 + P + 1).

If n is an integer and r is a prime number, then we write rα||n, when rα|n but
rα+1 | n. All other notations are standard and we refer to [1].

If N E G and θ ∈ Irr(N), then the inertia group of θ in G is IG(θ)={g ∈ G |
θg=θ }.

Lemma 2.1. (Thompson)[13, Lemma 2.3] . Suppos that p is a prime and p | χ(1)
for every nonlinear χ ∈ Irr(G). Then G has a normal p-complement.

Lemma 2.2. (Ghallgher’s Theorem)[7, Corollary 6.17]. Let N E G and let χ ∈
Irr(G) be such that χN = θ ∈ Irr(N). Then the characters βχ for β ∈ Irr(GN ) are
irreducible and distinct for distinct β and are all of the irreducible constituents of
θG.

Lemma 2.3. (Ito’s Theorem)[3, Corollary 6.15]. Let A E G be abelian. Then
χ(1) divides |G : A| for all χ ∈ Irr(G).

Lemma 2.4. ([3, Theorems 6.2, 6.8, 11.29]). Let N E G and let χ ∈ Irr(G) .
Let θ be an irreducible constituent of χN , and suppose θ1 = θ,..,θt are the distinct

conjugates of θ in G . Then χN=e
t∑

i=1

eiχi, where e=[χN , θ] and t=[G:IG (θ)]. Also

θ(1)|χ(1) and χ(1)/θ(1)||G:N|.

Lemma 2.5. [16, Lemma] Let G be nonsolvable group. Then G has a normal
series 1 E H E K E G such that K/H is a direct product of isomorphic nonabelian
simple group and |G/K|||Out(K/H)|.
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Lemma 2.6. ([3], Lemma 12.3 and Theorem 12.4). Let N E G be maximal such
that G/N is solvable and nonabelian. Then one of the following holds.

(i) G/N is a r-group for some prime r. If χ ∈ Irr(G) and r | χ(1), then χτ ∈

Irr(G) for all τ ∈ Irr(G/N).

(ii) G/N is a Frobenius group with an elementary abelian Frobenius kennel F/N .

Thus |G : F | ∈ cd (G), |F : N | = rα, where a is the smallest integer such that
|G : F | | rα−1. For every ψ ∈ Irr(F ), either |G : F |ψ(1) ∈ cd(G) or |F : N ||ψ(1)2.
If no proper multiple of |G : F | is in cd(G), then χ(1)||G : F | for all χ ∈ Irr(G)
such that r | χ(1).

Lemma 2.7. (15, Lemma 2.3) In the context of (ii) of Lemma 2.5, we have

(i) If χ ∈ Irr(G) such that lcm(χ(1),|G : F |) does not divide any character
degree of G, then rα | χ(1)2

(ii) If χ ∈ Irr(G) such that no proper multiple of χ(1) is a degree of G, then
either |G : F | | χ(1) or rα|χ(1)2. Moreover if χ(1) is divisible by no nontrivial
proper character degree in G then |G : F | = χ(1) or ra|χ(1)2.

3. Proof of The Main Theorem

In this section we present the proof of Main theorem. In fact, we prove this theorem
by two steps:

Step1. First we prove that G is a nonsolvable group.We show that G′ = G′′.
Assume by contradiction that G′ 6= G′′ and let N E G be maximal such that G/N
is solvable and nonabelian.By Lemma 2.6, G/N is an r-group for some prime r or
G/N is a Frobenius group with an elementary abelian Frobenius kernel F/N .

Case 1. G/N is an r-group for some prime r. Since G/N is nonabelian, there
is ψ ∈ Irr(G/N) such that ψ(1) = ra > 1. From the classification of prime power
degree representations of quasi-simple group in [12], we deduce that ψ(1) = ra must
be equal to the degree of the Steinberg character ofH of degree p6 and thus ra = p6,
which implies that r = p. By Lemma 2.1, G possesses a nontrivial irreducible char-
acter χ with p | χ(1). Lemma 2.4 implies that χN ∈ Irr(N). Using Ghallagher’s
lemma, we deduce that χ(1)ψ(1) = p6χ(1) is a character degree of G, which is
impossible with the condition (ii) of main theorem.

Case 2. G/N is a Frobenius group whit an elementary abelian Frobenius kernel
F/N . Thus according to Lemma 2.6, |G : F | ∈ cd(G), |F : N | = ra, where a is the
smallest integer such that |G : F ||ra − 1. Let χ be a character of G of degree p6.
As no proper multiple of p6 is in cd(G), Lemma 2.6 implies that either |G : F ||p6

or r = p. We consider two following subcases.
(a) |G : F ||p6. Then |G : F | ∈ cd(G), by the assumption of the theorem, this

implies that no multiple of |G : F | is in cd(G). Therefore, by Lemma 2.6, for
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every ψ ∈ Irr(G) either ψ(1)|p6 or r|ψ(1). Taking ψ to be characters of degree
p(p2+p+1) and p(p+1)2(p2+1), we obtain that r|ψ(1).This implies that r divides
both p(p2 + p + 1) and p(p + 1)2(p2 + 1). This leads us to a contradiction since
((p2 + p+ 1) , (p+ 1)2(p2 + 1))=1

(b) r = p. Thus |F : N | = pa and |G : F ||pa − 1. Let χ be a character of G of
degree p(p+1)2(p2+1) and ψ be a character of degree (p+1)(p2+1). It follows that
ψ(1)|χ(1) so that by Lemma 2.7, |G : F | = p(p+1)2(p2+1) or pa|(p(p+1)2(p2+1))2,
which implies that a ≤ 2, |G : F | ≤ p2 − 1. This leads us to a contradiction since
min{χ(1)|χ(1) > 1, χ ∈ Irr(G)} = p(p2 + p+ 1).
Therefore, G is not a solvable group.

Step 2. Now we prove that G is isomorphic to PSL(4, p).

By the above discussion and using Lemma 2.5, we get that G has a normal series
1 E H E K E G such that K/H is a direct product of m copies of a nonabelian
simple group S and |G/K|||Out(K/H)|. Also p is a prime divisor of |G| such that
p6‖|G|

First we prove that p ∤ |G/K|. On the contrary, let p||G/K|. We know that
Out(K/H) ∼= Out(S) ≀Sm, which implies that p||Sm| or p||Out(S)|. If P ||Sm|, then
m ≥ p and so p6(p2− 1)(p3− 1)(p4− 1) ≥ |K/H | ≥ 60p, which is impossible. Hence
p||Out(S)|. According to the orders of automorphism group of alternating group
and sporadic simple group, we implies that S is a simple group of Lie type over
GF (q), where q = p

f
0 . By assumption, p||Out(S)| = dfg, where d, f , and g ≤ 3 are

the orders of diagonal, field, and graph automorphisms of S respectively. Using [2],
we know that if S is a simple group of Lie type over GF (q), then q(q2 − 1) ≤ S and
so if p|f , then 2p(22p − 1) ≤ q(q2 − 1) ≤ |S| ≤ p6(p2 − 1)(p3 − 1)(p4 − 1), which is a
contradiction. Hence p|d. Since p > 7, we get that S = An(q) and d = (n+1, q− 1)
or S =2 An(q) and d = (n + 1, q + 1). In each case we get that p|q − 1 and n ≥ 6
or p|q + 1 and n ≥ 6. Then p7||S| , which is a contradiction. Therefore, p ∤ |G/K|.

Now we prove that p ∤ |H |. On the contrary, let p||H |. So there exist six possi-
bilities, p‖|H | or p2‖|H | or p3‖|H | or p4‖|H | or p5‖|H | or p6‖|H |.

Case 1. First, suppose that p‖|H |. Using the classification of finite simple group
we determine all simple groups S such that p5||S|5. Now we consider two subcases:

(i) Let m=1. Then p5||S| and |S||p5(p2 − 1)(p3 − 1)(p4 − 1).

If S ∼= An, then p ≤ n and n!|p5(p2 − 1)(p3 − 1)(p4 − 1). Which is impossible
since p > 7. Also there is no sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic p,
using the orders of the simple groups, we get that, there is no Lie group statisfying
these conditions.
Since the proofs for the other simple groups are similar, we state the proof only for
a few of them for convenience.
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If S be a nonababelian simple group of Lie type over a field GF (q), where p ∤ q.
We claim that there is no simple group satisfying the above conditions.

If S ∼= Bn(q), where n ≥ 2, then p|q2j − 1, for some 1 ≤ j ≤ n. Therefore,
p ≤ qn + 1. Then since q2i−1 ≤ q2i − 1, we get that

qn
2

.q2(1+2+...+n)−n ≤ |S| < p14 ≤ (qn + 1)14 ≤ q14n+14

which implies that 2n2 < 14(n+ 1). Therefore n ∈ {2, 3, 4, 5, 6, 7}. First let n = 2.
Then p5|q4(q2−1)(q4−1).It implies that p5|(q−1)2 or p5|(q+1)2 or p5|q2+1, and so
p5 < 2q2. On the other hand q4|(p−1)3 or q4|(p+1)2 or q4|p2+1 or q4|(p2+p+1),
and so q4 < p3. Therefore, easily we get a contradiction. If n ∈ {3, 4, 5, 6, 7},
similarly we get a contadiction. If S ∼= Cn(q), where n ≥ 4, then withe the same
manner we get a contradiction.

If S ∼= An(q), then similary to the above, we get n ∈ {1, 2, ..., 9}. For example,
let n = 5. Then

p5|(q − 1)5(q + 1)3(q2 + q + 1)2(q2 − q + 1)(q4 + q3 + q2 + q + 1)

so p5 < 5q4. On the other hand

q15|6(p− 1)3(p+ 1)2(
p2 + 1

2
)(
p2 + p+ 1

3
)

so q15 < p7. Therefore we get a contradiction. For other case, similarly we get a
contradiction. If S ∼=2 An(q), with the same manner we get a contradiction.

If S ∼= Dn(q), where n ≥ 4, then p5||S|, Therefore p|q2i−1, for some 1 ≤ i ≤ n−1
or p|(qn − 1). Therefore, p < qn, and since q2i−1 < q2i − 1, we get that

qn(n−1)qn−1(q2(1+2+...+(n−1)−(n−1)) < |S| < p14

and so q(2n(n−1) < |S| < p14. On the other hand, p < qn and hence 2(n− 1) < 14.
Therefore n ∈ {4, 5, 6, 7}.Let n = 6. Then

p5|(q−1)6(q+1)6(q2+q+1)2(q2−q+1)2(q2+1)2(q4+1)(q4+q3+q2+q+1)(q4−q3+q2−q+1)

and so p5 < q7. On the other hand

q30|(p− 1)3(p+ 1)2(p2 + 1)(p2 + p+ 1)

and so, q30 < p12. Therefore we get a contradiction. Fore some other cases, similarly
we get a contadiction. If S ∼=2 Dn(q), with the same manner we get a contradiction.

If S ∼= G2(q), then p
5||S|, and hence p5 < q3. On the other hand,

q6|6(p− 1)3(p+ 1)2(
p2 + 1

2
)(
p2 + p+ 1

3
)

so q6 < p7. Therefore we get a contradiction. If S ∼= F4(q),
2 F4(q), E6(q), E7(q) or

E8(q), we get a contradiction similarly.
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If S ∼=2 B2(q), where q = 22n+1, then p5|q − 1 or p5|q2 + 1. If p5|q − 1, then
|S| < p14 < (q − 1)3, wiche is impossible. If p5|(q2 + 1), then p5|(q2 + 1)/5, so
p5 < q2 . On the other hand

q2|6(p− 1)3(p+ 1)2(
p2 + 1

2
)(
p2 + p+ 1

3

therefore, q2|8(p− 1)3 or q2|16(p+ 1)2, so q < p2, which is impossible.

If S ∼=2 G2(q), where q = 32n+1, then p5||S|, therefore p5|q − 1 or p5|q + 1 or
p5|q2 − q + 1, it follows that p5 < q2. On the other hand, q3|6(p − 1)3(p + 1)2 or
q3|(p2 + 1)/2 or q3|(p2 + p+ 1)/2, it follows that q3 < p7, whis is impossible.

Therefore m 6= 1.

(ii)m=5. Then p||S| and |S|5|p5(p2 − 1)(p3 − 1)(p4 − 1).
Similarly to the previous case we get a contradiction.

Case 2. Suppose that p2‖|H |.Therefore p4||K/H |, since K/H is m is a direct
product of m copies of a nonabelian simple group S, it follows that, m ∈ {1, 2, 4}.
Now we consider three subcases:

(i)Let m = 1. Then p4||S| and |S||p4(p2 − 1)(p3 − 1)(p4 − 1). We claim that
there is no simple group satisfying these conditions.

If S ∼= An, then p < n and n!|p4(p2 − 1)(p3 − 1)(p4 − 1), which is impossible
since p > 7. Also there is no sporadic simple group satisfying these conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic p, using
the orders of the simple group, we get that, there is no simple group satisfying the
above conditions.

Similarl to case 1, we deduce that, there is no nonababelian simple group of Lie
type over a field GF (q), where p ∤ q, satisfying the above conditions.

Hence m 6= 1.

(ii)Let m = 2

Similar to last case, we deduce S ≇ An. Also there is no sporadic simple group
satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of caracteristic p, using
the order of the simple group, we get that, there is no simple group satisfying the
above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where p ∤ q.
We claim that there is no simple group satisfying the above conditions. Now argue
as in (case1), we obtain a contradiction.

Hence m 6= 2

(iii) Let m = 4. Then p||S| and |S|4|p4(p2 − 1)(p3 − 1)(p4 − 1). Using the
classification of finite simple group, we show that, there is no simple group satisfying
these conditions.

If S ∼= An, then p ≤ n and (n!)4|p4(p2 − 1)(p3 − 1)(p4 − 1), which is impossible
since p > 7. Also there is no sporadic simple group satisfying these conditions.
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If S is a nonabelian simple group of Lie type over a field of characteristic p,
using the orders of the simple groups, we get that, the only possibility cases are
A1(p) and A2(p).

(A) If S ∼= A1(p), then p4(p2 − 1)4|16p4(p − 1)3(p + 1)2(p2 + 1)(p2 + p + 1),
therefore (p− 1)(p+ 1)2|16(p2 + 1)(p2 + p+ 1), which is impossible.

(B) If S ∼= A2(p), then |S|4 ≤ p4(p2 − 1)(p3 − 1)(p4 − 1), therefore p15 < p13,
which is impossible.

If S be a nonababelian simple group of Lie type over a field GF (q), where p ∤ q.
We claim that there is no simple group satisfying the above conditions. Now argue
as in (case1), we obtain a contradiction.

Hence m 6= 4.

Case 3. If p3‖|H |. Therefore p3||K/H |, since K/H is m is a direct product of m
copies of a nonabelian simple group S, it follows that, m ∈ {1, 3}. Now we consider
two subcases:

(i) Let m = 1. Then p3‖|S| and |S||p3(p2 − 1)(p3 − 1)(p4 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic p, using
the orders of the simple group, we get that, there is no simple group satisfying the
above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where p ∤ q.
We claim that there is no simple group satisfying the above conditions. Now argue
as in (case1), we obtain a contradiction.

Hence m 6= 1.

(ii) Let m = 3. Then p||S| and |S|3|p3(p2 − 1)(p3 − 1)(p4 − 1)

If S ∼= An Similarly to the case1, we get a contradiction. Also there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic p, using
the orders of the simple group, we get that, there is no simple group satisfying the
above condition.

If S be a nonababelian simple group of Lie type over a field GF (q), where p ∤ q.
We claim that there is no simple group satisfying the above conditions. Now argue
as in (case1), we obtain a contradiction.

Hence m 6= 3.

Case 4. If p4‖|H |. Therefore p2||K/H |, since K/H is m is a direct product of m
copies of a nonabelian simple group S, it follows that, m ∈ {1, 2}. Now we consider
two subcases:

(i)Let m = 1. Then p2‖|S| and |S||p2(p2 − 1)(p3 − 1)(p4 − 1).

If S ∼= An, then similar to Case 1, we get a contradiction. Also there is no
sporadic simple group satisfying these conditions.
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If S is a nonabelian simple group of Lie type over a field of characteristic p, using
the orders of the simple group, we get that, there is no simple group satisfying the
above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where p ∤ q.
We claim that there is no simple group satisfying the above conditions. Now argue
as in (case1), we obtain a contradiction.

Hence m 6= 1.

(ii) Let m = 2. Then p‖|S| and |S|2|p2(p2 − 1)(p3 − 1)(p4 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic p, using
the orders of the simple group, we get that, there is no simple group satisfying the
above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where p ∤ q.
We claim that there is no simple group satisfying the above conditions. Now argue
as in (case1), we obtain a contradiction.

Hence m 6= 2.

Case 5. If p5‖|H |. Therefore p||K/H |, since K/H is m is a direct product of m
copies of a nonabelian simple group S, it follows that, m = 1.

If S ∼= An Similarly to the case1, we get a contradiction. Also there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic p, using
the orders of the simple group, we get that, there is no simple group satisfying the
above conditions

If S be a nonababelian simple group of Lie type over a field GF (q), where p ∤ q.
We claim that there is no simple group satisfying the above conditions. Now argue
as in (case1), we obtain a contradiction.

Case 6. If p6||H |, choos χ ∈ Irr(G), such that χ(1) = p6. Let θ be an irreducible
constituent of χH , then χ(1)/θ(1)||G : H |, which implies that θ(1) = p6. Therefore
χH = θ and by Gallagher’s theorem βχ ∈ Irr(G), for each β ∈ Irr(G/H). Hence
p6β(1) ∈ cd(G), which is contradiction.

By the above discussion, we get that p6||K/H |. Since p6‖|G|, it follows thatK/H
is a nonabelian simple group say S, such that p6‖|S| and |S||p6(p2−1)(p3−1)(p4−1)
or K/H ∼= S×S and p3‖|S| and |S||p6(p2 − 1)(p3− 1)(p4 − 1) or K/H ∼= S×S×S

and p2‖|S| and |S|3|p6(p2 − 1)(p3 − 1)(p4 − 1) or K/H ∼= S × S × S × S × S × S

and p‖|S| and |S|6|p6(p2 − 1)(p3 − 1)(p4 − 1).

Now using the classification of finite simple groups and similar to the above
argument, we get K/H ∼= PSL(4, p). Therefore |H ||G/K| = 1, and hence, H = 1
and G/K = 1. Hence G ∼= PSL(4, p), and the main theorem is proved.
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Abstract. The theory of hyperstructures is of great importance due to its connections
to various fields of Science. Hv-structures are hyperstructures where the equality is
replaced by the nonempty intersection. This class of the hyperstructures is very large
so one can use it in order to define several objects that they are not possible to be
defined in the classical hyperstructure theory. This paper attempts an exposition of the
connection between hyperstructure (Hv-structure) theory and certain type of chemical
reactions. In this regard, we consider elements with four oxidation states and investigate
their mathematical structures.
Keywords. Hyperstructures; chemical reaction; mathematical structure; chemical
reaction.

1. Introduction

The origin of hypergroups can be followed back to Marty [18] who introduced
it in 1934 at the eighth Congress of Scandinavian Mathematicians. He generalized
the concept of a group, where the theory of groups is the oldest branch of ordinary
algebra, by considering the result of the “interaction” between two elements of a
non-empty set to be a non empty set of elements. He published some notes on
hypergroups, using them in different contexts as algebraic functions, rational frac-
tions, non-commutative groups. The theory knew an important progress starting
with the 70’s, when its research area has enlarged and new concepts were introduced
and studies such as canonical hypergroups, hyperrings, hypermodules, etc. A gen-
eralization of algebraic hyperstructures was introduced in 1990 by T. Vougiouklis
[21] where he defined weak hyperstructures. Many researchers such as Corsini [6],
Corsini and Leoreanu [7], Davvaz [8, 9], Davvaz and Leoreanu-Fotea [16], and Vou-
giouklis [20] wrote books related to hyperstructure theory and their applications.
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One of motivations for the study of hyperstructures comes from chemical reactions.
In [11], Davvaz and Dehghan-Nezhad provided examples of hyperstructures asso-
ciated with chain reactions. In [13], Davvaz et al. introduced examples of weak
hyperstructures associated with dismutation reactions. In [15], Davvaz et al. inves-
tigated the examples of hyperstructures and weak hyperstructures associated with
redox reactions. In [1], Al-Tahan et al. presented three different examples of weak
hyperstructures associated to elechtrochemical cells. In [5]. Chung et al. investi-
gated mathematical structures of chemical reactions for three consecutive oxidation
states of elements. Some authors considered particular elements with four oxida-
tion states and investigated their chemical hyperstructures. For example, Chun in
[4] presented chemical hyperstructures of chemical reactions for a set of Titanium
and Al-Tahan et al. in [2] studied chemical hyperstructures of chemical reactions
for a set of Astatine, a set of Tellurium and a set of Bismuth. Then in [3], they
studied mathematical structures of chemical reactions for arbitrary elements with
four oxidation states.

In this paper, we consider an arbitrary element with four oxidation states and
investigate its algebraic hyperstructures and it is organized as follows: After an
Introduction, Section 2 presents some definitions and concepts related to (weak)
hyperstructures that are used throughout the paper. Section 3 presents chemical
hyperstructures using redox reactions of an arbitrary element with four oxidation
states as algebraic hyperstructures under certain conditions. Finally, Section 4
presents some examples of elements with four oxidation states that satisfy the con-
ditions presented in Section 3.

2. Preliminaries

In this section, we present some definitions and concepts related to (weak) hy-
perstructures that are used throughout the paper.

Definition 2.1. [8] Let H be a non-empty set. Then, a mapping ◦ : H × H →
P∗(H) is called a binary hyperoperation on H , where P∗(H) is the family of all
non-empty subsets of H . The couple (H, ◦) is called a hypergroupoid.

In the above definition, if A and B are two non-empty subsets of H and x ∈ H ,
then we define:

A ◦B =
⋃

a∈A

b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

Hv-structures were introduced by T. Vougiouklis as a generalization of the well-
known algebraic hyperstructures [19, 21], also see [12, 20]. Some axioms of classical
algebraic hyperstructures are replaced by their corresponding weak axioms in Hv-
structures. Most of Hv-structures are used in representation theory.
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Definition 2.2. [20] A hypergroupoid (H, ◦) is called an Hv-semigroup if (x ◦ (y ◦
z)) ∩ ((x ◦ y) ◦ z) 6= Ø for all x, y, z ∈ H .

A subset K of an Hv-semigroup is an Hv-subsemigroup if K is an Hv-semigroup.
An element x ∈ H is called idempotent if x2 = x ◦ x = x and an element e ∈ H is
called an identity of (H, ◦) if x ∈ x ◦ e ∩ e ◦ x, for all x ∈ H . The hypergroupoid
(H, ◦) is said to be commutative if x ◦ y = y ◦ x, for all x, y ∈ H .

We present an example of a commutative Hv-semigroup.

Example 2.1. [2] Let H = {a, b, c, d} and define (H, ⋆) by the following table:

⋆ a b c d

a a {a, c} {a, c} c

b {a, c} {a, c} {a, c} c

c {a, c} {a, c} c {c, d}

d c c {c, d} d

Then (H,⋆) is a commutative Hv-semigroup.

Definition 2.3. [6] A hypergroupoid (H, ◦) is called a:

1. semihypergroup if for every x, y, z ∈ H , we have x ◦ (y ◦ z) = (x ◦ y) ◦ z;

2. quasi-hypergroup if for every x ∈ H , x ◦H = H = H ◦ x (The latter condition
is called the reproduction axiom);

3. hypergroup if it is a semihypergroup and a quasi-hypergroup.

We present an example of a commutative hypergroup of four elements.

Example 2.2. [2] Let H = {a, b, c, d} and define “◦” on H by the following table:

◦ a b c d

a a {a, b, c} {a, c} H

b {a, b, c} {a, b, c} {a, b, c} H

c {a, c} {a, b, c} c {c, d}

d H H {c, d} d

Then (H, ◦) is a commutative hypergroup.

Definition 2.4. [6] Two hypergroupoids (H, ◦) and (K, ⋆) are said to be iso-

morphic hypergroupoids, written as H ∼= K, if there exists a bijective function
f : H → K such that f(x ◦ y) = f(x) ⋆ f(y) for all x, y ∈ H .
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3. Chemical hyperstructures for elements with four oxidation states

Through the Latimer diagrams of all elements, we selected a lot of chemical
species that were recorded four consecutive standard reduction potentials in acidic
and/or basic solution [17].

Example 3.1. [17] The following Latimer diagram are for Astatine, Copper, Iridium,
and Carbon respectively that are elements with four consecutive standard reduction po-
tentials in acidic and/or basic solution.

At0−3 −→0.5 At0− −→0 At2 −→0.2 At
−;

CuO
+ −→1.8 Cu

2+ −→0.159 Cu
+ −→0.521 Cu;

Ir
6+ −→0.4 Ir

4+ −→0.1 Ir
3+ −→0.1 Ir;

C
6+ −→−1.01 C

+ −→−0.52 C −→−0.7 C
4−

.

Let A,B,C, and D be chemical species of an arbitrary element S and let n1 be
the difference of the oxidation number between D and C, n2 be the difference of
the oxidation number between C and B and n3 be the difference of the oxidation
number between B and A. Let α, β, and γ be the potential difference between
D,C,B, and A like in the following Latimer diagram of S.

D −→α C −→β B −→γ A.

We present the following reductions.
(1) D −→ B , E1 = αn1+βn2

n1+n2

,

(2) D −→ A , E2 = αn1+βn2+γn3

n1+n2+n3

,

(3) C −→ A , E3 = βn2+γn3

n2+n3

.
Let {x, x′, y, y′} ⊆ {A,B,C,D} such that x −→a x′ and y −→b y′ where a, b are
potential differences. We get the following redox reaction:

x+ x′ −→a+b y + y′

If E = a + b > 0 then our redox reaction is spontaneous. Otherwise it is not
spontaneous.
In this paper, we are concerned about the chemical hyperstructures of S
under the condition α ≥ γ ≥ β. We consider the four different cases, case
α = γ = β, case α > γ > β, case α > γ = β, and case α = γ > β.In this regard,
we consider each case separately and find the (weak) hyperstructures associated to
it.

3.1. Case α = γ = β

Let H = {A,B,C,D}, it is clear that:
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E1 = E2 = E3 = α = β = γ.

For all x, y ∈ H , we define “⊕” on H as follows: x⊕ y = z where z in the product
of the spontaneous redox reaction with greatest potential difference that occurs
between x and y.
Then we obtain the following table for (H,⊕).

⊕ A B C D

A A {A, B} {A, C} {A, D}
B {A, B} B {B, C} {B, D}
C {A, C} {B, C} C {C, D}
D {A, D} {B, D} {C, D} D

Theorem 3.1. Let H = {A,B,C,D}. Then (H,⊕) is a commutative hypergroup.

Proof. The proof is straightforward since (H,⊕) is the Biset hypergroup with four
elements.

3.2. Case α > γ > β

Let H = {A,B,C,D}, it is clear that:

β < E1 < α, β < E2 < α, β < E3 < γ.

The following are all possible spontaneous redox combinations for H .
A+A −→ A+A [0]
For the spontaneous reactions of A+B, we consider the three cases: Case E2 < γ,
Case E2 > γ and Case E2 = γ.
Case E2 < γ. We get that

A+B −→







C +A [γ − E3]
D +A [γ − E2]

B +A [0]

Case E2 > γ. We get that

A+B −→

{
C +A [γ − E3]

B +A [0]

Case E2 = γ. We get that

A+B −→

{
C +A [γ − E3]

B +A [0]

A+ C −→ C +A [0]
For the spontaneous reaction A + D, we consider the 6 cases: Case E2, E1 < γ,
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Case E2, E1 > γ, Case E2, E1 = γ, Case E1 > γ, E2 < γ, Case E1 > γ, E2 = γ,
Case E1 < γ, E2 > γ, Case E1 < γ, E2 = γ.
Case E2, E1 < γ. We get that

A+D −→







B + C [α− γ]
C + C [α− E3]
D + C [α− E2]

D +A [0]

Case E2, E1 > γ. We get that

A+D −→







B + C [α− γ]
B +B [E1 − γ]
B +A [E2 − γ]
C + C [α− E3]
D + C [α− E2]

D +A [0]

Case E1 = γ,E2 = γ. We get that

A+D −→







B + C [α− γ]
C + C [α− E3]
C +B [E1 − E3]
C +A [E2 − E3]
D + C [α− E2]

D +A [0]

Case E1 > γ,E2 < γ. We get that

A+D −→







B + C [α− γ]
B +B [E1 − γ]
C + C [α− E3]
D + C [α− E2]

D +A [0]

Case E1 > γ,E2 = γ. We get that

A+D −→







B + C [α− γ]
B +B [E1 − γ]
C + C [α− E3]
C +A [γ − E3]
D + C [α− γ]
D +A [0]

Case E1 < γ,E2 > γ. We get that

A+D −→







B + C [α− γ]
B +A [E2 − γ]
C + C [α− E3]
D + C [α− E2]

D +A [0]
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Case E1 < γ,E2 = γ. We get that

A+D −→







B + C [α− γ]
C + C [α− E3]
C +A [γ − E3]
D + C [α− E2]
D +B [E1 − γ]

D +A [0]

For the spontaneous reaction B + B, we consider the three cases: Case E1 < γ,
Case E1 > γ and Case E1 = γ.
Case E1 < γ. We get that

B +B −→







B +B [0]
A+ C [−β + γ]
A+D [γ − E1]

Case E1 > γ. We get that

B +B −→

{
B +B [0]

A+ C [−β + γ]

Case E1 = γ. We get that

B +B −→

{
B +B [0]

A+ C [−β + γ]

B + C −→

{
C +B [0]

C +A [−β + E3]

B +D −→







C + C [−β + α]
C +B [−β + E1]
C +A [−β + E2]
D + C [α− E1]

D +B [0]

C + C −→ C + C [0]
C +D −→ D + C [0]
D +D −→ D +D [0]

Remark 3.1. For all x, y ∈ H , the major product of x and y is that with the greatest
potential difference.

For all x, y ∈ H , we define “⊕i” with i = 1, 2, . . . , 7 on H for E2, E1 < γ, Case
E2, E1 > γ, Case E2, E1 = γ, Case E1 > γ, E2 < γ, Case E1 > γ, E2 = γ, Case
E1 < γ, E2 > γ, Case E1 < γ, E2 = γ. Where x ⊕i y = zi and zi is in the
product of the spontaneous redox reaction with greatest potential difference that
occurs between x and y.
Since the major part for all cases of E1, E2 under the case α > γ > β is the same,
we get (H,⊕i) = (H,⊕1) for i = 1, 2, . . . , 7.
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⊕1 A B C D

A A {A,C} {A,C} C

B {A,C} {A,C} {A,C} C

C {A,C} {A,C} C {C,D}

D C C {C,D} D

Theorem 3.2. (H,⊕1) is commutative Hv-semigroup.

Proof. (H,⊕1) is isomorphic to the Hv-semigroup (H, ⋆) presented in Example
2.1.

Let H = {A,B,C,D}, for all x, y ∈ H , we define “⊗1” for the case E1, E2 < γ,
“ ⊗2 ” for the case E1, E2 > γ, “ ⊗3 ” for the case E1 < γ,E2 > γ, “ ⊗4 ” for
the case E1 > γ,E2 < γ, “ ⊗5 ” for the case E1 < γ,E2 = γ, “ ⊗6 ”for the case
E1 > γ,E2 = γ and “⊗7 ” for the case E1 = E2 = γ. Here, x⊗i y = z, where z is
in the product of any spontaneous redox reaction that occurs between x and y for
i = 1, 2, . . . , 7.

Remark 3.2. (H,⊗2) = (H,⊗6) = (H,⊗7) and (H,⊗3) = (H,⊗5).

(H,⊗i) for i = 1, 2, . . . , 7 are given by tables 3.1, 3.2, 3.3, 3.4.

Table 3.1: (H,⊗1)
⊗1 A B C D

A A H {A,C} H

B H H {A,B,C} H

C {A,C} {A,B,C} C {C,D}

D H H {C,D} D

Table 3.2: (H,⊗2)
⊗2 A B C D

A A {A,B,C} {A,C} H

B {A,B,C} {A,B,C} {A,B,C} H

C {A,C} {A,B,C} C {C,D}

D H H {C,D} D
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Table 3.3: (H,⊗3)
⊗3 A B C D

A A {A,B,C} {A,C} H

B {A,B,C} H {A,B,C} H

C {A,C} {A,B,C} C {C,D}

D H H {C,D} D

Table 3.4: (H,⊗4)
⊗4 A B C D

A A H {A,C} H

B H {A,B,C} {A,B,C} H

C {A,C} {A,B,C} C {C,D}

D H H {C,D} D

Remark 3.3. It is clear that (H,⊗i), i = 1, 2, 3, 4 are not isomorphic.

Proposition 3.1. (H,⊗1) is a commutative quasi-hypergroup.

Proof. Since all elements of H are present in every row and column, it follows that
(H,⊗1) is a quasi-hypergroup.

Proposition 3.2. ({A,C},⊗1) and ({C,D},⊗1) are commutative semihypergroups.

Proof. The proof is straightforward.

Proposition 3.3. (H,⊗1) is a commutative semihypergroup.

Proof. Since ({A,C},⊗1) and ({C,D},⊗1) are hypergroups, it suffices to consider
the following cases for associativity:
A⊗1 (D ⊗1 z) = (A⊗1 D)⊗1 z = H .
A⊗1 (B ⊗1 z) = (A⊗1 B)⊗1 z = H .
A⊗1 (C ⊗1 z) = (A⊗1 C)⊗1 z = H for all z ∈ H − {C}.
A⊗1 (C ⊗1 C) = (A⊗1 C)⊗1 C = {A,C}.

B ⊗1 (y ⊗1 z) =

{
{A,B,C} if y = C, z = C

H, otherwise
= (B ⊗1 y)⊗1 z.

C ⊗1 (y ⊗1 B) =

{
{A,B,C} if y = C

H, otherwise
= (C ⊗1 y)⊗1 B.

C ⊗1 (B ⊗1 z) =

{
{A,B,C} if z = C

H otherwise
= (C ⊗1 B)⊗1 z.
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D ⊗1 (y ⊗1 z) = (D ⊗1 y) ⊗1 z = G for all y, z /∈ {C,D}. Thus, (H,⊗1) is a
semihypergroup..

Theorem 3.3. (H,⊗1) is a commutative hypergroup.

Proof. The proof is follows from Propositions 3.1 and 3.3.

Theorem 3.4. (H,⊗i) for i = 2, 3, 5, 6, 7 are commutative hypergroups.

Proof. By following the same proof done in Theorem 3.3, we get that (H,⊗i) for
i = 2, 3, 5, 6, 7 are commutative hypergroups.

Theorem 3.5. (H,⊗4) is a commutative Hv-group.

Proof. Easy computations show that (H,⊗4) is a commutative Hv-group.

3.3. Case α > γ = β

Let H = {A,B,C,D}, it is clear that:

β = γ < E1 < α, β = γ < E2 < α, β = E3 = γ.

The following are all possible spontaneous redox combinations for H .
A+A −→ A+A [0]
A+B −→ B +A [0]
A+ C −→ C +A [0]

A+D −→







B + C [α− γ]
B +B [E1 − γ]
B +A [E2 − γ]
C + C [α− E3]
D + C [α− E2]

D +A [0]
B +B −→ B +B [0]
B + C −→ C +B [0]

B +D −→







C + C [−β + α]
C +B [−β + E1]
C +A [β − E2]
D + C [α− E1]

D +B [0]
C + C −→ C + C [0]
C +D −→ D + C [0]
D +D −→ D +D [0]
For all x, y ∈ H , we define “⊕8 ” on H as follows: x⊕8 y = z, where z is the major
product of the spontaneous redox reaction that occurs between x and y.
We obtain the following table for (H,⊕8):
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⊕8 A B C D

A A {A,B} {A,C} {B,C}

B {A,B} B {B,C} C

C {A,C} {B,C} C {C,D}

D {B,C} C {C,D} D

Proposition 3.4. Let H = {A,B,C,D}. Then (H,⊕8) is a commutative Hv-

semigroup.

Proof. Let x, y, z ∈ H . We consider the following cases for x, y, z.

• If x = y = z then x ∈ x⊕8 (y ⊕8 z) ∩ (x⊕8 y)⊕8 z.

• If x = A then A ∈ x ⊕8 (y ⊕8 z) ∩ (x ⊕8 y) ⊕8 z for all (y, z) 6= (D,D) and
C ∈ x⊕8 (D ⊕8 D) ∩ (x⊕8 D)⊕8 D.

• If x = B then B ∈ x ⊕8 (y ⊕8 z) ∩ (x ⊕8 y) ⊕8 z for all (y, z) 6= (D,D) and
C ∈ x⊕8 (D ⊕8 D) ∩ (x⊕8 D)⊕8 D.

• If x = C then C ∈ x⊕8 (y ⊕8 z) ∩ (x⊕8 y)⊕8 z.

• If x = D and (y, z) 6= (D,D) then C ∈ x ⊕8 (y ⊕8 z) ∩ (x ⊕8 y) ⊕8 z for all
(y, z) 6= (D,D).

Therefore, (H,⊕8) is a commutative Hv-semigroup.

Let H = {A,B,C,D}, for all x, y ∈ H , we define “⊗8” on H , where x⊗8 y = z and
z is the product of any spontaneous redox reaction that occurs between x and y.
Then we obtain the following tables for (H,⊗8):

⊗8 A B C D

A A {A,B} {A,C} H

B {A,B} B {B,C} H

C {A,C} {B,C} C {C,D}

D H H {C,D} D

Proposition 3.5. ({A,B},⊗8), ({A,C},⊗8), ({B,C},⊗8), ({C,D},⊗8), and ({A,B,C},⊗8)
are hypergroups.

Proof. Since ({A,B},⊗8), ({A,C},⊗8), ({B,C},⊗8), ({C,D},⊗8) and ({A,B,C},⊗8)
are biset hypergroups, it follows that they are hypergroups.
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Remark 3.4. Every element in (H,⊗8) is idempotent, that is x⊗8 x = x.

Proposition 3.6. Let H = {A,B,C,D}. Then (H,⊗8) is semihypergroup.

Proof. Since ({A,B},⊗8), ({A,C},⊗8), ({B,C},⊗8), ({C,D},⊗8), and ({A,B,C},⊗8)
are hypergroups, it suffices to consider the following cases for associativity in Table
3.5. Thus, (H,⊗8) is semihypergroup.

Theorem 3.6. Let H = {A,B,C,D}. Then (H,⊗8) is a commutative hyper-

group.

Proof. The proof is followed by Propositions 3.5 and 3.6.

3.4. Case α = γ > β

Let H = {A.B,C,D} , it’s clear that:

β < E1 < α = γ, β < E2 < α = γ, β < E3 < γ = α.

The following are all possible spontaneous redox combinations of H .
A+A −→ A+A [0]

A+B −→







B +A [0]
C +A [γ − E3]
A+D [γ − E2]

A+ C −→ C +A [0]
We have E1 − E3 = αn1+βn2

n1+n2

− βn2+γn3

n2+n3

= n2(n1 − n3)(α − β).
Case n1 > n3. We get that

A+D −→







C + C [α− E3]
C +B [E1 − E3]
D + C [α− E2]

D +A [0]

Case n1 ≤ n3. We get that

A+D −→







C + C [α− E3]
D + C [α− E2]

D +A [0]

B +B −→







B +B [0]
A+ C [−β + γ]
A+D [γ − E1]

B + C −→

{
C +B [0]

C +A [γ − E3]



Hypergroups and Hv-groups Associated to Elements with four Oxidation States 701

Table 3.5: Associativity of (H,⊗8)
D ⊗8 (A⊗8 A) = D ⊗8 A = H (D ⊗8 A)⊗8 A = H ⊗8 A = H

A⊗8 (D ⊗8 A) = A⊗8 H = H (A⊗8 D)⊗8 A = H ⊗8 A = H

A⊗8 (A⊗8 D) = A⊗8 H = H (A⊗8 A)⊗8 D = A⊗8 D = H

D ⊗8 (B ⊗8 B) = D ⊗8 B = H (D ⊗8 B)⊗8 B = H ⊗8 B = H

B ⊗8 (D ⊗8 B) = B ⊗8 H = H (B ⊗8 D)⊗8 B = H ⊗8 B = H

B ⊗8 (B ⊗8 D) = B ⊗8 H = H (B ⊗8 B)⊗8 D = B ⊗8 D = H

D ⊗8 (D ⊗8 D) = D ⊗8 D = D (D ⊗8 D)⊗8 D = D ⊗8 D = D

A⊗8 (D ⊗8 D) = A⊗8 D = H (A⊗8 D)⊗8 D = H ⊗8 D = H

B ⊗8 (D ⊗8 D) = B ⊗8 D = H (B ⊗8 D)⊗8 D = H ⊗8 D = H

D ⊗8 (A⊗8 D) = D ⊗8 H = H (D ⊗8 A)⊗8 D = H ⊗8 D = H

D ⊗8 (B ⊗8 D) = D ⊗8 H = H (D ⊗8 B)⊗8 D = H ⊗8 D = H

D ⊗8 (D ⊗8 A) = D ⊗8 H = H (D ⊗8 D)⊗8 A = D ⊗8 A = H

D ⊗8 (D ⊗8 C) = D ⊗8 {C,D} = {C,D} (D ⊗8 D)⊗8 C = D ⊗8 C = {C,D}

A⊗8 (B ⊗8 D) = A⊗8 H = H (A⊗8 B)⊗8 D = {A,B} ⊗8 D = H

A⊗8 (C ⊗8 D) = A⊗8 {C,D} = H (A⊗8 C)⊗8 D = {A,C} ⊗8 D = H

A⊗8 (D ⊗8 B) = A⊗8 H = H (A⊗8 D)⊗8 B = H ⊗8 B = H

A⊗8 (D ⊗8 C) = A⊗8 {C,D} = H (A⊗8 D)⊗8 C = H ⊗8 C = H

B ⊗8 (A⊗8 D) = B ⊗8 H = H (B ⊗8 A)⊗8 D = H ⊗8 D = H

B ⊗8 (C ⊗8 D) = B ⊗8 {C,D} = H (B ⊗8 C)⊗8 D = {B,C} ⊗8 D = H

B ⊗8 (D ⊗8 A) = B ⊗8 H = H (B ⊗8 D)⊗8 A = H ⊗8 A = H

B ⊗8 (D ⊗8 C) = B ⊗8 {C,D} = H (B ⊗8 D)⊗8 C = H ⊗8 C = H

C ⊗8 (A⊗8 D) = C ⊗8 H = H (C ⊗8 A)⊗8 D = {A,C} ⊗8 D = H

C ⊗8 (B ⊗8 D) = C ⊗8 H = H (C ⊗8 B)⊗8 D = {B,C} ⊗8 D = H

C ⊗8 (D ⊗8 A) = C ⊗8 H = H (C ⊗8 D)⊗8 A = {C,D} ⊗8 A = H

C ⊗8 (D ⊗8 B) = C ⊗8 H = H (C ⊗8 D)⊗8 B = {C,D} ⊗8 B = H

D ⊗8 (A⊗8 B) = D ⊗8 {A,B} = H (D ⊗8 A)⊗8 B = H ⊗8 B = H

D ⊗8 (A⊗8 C) = D ⊗8 {A,C} = H (D ⊗8 A)⊗8 C = H ⊗8 C = H

D ⊗8 (B ⊗8 A) = D ⊗8 H = H (D ⊗8 B)⊗8 A = H ⊗8 A = H

D ⊗8 (B ⊗8 C) = D ⊗8 {B,C} = H (D ⊗8 B)⊗8 C = H ⊗8 C = H

D ⊗8 (C ⊗8 A) = D ⊗8 {A,C} = H (D ⊗8 C)⊗8 A = {C,D} ⊗8 A = H

D ⊗8 (C ⊗8 B) = D ⊗8 {B,C} = H (D ⊗8 C)⊗8 B = {C,D} ⊗8 B = H
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B +D −→







C + C [−β + α]
C +B [−β + E1]
C +A [−β + E2]
D + C [α− E1]

D +B [0]
C + C −→ C + C [0]
C +D −→ D + C [0]
D +D −→ D +D [0]

For all x, y ∈ H , we define “⊕9” on H for the case n1 > n3 and the case n1 ≤ n3,
where x ⊕9 y = z, where z is the major product. We obtain the table below for
(H,⊕9) :

⊕9 A B C D

A A {A,C} {A,C} C

B {A,C} {A,C} {A,C} C

C {A,C} {A,C} C {C,D}

D C C {C,D} D

Theorem 3.7. (H,⊕9) is a commutative Hv-semigroup.

Proof. (H,⊕9) is isomorphic to (H,⊕1) in Theorem 3.2.

Let H = {A,B,C,D}, for all x, y ∈ H , we define “⊗9” on H for the case n1 > n3,
“⊗10” for the case n1 ≤ n3, where x ⊗9 y = z where z is the product of any
spontaneous redox reaction that occurs between x and y. Then we obtain the
tables for (H,⊗9) and (H,⊗10):

⊗9 A B C D

A A H {A,C} H

B H H {A,B,C} H

C {A,C} {A,B,C} C {C,D}

D H H {C,D} D

Proposition 3.7. (H,⊗9) is a commutative hypergroup.

Proof. (H,⊗9) is isomorphic to (H,⊗1) in Theorem 3.3.

Proposition 3.8. (H,⊗10) is a commutative hypergroup.
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⊗10 A B C D

A A H {A,C} {A,C,D}

B H H {A,B,C} H

C {A,C} {A,B,C} C {C,D}

D {A,C,D} H {C,D} D

Proof. It is clear that (H,⊗10) is a quasi-hypergroup since all elements of H are
present in every row and column, so it remains to prove that (H,⊗10) is a semi-
hypergroup, i.e. associative.
Since ({a, c},⊗10) and ({a, c, d},⊗10) are associative, then it suffices to consider the
cases for associativity in a similar way that is done in Table 3.5.

Remark 3.5. In some of the above spontaneous reactions, not all spontaneous reactions
are considered because their presence or absence does not affect our results.

4. Examples of Chemical hyperstructures

In this section, we present some elements with four oxidation states and identify
their chemical hyperstructure. In particular, we present Copper and Astatine as an
examples under the case α > γ > β with E1 > γ and E2 > γ, Iridium under the
case α > γ = β with E1, E2 > γ, and Uranium under the case α > γ > β with
E1 > γ and E2 > γ.

Example 4.1. Copper, denoted as Cu, is a soft and ductile element with very high
thermal and electrical conductivity. Copper is one of the few metals that can occur in
nature in a directly usable metallic form native metals. The Latimer diagram of Copper
in acid solution satisfying the condition α ≥ γ ≥ β is given as follows:

CuO+ −→1.8 Cu2+ −→0.159 Cu+ −→0.521 Cu.

Copper has four different oxidation states: +3,+2,+1, and 0. We denote CuO+ by
Cu3+. We have α = 1.8, β = 0.159, γ = 0.521 and n1 = n2 = n3 = 1. Since E1 =
(1.8)(1)+(0.159)(1)

2
= 0.979 > γ, and E2 = (1.8)(1)+(0.159)(1)+(0.521)(1)

3
= 0.826 > γ, it follows

that:

• (H = {Cu, Cu+, Cu2+, Cu3+},⊕2) is a commutative Hv-semigroup.

According to Table 4.1, Cu2+ is the most common oxidation state.

• (H = {Cu, Cu+, Cu2+, Cu3+},⊗2) is a commutative hypergroup with the following
table:

Every element e in H is identity since for all x ∈ H,x ∈ x⊗ e ∩ e⊗ x.

Example 4.2. [2] Astatine denoted as At is a radioactive chemical element and it is the
heaviest known halogen.The Latimer diagram of Astatine in base solution satisfying the
condition α > γ > β is given as follows:
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Table 4.1: ({Cu,Cu+, Cu2+, Cu3+},⊕2)
⊕2 Cu Cu+ Cu2+ Cu3+

Cu Cu {Cu,Cu2+} {Cu,Cu2+} Cu2+

Cu+ {Cu,Cu2+} {Cu,Cu2+} {Cu,Cu2+} Cu2+

Cu2+ {Cu,Cu2+} {Cu,Cu2+} Cu2+ {Cu2+, Cu3+}

Cu3+ Cu2+ Cu2+ {Cu2+, Cu3+} Cu3+

Table 4.2: ({Cu,Cu+, Cu2+, Cu3+},⊗2)
⊗2 Cu Cu+ Cu2+ Cu3+

Cu Cu {Cu,Cu+, Cu2+} {Cu,Cu2+} H

Cu+ {Cu,Cu+, Cu2+} {Cu,Cu+, Cu2+} {Cu,Cu+, Cu2+} H

Cu2+ {Cu,Cu2+} {Cu,Cu+, Cu2+} Cu2+ {Cu2+, Cu3+}

Cu3+ H H {Cu2+, Cu3+} Cu3+

At5+ −→0.5 At+ −→0 At2 −→0.2 At−.

Al-Tahan et al. in [2], studied the Hv-semigroup and hypergroup associated to Astatine.
Their results on Astatine can be also concluded from our results of Section 3.

Astatine has four oxidation states: +5,+1, 0,−1. We have α = 0.5, β = 0, γ =
0.2 and n1 = 4, n2 = 1, n3 = 1. Since E1 = (0.5)(4)+(0)(1)

5
= 0.4 > γ and E2 =

(0.5)(4)+(0)(1)+(0.2)(1)
6

= 0.367 > γ, we get the following results:
• (H = {At−, At2, At+, At5+},⊕2) is a commutative Hv-semigroup.

Table 4.3: ({At−, At2, At
+, At5+},⊕2)

⊕2 At− At2 At+ At5+

At− At− {At−, At+} {At−, At+} At5+

At2 {At−, At+} {At−, At+} {At−, At+} At+

At+ {At−, At+} {At−, At+} At+ {At+, At5+}

At5+ At+ At+ {At+, At5+} At5+

According to Table 4.3, At+ is the most common oxidation state.
• (H = {At−, At2, At+, At5+},⊗2) is a commutative Hv − semigroup.
According to Table 4.4, At5+ is the least common oxidation state.

Example 4.3. Uranium (U) is a metallic, silver-gray element that is a member of the
actinide series. It is the principle fuel for nuclear reactors, but it also used in the manu-
facture of nuclear weapons. The Latimer diagram of Uranium in base solution satisfying
the condition α > γ > β is given as follows:
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Table 4.4: ({At−, At2, At
+, At5+},⊗2)

⊗2 At− At2 At+ At5+

At− At− {At−, At2, At
+} {At−, At+} H

At2 {At−, At2, At
+} {At−, At2, At

+} {At−, At2, At
+} H

At+ {At−, At+} {At−, At2, At
+} At+ {At+, At5+}

At5+ H H {At+, At5+} At5+

U6+ −→−0.3 U4+ −→−2.6 U3+ −→−2.1 U.

Uranium has four oxidation states: +6,+4,+3, 0. We have α = −0.3, β = −2.6, γ =
−2.1. Since E1 = (−0.3)(2)+(−2.6)(1)

3
= −1.06 > γ and E2 = (−0.3)(2)+(−2.6)(1)+(3)(−2.1)

6
=

−1.58 > γ. We get the following results:
• (H = {U,U3+, U4+, U6+},⊕2) is a commutative Hv-semigroup.

Table 4.5: ({U,U3+, U4+, U6+},⊕2)
⊕2 U U3+ U4+ U6+

U U {U,U4+} {U,U4+} U4+

U3+ {U,U4+} {U,U4+} {U,U4+} U4+

U4+ {U,U4+} {U,U4+} U4+ {U4+, U6+}

U6+ U4+ U4+ {U4+, U6+} U6+

According to Table 4.5, U4+ is the most common oxidation state.
• (H = {U,U3+, U4+, U6+},⊗2) is a hypergroup with the following table.

Table 4.6: ({U,U3+, U4+, U6+},⊗2)
⊗2 U U3+ U4+ U6+

U U {U,U3+, U4+} {U,U4+} H

U3+ {U,U3+, U4+} {U,U3+, U4+} {U,U3+, U4+} H

U4+ {U,U4+} {U,U3+, U4+} U4+ {U4+, U6+}

U6+ H H {U4+, U6+} U6+

According to Table 4.6, U6+ is the least common oxidation state.

Example 4.4. Iridium (Ir) is a chemical element, a very hard, brittle, silvery-white
transition metal of the platinum group. The Latimer diagram of Iridium in base solution
satisfying the condition α > γ = β is given as follows:

Ir6+ −→0.4 Ir4+ −→0.1 Ir3+ −→0.1 Ir.
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Iridium has four oxidation states +6,+4,+3, 0. We have α = 0.4, β = γ = 0.1 and n1 =
2, n2 = 1, n3 = 3. Since E1 = (0.4)(2)+(0.1)(1)

3
= 0.3 > γ and E2 = (0.4)(2)+(0.1)(1)+(0.1)(3)

6
=

0.2 > γ, we get the following results:

• (H = {Ir6+, Ir4+, Ir3+, Ir},⊕7) is a commutative Hv-semigroup with the following
table:

Table 4.7: ({Ir6+, Ir4+, Ir3+, Ir},⊕7)
⊕7 Ir Ir3+ Ir4+ Ir6+

Ir Ir {Ir, Ir3+} {Ir, Ir4+} {Ir3+, Ir4+}

Ir3+ {Ir, Ir3+} Ir3+ {Ir3+, Ir4+} Ir4+

Ir4+ {Ir, Ir4+} {Ir3+, Ir4+} Ir4+ {Ir4+, Ir6+}

Ir6+ {Ir3+, Ir4+} Ir4+ {Ir4+, Ir6+} Ir6+

According to above table 4.7, Ir6+ is the least common oxidation state.
• (H = {Ir6+, Ir4+, Ir3+, I},⊗7) is a commutative hypergroup.

Table 4.8: ({Ir6+, Ir4+, Ir3+, Ir},⊗7)
⊗7 Ir Ir3+ Ir4+ Ir6+

Ir Ir {Ir, Ir3+} {Ir, Ir4+} H

Ir3+ {Ir, Ir3+, } {Ir3+} {Ir3+, Ir4+} H

Ir4+ {Ir, Ir4+} {Ir3+, Ir4+} Ir4+ {Ir4+, Ir6+}

Ir6+ H H {Ir4+, Ir6+} Ir6+

According to Table 4.8, Ir4+ is the most common oxidation state.

5. Conclusion

This paper dealt with non-isomorphic (Hv-semigroups) hypergroups of an ele-
ment with four oxidation states which has the largest number of examples among
all cases for elements with four oxidation states.
For future work, it will be interesting to generalize our work to arbitrary elements
with k- oxidation states.
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Abstract. This paper presents a connection between fuzzy sets, biological inheritance
and hyperstructures in which we consider the set of phenotypes of the second generation
F2 in different types of inheritance, define fuzzy subsets of it and construct a sequence
of join spaces associated to each of its types.
Keywords. Hyperstructures; fuzzy subsets; join spaces; hypergroups; automata the-
ory.

1. Introduction

The Hyperstructure theory was introduced in 1934, at the eighth Congress
of Scandinavian Mathematicians, when F. Marty [17] defined hypergroups as nat-
ural generalization of the concept of group based on the notion of hyperoperation,
analyzed their properties and applied them to groups. In the following decades
and nowadays, a number of different hyperstructures are widely studied from the
theoretical point of view and for their applications to many subjects of pure and
applied mathematics: geometry, topology, cryptography and code theory, graphs
and hypergraphs, probability theory, binary relations, theory of fuzzy and rough
sets, automata theory, economy, etc. (see [4, 6, 7]). A hypergroup is an algebraic
structure similar to a group, but the composition of two elements is a non-empty
set. One of motivations for the study of hyperstructures comes from biological in-
heritance. In [10], M. Ghadiri and B. Davvaz used the concept of Hv-semigroup
structure in the F2-genotypes with cross operation and proved that it is an Hv-
semigroup and they determined the kinds of the Hv-subsemigroups of F2-genotypes
(see also [7]). Another motivation for the study of hyperstructures comes from
physical phenomenon as the nuclear fission. This motivation and the results were
presented by S. Hošková, J. Chvalina and P. Račková (see [13], [14]). In [9], the
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authors provided, for the first time, a physical example of hyperstructures asso-
ciated with the elementary particle physics, Leptons. They have considered this
important group of the elementary particles and shown that this set along with the
interactions between its members can be described by the algebraic hyperstructures.
On the other hand, the concept of fuzzy sets has been introduced by L. A. Zadeh
in 1965 (see [29]) as an extension of the classical notion of set, when he proposed
the idea of a multi-valued logic, which extends the traditional concept of a bivalent
logic, which becomes a particular case of the new theory. The fuzzy set theory is
based on the principle called by L. A. Zadeh “the principle of incompatibility”, that
is “the closer a phenomenon is studied, the more indistinct its definition becomes”.
Fuzzy sets are sets whose elements have degrees of membership. In classical set
theory, the membership of elements in a set is assessed in binary terms according
to a bivalent condition an element either belongs or does not belong to the set.
By contrast, fuzzy set theory permits the gradual assessment of the membership of
elements in a set; this is described with the aid of a membership function valued in
the real unit interval [0, 1]. Fuzzy sets generalize classical sets, since the indicator
functions of classical sets are special cases of the membership functions of fuzzy
sets, if the latter only take values 0 or 1.

The early theories of heredity were those of Greek scientists (Hippocrates and
Aristotle); their theories were similar to Darwin’s later ideas on Pangenesis. The
latter states that the whole of parental organisms participate in heredity while
adapting to cell theory. Much of Darwin’s model was speculatively based on inher-
itance of tiny heredity particles that could be transmitted from parent to offspring
[5]. The hypothesis was eventually replaced by Mendel’s laws of inheritance where
Gregor Mendel first traced patterns of certain traits in pea plants and showed that
they obeyed certain statistical rules. Scientific studies of Mendelian inheritance be-
gan in 1866 with the experiments of Mendel, the founder of modern genetics [18].
Mendel worked out the mathematical rules for the inheritance of characteristics
in the garden pea. The significance of his discovery was not recognized until 1900,
when three botanists: Hugo de Vries, Carl Correns and Erich von Tschermak began
independently conducting similar experiments with plants and arrived at conclu-
sions similar to those of Mendel. Coming across Mendel’s paper, they interpreted
their results in accord with his principles and drew attention to his pioneering work.
And by 1915 the basic principles of Mendelian genetics had been applied to a wide
variety of organisms. Mendel discovered the principles of heredity by crossing dif-
ferent varieties of pea plants and analyzing the transmission pattern of traits in
subsequent generations. He began by studying monohybrid crosses, those between
parents that differed in a single characteristic. Mendel’s approach to the study of
heredity was effective for several reasons. The foremost was his choice of an exper-
imental subject, the pea plant, Pisum sativum, which offered obvious advantages
for genetic investigations. It is easy to cultivate, and Mendel had a monastery gar-
den and a greenhouse at his disposal. Peas grow relatively rapidly, completing an
entire generation in a single growing season. Mendel started with 34 varieties of
peas and spent two years selecting those varieties that he would use in his experi-
ments [20]. In [7, 10], Davvaz et al. studied the connection between weak algebraic
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hyperstructures and inheritance.

The aim of this paper is to investigate a new connection between fuzzy sets
and biological inheritance. More precisely, we consider the set of phenotypes of F2

under mating and define a fuzzy subset of it. Our paper is constructed as follows:
after an introduction, Section 2 presents some definitions that are used throughout
the paper. Section 3 presents fuzzy sets and join spaces associated to the set of
phenotypes of F2 for the cases of simple and incomplete inheritance. Finally, Section
4 presents fuzzy sets and join spaces associated to the set of phenotypes of F2 for
some examples of non Mendelian inheritance.

Throughout this paper, parents is denoted by P , first generation by F1 and
second generation by F2.

2. Basic definitions

In this section, we present some definitions related to hyperstructures (see [1]),
fuzzy sets (see [2, 3, 29]) and to biological inheritance (see [11, 12, 18]) that are
used throughout the paper.

Let H be a non-empty set. Then, a mapping ◦ : H ×H → P∗(H) is called a
binary hyperoperation on H , where P∗(H) is the family of all non-empty subsets of
H . The couple (H, ◦) is called a hypergroupoid. In the above definition, if A and B

are two non-empty subsets of H and x ∈ H , then we define:

A ◦B =
⋃

a∈A,b∈B a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

An element e ∈ H is called an identity of (H, ◦) if x ∈ x◦e∩e◦x, for all x ∈ H ; it is
called a scalar identity of (H, ◦) if x ◦ e = e ◦ x = {x}, for all x ∈ H . If e is a scalar
identity of (H, ◦), then e is the unique identity of (H, ◦). The hypergroupoid (H, ◦)
is said to be commutative if x ◦ y = y ◦ x, for all x, y ∈ H . A hypergroupoid (H, ◦)
is called a semihypergroup if for every x, y, z ∈ H , we have x ◦ (y ◦ z) = (x ◦ y) ◦ z
and is called a quasihypergroup if for every x ∈ H , x ◦ H = H = H ◦ x. This
condition is called the reproduction axiom. The couple (H, ◦) is called a hypergroup
if it is a semihypergroup and a quasihypergroup. A canonical hypergroup [19] is a
non-empty set H endowed with a hyperoperation ◦ : H ×H → P∗(H), satisfying
the following properties: (1) for any x, y, z ∈ H,x ◦ (y ◦ z) = (x ◦ y) ◦ z, (2) for
any x, y ∈ H,x ◦ y = y ◦ x, (3) there exists ı ∈ H such that ı ◦ x = x ◦ ı = x,
for any x ∈ H ,(4) for every x ∈ H , there exists a unique element x′ (or denote
by x−1) and we call it the inverse of x), (5) z ∈ x ◦ y implies that y ∈ x′ ◦ z and
x ∈ z ◦ y′, that is (H, ◦) is reversible. Two hypergroups (H, ◦) and (K, ⋆) are said
to be isomorphic hypergroups if there exists a bijective function f : H → K such
that f(x ◦ y) = f(x) ⋆ f(y) for all x, y ∈ H .
Join spaces were introduced by W. Prenowitz [21, 22] and then applied by him
and J. Jantosciak [23] in Euclidian as well as in non Euclidian geometry. Also,
see [15, 16]. Using this notion, several branches of non Euclidian geometry were
rebuilt: descriptive geometry, projective geometry and spherical geometry. Then,
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several important examples of join spaces have been constructed in connection with
binary relations, graphs, lattices, rough sets. In order to define a join space, we
need the following notation: If a, b are elements of a hypergroupoid (H, ◦), then we
denote a/b = {x ∈ H | a ∈ x ◦ b}. A commutative hypergroup (A, ⋆) is called a join
space if for all α1, α2, α3, α4 ∈ A the following implication is true

α1/α2 ∩ α3/α4 6= Ø ⇒ α1 ⋆ α4 ∩ α2 ⋆ α3 6= Ø.

The first connection between fuzzy sets and hyperstructures was established
by Corsini, when he defined a hyperoperation by means of fuzzy subsets. More
precisely, let µ : H → [0, 1] be a fuzzy subset of a nonempty set H . Define on H

the hyperoperation ⋆1, setting, for any x, y ∈ H ,

(w′) : x ⋆1 y = y ⋆1 x = {z ∈ H : min(µ(x), µ(y)) ≤ µ(z) ≤ max(µ(x), µ(y))}.

The associated hypergroupoid (1H, ⋆1) is a join space. Also, he defined fuzzy subsets
from hypergroups in the following manner: For any hypergroup (H, ⋆), he defined
a fuzzy subset µ : H → [0, 1] of H in the following way: for u ∈ H consider

(w) : µ(u) =

∑

(x,y)∈Q(u)
1

|x⋆y|

q(u)
,

where Q(u) = {(a, b) ∈ H2 : u ∈ a ⋆ b} and q(u) = |Q(u)| (see [2, 3]).
Let (1H, ⋆1) be the join space obtained by applying the fuzzy subset µ as defined

in (w′). By using (w) we get µ1 and using the same procedure as in (w′), from 1H

we can obtain a membership function µ2 and the associated join space 2H and
so on. A sequence of fuzzy sets and join spaces ((iH, ⋆i), µi)i≥1 is determined in
this way. If two consecutive hypergroups of the obtained sequence are isomorphic,
then the sequence stops. The length of the sequence of join spaces associated with
H is called the fuzzy grade of H . A hypergroupoid H has a fuzzy grade m ∈ N,
written as f.g(H) = m if for all i, 0 ≤ i < m, the join spaces iH and i+1H are
not isomorphic and for all s > m, sH and mH are isomorphic. If f.g(H) = m and
sH = mH , for all s > m, we say that the strong fuzzy grade of H ; s.f.g(H) = m.
Such construction of join spaces is important for at least two reasons: it provides
examples of hypergroup structures on a given set and it gives the possibility of
studying fuzzy sets in an algebraic approach. On the other hand, the construction
could start either from a fuzzy subset or from a hypergroup structure on a nonempty
set H .

Inheritance involves the passing of discrete units of inheritance, or genes, from
parents to offspring. Gregor Mendel [18], the first who introduced the notion of
inheritance explicitly in 1865, found that paired pea traits were either dominant
or recessive. When pure bred parent plants (P ) were cross bred, dominant traits
were always seen in the progeny, whereas recessive traits were hidden until the first
generation (F1) hybrid plants were left to self pollinate. Mendel observed that in
the second generation (F2), the traits of the P generation reappeared. He concluded
that traits were not blended but remained distinct in subsequent generations, which
was contrary to scientific opinion at that time. Mendel didn’t know about genes or
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discover genes, but he did speculate that there were two factors for each basic
trait and that one factor was inherited from each parent. We now know that
Mendel’s inheritance factors are genes, or more specifically alleles (different variants
of the same gene). In today’s genetic language, a pure-breeding pea plant line
is a homozygous (it has two identical copies of the same allele; AA) and an F1

cross-bred pea plant is a heterozygous (it has two different alleles; AB). There
are some exceptions to Mendel’s principles, which have been discovered as our
knowledge of genes and inheritance has increased. The principle of independent
assortment doesn’t apply if the genes are close together (or linked) on a chromosome.
Also, alleles do not always interact in a standard dominant/recessive way (simple
inheritance), particularly if they are codominant or have differences in expressivity
or penetrance (incomplete inheritance). In the simple inheritance, we have two
alleles (A dominant over a). The presence of the dominant allele in the genotype
of an organism (AA or Aa) leads to the presence of its corresponding phenotype
and its absence (aa) leads to the presence of the corresponding phenotype of the
recessive trait. In the case of codominance, a cross between organisms with two
different phenotypes (observed traits) produces offspring with a third phenotype
that is a blending of the parental traits. For example, the cross of white and red
flowers that results in the appearance of pink flowers (or white flowers with red
spots) in the offspring is a good example on the codominance criteria.

Inheritance is linked to statistics in a way that we may find the probability of
having a specific trait in the offspring. For example the monohybrid cross of parents
with Aa genotypes in the case of simple inheritance gives offsprings having trait
corresponding to A with a probability 2

3 and offsprings having trait corresponding
to a with a probability 1

3 .

3. Fuzzy sets associated to simple and incomplete inheritance

In this section, we consider hypothetical crosses of homozygous with independent
number of alleles in the cases: simple inheritance, incomplete inheritance, simple
and incomplete inheritance combined together. We define a fuzzy subset of the set
of phenotypes of the second generation under mating (×) and construct sequence
of join spaces for each case.

Let H be the set of phenotypes in F2 and define µ : H −→ [0, 1] by µ(x) =
probability of x for all x ∈ H . It is obvious that µ is a fuzzy subset of H .

3.1. Simple inheritance

Let Ai be the dominant allele over ai for i = 1, . . . , n and {A1, . . . , An}, {a1, . . . , an}
be two sets of independent alleles. We consider first results for the Monohybrid cross
(n = 1) that differs in a single trait; a homozygous parent (A1A1) × a homozygous
parent (a1a1). The results of this hypothetical experiment can be summarized in
the following way:



714 M. Al-Tahan and B. Davvaz

P: A1A1 × a1a1
F1 : A1a1

and
F1 × F1 : A1a1 ×A1a1

F2 : B̂1 (of genotype A1A1 or A1a1), B̂2 (of genotype a1a1).

Let H = {B̂1, B̂2} be the set of phenotypes in F2. It is easy to see that µ(B̂1) =
2
3

and µ(B̂2) =
1
3 .

Proposition 3.1. Let H = {B̂1, B̂2} be the set of phenotypes in F2. By definitions

of (w) and (w′), we have µ1(B̂1) = µ1(B̂2) and S.F.G(H) = 2.

Proof. Using (w′), we may present (1H, ⋆1) by the following table:

1H B̂1 B̂2

B̂1 {B̂1} H

B̂2 {B̂2}

Having q(B̂1) = q(B̂2) = 3 and A(B̂1) = A(B̂2) = 1
1 + 2

2 = 2 implies that

µ1(B̂1) = µ1(B̂2) =
2
3 .

(2H, ⋆2) can be presented by the following table:

2H B̂1 B̂2

B̂1 H H

B̂2 H

It is clear that (2H, ⋆2) is the total hypergroup. Therefore, S.F.G(H) = 2.

We consider now results for the Dihybrid cross (n = 2) that differs in two traits; a
homozygous parent (A1A1A2A2) × a homozygous parent (a1a1a2a2). The results
of this hypothetical experiment can be summarized in the following way:

P: A1A1A2A2 × a1a1a2a2
F1 : A1a1A2a2

and
F1 × F1 : A1a1A2a2 ×A1a1A2a2

F2 : B̂1 (of genotype A1x1A2x2), B̂2 (of genotype A1x1a2a2), B̂3 (of genotype

a1a1A2x2) and B̂4 (of genotype a1a1a2a2).

Here, xi ∈ {Ai, ai} for i = 1, 2.

Let H = {B̂1, B̂2, B̂3, B̂4} be the set of phenotypes in F2. It is easy to see that

µ(B̂1) =
4
9 , µ(B̂2) = µ(B̂3) =

2
9 and µ(B̂4) =

1
9 .
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Proposition 3.2. Let H = {B̂1, B̂2, B̂3, B̂4}. By definitions of (w) and (w′), we

have µ1(B̂2) = µ1(B̂3) < µ1(B̂1) = µ1(B̂4).

Proof. Using (w′), we may present (1H, ⋆1) by the following table:

1H B̂1 B̂2 B̂3 B̂4

B̂1 {B̂1} {B̂1, B̂2, B̂3} {B̂1, B̂2, B̂3} H

B̂2 {B̂2, B̂3} {B̂2, B̂3} {B̂2, B̂3, B̂4}

B̂3 {B̂2, B̂3} {B̂2, B̂3, B̂4}

B̂4 {B̂4}

Having q(B̂1) = q(B̂4) = 7, A(B̂1) = A(B̂4) = 1
1 + 2

3 + 2
3 + 2

4 = 17
6 , q(B̂2) =

q(B̂3) = 14, A(B̂2) = A(B̂3) =
2
3 + 2

3 + 2
4 + 1

2 + 2
2 + 1

2 + 2
3 + 2

3 = 31
6 implies that

µ1(B̂1) = µ1(B̂4) =
17
42 and µ1(B̂2) = µ1(B̂3) =

31
84 .

Proposition 3.3. Let H = {B̂1, B̂2, B̂3, B̂4}. By definitions of (w) and (w′), we

have µ2(B̂1) = µ2(B̂2) = µ2(B̂3) = µ2(B̂4) and S.F.G(H) = 3.

Proof. We may present (2H, ⋆2) by the following table:

2H B̂1 B̂2 B̂3 B̂4

B̂1 {B̂1, B̂4} H H {B̂1, B̂4}

B̂2 {B̂2, B̂3} {B̂2, B̂3} H

B̂3 {B̂2, B̂3} H

B̂4 {B̂1, B̂4}

Simple computations shows that q(B̂1) = g(B̂2) = q(B̂3) = q(B̂4), A(B̂1) =

A(B̂2) = A(B̂3) = A(B̂4) and thus µ2(B̂1) = µ2(B̂2) = µ2(B̂3) = µ2(B̂4). The
latter implies that (3H, ⋆3) is the total hypergroup and hence, S.F.G(H) = 3.

3.2. Case of incomplete inheritance

LetBi andBi be codominant alleles for i = 1, . . . , n and {B1, . . . , Bn}, {B1, . . . , Bn}
be two sets of independent alleles. We consider first results for the Monohybrid cross
(n = 1) that differs in a single trait; a homozygous parent (B1B1) × a homozygous
parent (B1 B1). The results of this hypothetical experiment can be summarized in
the following way:
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P: B1B1 ×B1 B1

F1 : B1B1

and
F1 × F1 : B1B1 ×B1B1

F2 : B̂1 (of genotype B1B1), B̂2 (of genotype B1B1) and B̂3 (of genotype B1 B1).

Let H = {B̂1, B̂2, B̂3} be the set of phenotypes in F2. It is easy to see that µ(B̂1) =

µ(B̂2) = µ(B̂3) =
1
3 .

Proposition 3.4. Let H = {B̂1, B̂2, B̂3}. definitions of (w) and (w′), we have

µ1(B̂1) = µ1(B̂2) = µ1(B̂3) and S.F.G(H) = 1.

Proof. Using (w′), we may present (1H, ⋆1) by the following table:

1H B̂1 B̂2 B̂3

B̂1 H H H

B̂2 H H

B̂3 H

It is clear that (1H, ⋆1) is the total hypergroup and thus S.F.G(H) = 1.

We give next a generalization of Proposition 3.4 by considering the n- hybrid case of
incomplete inheritance that differs in n traits; a homozygous parent (B1B1 . . . BnBn)
× a homozygous parent (B1 B1 . . . Bn Bn). The results of this hypothetical exper-
iment can be summarized in the following way:

P: B1B1 . . . BnBn ×B1 B1 . . . B1 B1

F1 : B1B1 . . . BnBn

and
F1 × F1 : B1B1 . . . BnBn ×B1B1 . . . BnBn

F2 : B̂1 (of genotype B1B1 . . . BnBn), B̂2 (of genotype B1B1 . . . Bn−1Bn−1BnBn),

. . ., and B̂k (of genotype B1 B1 . . . Bn Bn).

The number of different phenotypes is k = 3n. Let H = {B̂1, . . . , B̂k} be the set of

phenotypes in F2. It is easy to see that µ(B̂1) = µ(B̂2) = . . . = µ(B̂k) =
1
k .

Theorem 3.1. Let H = {B̂1, . . . , B̂k}. By definitions of (w) and (w′), we have

µ1(B̂1) = . . . = µ1(B̂k) and S.F.G(H) = 1.

Proof. Using the definition of (w′), we have B̂i ⋆1 B̂j = {z ∈ H : µ(z) = 1
k} = H

for all i, j ∈ {1, . . . , k}. Thus, (1H, ⋆1) is the total hypergroup.
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3.3. Case of simple and incomplete inheritance combined together

Let Ai be the dominant allele over ai for i = 1, . . . ,m and Bj , Bj be the codom-
inant alleles for j = 1, . . . , n. This case can be given by considering the (m+n)- hy-
brid case that differs in (m+n) traits; a homozygous parent (A1A1 . . . AmAmB1B1 . . . BnBn)
× a homozygous parent (a1a1 . . . amamB1 B1 . . . Bn Bn).

We consider first the case m = n = 1. The results of this hypothetical experi-
ment can be summarized in the following way:

P: A1A1B1B1 × a1a1B1 B1

F1 : A1a1B1B1

and
F1 × F1 : A1a1B1B1 ×A1a1B1B1

F2 : B̂1 (of genotype A1x1B1B1), B̂2 (of genotype A1x1B1B1), B̂3 (of genotype

A1x1B1 B1), B̂4 (of genotype a1a1B1B1), B̂5 (of genotype a1a1B1B1) and B̂6 (of
genotype a1a1B1 B1).

Here. x1 ∈ {A1, a1}.

Let H = {B̂1, B̂2, B̂3, B̂4, B̂5, B̂6} be the set of phenotypes in F2. It is easy to

see that µ(B̂1) = µ(B̂3) = µ(B̂2) =
2
9 and µ(B̂4) = µ(B̂5) = µ(B̂6) =

1
9 .

Proposition 3.5. Let H = {B̂1, B̂2, B̂3, B̂4, B̂5, B̂6}. By definitions of (w) and

(w′), we have µ1(B̂1) = µ1(B̂2) = µ1(B̂3) = µ1(B̂4) = µ1(B̂5) = µ1(B̂6) and
S.F.G(H) = 2.

Proof. The table below represents (1H, ⋆1):

1H B̂1 B̂2 B̂3 B̂4 B̂5 B̂6

B̂1 {B̂1, B̂2, B̂3} {B̂1, B̂2, B̂3} {B̂1, B̂2, B̂3} H H H

B̂2 {B̂1, B̂2, B̂3} {B̂1, B̂2, B̂3} H H H

B̂3 {B̂1, B̂2, B̂3} H H H

B̂4 {B̂4, B̂5, B̂6} {B̂4, B̂5, B̂6} {B̂4, B̂5, B̂6}

B̂5 {B̂4, B̂5, B̂6} {B̂4, B̂5, B̂6}

B̂6 {B̂4, B̂5, B̂6}

It is easy to see that µ1(B̂1) = µ1(B̂2) = µ1(B̂3) = µ1(B̂4) = µ1(B̂5) = µ1(B̂6) and
that (2H, ⋆1) is a total hypergroup. Therefore, S.F.G(H) = 2.

We consider next the case m = 1 and n ≥ 1. The results of this hypothetical
experiment can be summarized in the following way:
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P: A1A1B1B1 . . . BnBn × a1a1B1 B1 . . . Bn Bn

F1 : A1a1B1B1 . . . BnBn

and
F1 × F1 : A1a1B1B1 . . . BnBn ×A1a1B1B1 . . . BnBn.

Let H = {B̂1, B̂2, . . . , B̂s} be the set of phenotypes in F2 where s = 2k is the

number of different phenotypes in F2, k = 3n, B̂1, . . . , B̂k are phenotypes whose

corresponding genotypes are given by A1x1y1y
′
1 . . . yny

′
n and B̂k+1, . . . , B̂2k are

phenotypes whose corresponding genotypes are given by a1a1y1y
′
1 . . . yny

′
n. Where

x1 ∈ {A1, a1}, {yi, y
′
i} ⊆ {Bi, Bi} for i = 1, . . . , n. It is easy to see that µ(B̂1) =

. . . = µ(B̂k) =
2

3n+1 and µ(B̂k+1) = . . . = µ(B̂2k) =
1

3n+1 .

Theorem 3.2. Let H = {B̂1, . . . , B̂s}. By definition of (w) and (w′), we have

µ1(B̂1) = µ1(B̂2) = . . . = µ1(B̂s) and S.F.G(H) = 2.

Proof. Using (w′), (1H, ⋆1) may be constructed as follows:

B̂i ⋆1 B̂j =







{B̂1, . . . , B̂k}, if i, j ∈ {1, . . . , k};

{B̂k+1, . . . , B̂2k}, if i, j ∈ {k + 1, . . . , 2k};
H, otherwise.

It is easy to see that (2H, ⋆2) is the total hypergroup. Therefore, S.F.G(H) = 2.

We consider next the case m = 2 and n = 1. The results of this hypothetical
experiment can be summarized in the following way:

P: A1A1A2A2B1B1 × a1a1a2a2B1 B1

F1 : A1a1A2a2B1B1

and
F1 × F1 : A1a1A2a2B1B1 ×A1a1A2a2B1B1.

Let H = {B̂1, B̂2, . . . , B̂12} be the set of phenotypes in F2 where B̂1, B̂2, B̂3 are
phenotypes whose corresponding genotypes are given by

A1x1A2x2y1y
′
1, B̂4, . . . , B̂9

are phenotypes whose corresponding genotypes are given by A1x1a2a2y1y
′
1 or by

a1a1A2x2y1y
′
1 and B̂10, B̂11, B̂12 are phenotypes whose corresponding genotypes are

given by a1a1a2a2y1y
′
1. Where xi ∈ {Ai, ai} for i = 1, 2 and {y1, y

′
1} ⊆ {B1, B1}.

It is easy to see that µ(B̂1) = µ(B̂2) = µ(B̂3) =
4
27 , µ(B̂4) = . . . = µ(B̂9) =

2
27 and

µ(B̂10) = µ(B̂11) = µ(B̂12) =
1
27 .

Proposition 3.6. Let H = {B̂1, . . . , B̂12}. By definition of (w), we have

µ1(B̂4) = . . . = µ1(B̂9) < µ1(B̂1) = µ1(B̂2) = µ1(B̂3) = µ1(B̂10) = µ1(B̂11) = µ1(B̂12).
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Proof. The table below represents (1H, ⋆1):

1H B̂1 B̂2 B̂3 B̂4 B̂5 B̂6 B̂7 B̂8 B̂9 B̂10 B̂11 B̂12

B̂1 M M M H \ R H \ R H \ R H \ R H \ R H \ R H H H

B̂2 M M H \ R H \ R H \ R H \ R H \ R H \ R H H H

B̂3 M H \ R H \ R H \ R H \ R H \ R H \ R H H H

B̂4 N N N N N N H \ M H \ M H \ M

B̂5 N N N N N H \ M H \ M H \ M

B̂6 N N N N H \ M H \ M H \ M

B̂7 N N N H \ M H \ M H \ M

B̂8 N N H \ M H \ M H \ M

B̂9 N H \ M H \ M H \ M

B̂10 R R R

B̂11 R R

B̂12 R

where M = {B̂1, B̂2, B̂3}, R = {B̂10, B̂11, B̂12} and N = H \ (M ∪R).

We have that q(B̂1) = 63, A(B̂1) = 9
3 + 18

12 + 36
9 , q(B̂4) = 126 and A(B̂4) =

36
6 + 72

9 + 18
12 . Simple calculations implies that

µ1(B̂1) = µ1(B̂2) = µ1(B̂3) = µ1(B̂10) = µ1(B̂11) = µ1(B̂12) =
17

126

and

µ1(B̂4) = µ1(B̂5) = µ1(B̂6) = µ1(B̂7) = µ1(B̂8) = µ1(B̂9) =
31

252
.

Proposition 3.7. Let H = {B̂1, . . . , B̂12}. By definition of (w), we have µ2(B̂1) =

. . . = µ2(B̂12) and S.F.G(H) = 3.

Proof. We may present (2H, ⋆2) by the following table:
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2H B̂1 B̂2 B̂3 B̂4 B̂5 B̂6 B̂7 B̂8 B̂9 B̂10 B̂11 B̂12

B̂1 P P P H H H H H H P P P

B̂2 P P H H H H H H P P P

B̂3 P H H H H H H P P P

B̂4 Q Q Q Q Q Q H H H

B̂5 Q Q Q Q Q H H H

B̂6 Q Q Q Q H H H

B̂7 Q Q Q H H H

B̂8 Q Q H H H

B̂9 Q H H H

B̂10 P P P

B̂11 P P

B̂12 P

where P = {B̂1, B̂2, B̂3, B̂10, B̂11, B̂12} and Q = {B̂4, B̂5, B̂6, B̂7, B̂8, B̂9}. Simple

computations implies that µ2(B̂1) = . . . = µ2(B̂12) =
1
9 . Thus, (

3H, ⋆3) is the total
hypergroup and hence S.F.G(H) = 3.

We consider next the case m = 2 and n ≥ 1. The results of this hypothetical
experiment can be summarized in the following way:

P: A1A1A2A2B1B1 . . . BnBn × a1a1a2a2B1 B1 . . . Bn Bn

F1 : A1a1A2a2B1B1 . . . BnBn

and
F1 × F1 : A1a1A2a2B1B1 . . . BnBn ×A1a1A2a2B1B1 . . . BnBn.

Let H = {B̂1, B̂2, . . . , B̂r} be the set of phenotypes in F2 where r = 4k, k = 3n,

B̂1, . . . , B̂k are phenotypes whose corresponding genotypes are given by

A1x1A2x2y1y
′
1 . . . yny

′
n, B̂k+1, . . . , B̂3k

are phenotypes whose corresponding genotypes are given by A1x1a2a2y1y
′
1 . . . yny

′
n

or by a1a1A2x2y1y
′
1 . . . yny

′
n and B̂3k+1, . . . , B̂4k are phenotypes whose correspond-

ing genotypes are given by a1a1a2a2y1y
′
1 . . . yny

′
n. Where xi ∈ {Ai, ai} for i = 1, 2

and {yj, y
′
j} ⊆ {Bj , Bj} for j = 1, . . . , n. It is easy to see that µ(B̂1) = . . . =

µ(B̂k) = 4
3n+2 , µ(B̂k+1) = . . . = µ(B̂3k) = 2

3n+2 and µ(B̂3k+1) = . . . = µ(B̂4k) =
1

3n+2 .
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Proposition 3.8. Let H = {B̂1, . . . , B̂s} be the set of phenotypes of F2. By defi-
nitions of (w) and (w′), we have

µ1(B̂k+1) = . . . = µ1(B̂3k) < µ1(B̂1) = . . . = µ1(B̂k) = µ1(B̂3k+1) = . . . = µ1(B̂4k).

Proof. The table below represents (1H, ⋆1):

1H B̂1 . . . B̂k B̂k+1 . . . B̂3k B̂3k+1 . . . B̂4k

B̂1 M1 . . . M1 M1 ∪M2 . . . M1 ∪M2 H . . . H

...
. . .

...
...

...
...

...
...

...

B̂k M1 M1 ∪M2 . . . M1 ∪M2 H . . . H

B̂k+1 M2 . . . M2 M2 ∪M3 . . . M2 ∪M3

...
. . .

...
...

...
...

B̂3k M2 M2 ∪M3 . . . M2 ∪M3

B̂3k+1 M3 . . . M3

...
. . .

...

B̂4k M3

where M1 = {B̂1, . . . , B̂k}, M2 = {B̂k+1, . . . , B̂3k} and M3 = {B̂3k+1, . . . , B̂4k}.
It is easy to see that

µ1(B̂1) = . . . = µ1(B̂k) = µ1(B̂3k+1) = . . . = µ1(B̂4k)

and
µ1(B̂k+1) = . . . = µ1(B̂4k).

We have that q(B̂1) = 7k2, q(B̂k+1) = 14k2. Simple computations shows that

A(B̂1) = k2

|M1|
+ 4k2

|M1|+|M2|
+ 2k2

|H| = 17k
6 and A(B̂k+1) = 4k2

|M2|
+ 4k2

|M1|+|M2|
+ 2k2

|H| +
4k2

|M2|+|M3|
= 31k

6 . We get now

µ1(B̂1) = . . . = µ1(B̂k) = µ1(B̂3k+1) = . . . = µ1(B̂4k) =
17

6k

and

µ1(B̂k+1) = . . . = µ1(B̂3k) =
31

84k
.

Proposition 3.9. Let H = {B̂1, . . . , B̂r}. By definition of (w), we have µ2(B̂1) =

. . . = µ2(B̂r) and S.F.G(H) = 3.
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Proof. We may present (2H, ⋆2) by the following table:

2H B̂1 . . . B̂k B̂k+1 . . . B̂3k B̂3k+1 . . . B̂4k

B̂1 M1 ∪M3 . . . M1 ∪M3 H . . . H M1 ∪M3 . . . M1 ∪M3

...
. . .

...
...

...
...

...
...

...

B̂k M1 ∪M3 H . . . H M1 ∪M3 . . . M1 ∪M3

B̂k+1 M2 . . . M2 H . . . H

...
. . .

...
...

...
...

B̂3k M2 H . . . H

B̂3k+1 M1 ∪M3 . . . M1 ∪M3

...
. . .

...

B̂4k M1 ∪M3

where M1 = {B̂1, . . . , B̂k}, M2 = {B̂k+1, . . . , B̂3k} and M3 = {B̂3k+1, . . . , B̂4k}.
We have:

q(B̂i) = 12k2 for i = 1, . . . , r,

and

A(x) =

{
4k2

|M1|+|M3|
+ 8k2

|H| = 4k, for x ∈ M1 ∪M3;
4k2

|M2|
+ 8k2

|H| = 4k, for x ∈ M2.

We get now that A(x) = 4k for all x ∈ H . The latter implies that µ(x) = 1
3k for all

x ∈ H . Therefore, (3H, ⋆3) is the total hypergroup and S.F.G(H) = 3.

4. Fuzzy sets associated to other types of inheritance

In this section, we study some examples of different types of non- Mendelian inher-
itance (Epistasis, Supplementary gene and Inhibitory gene), define fuzzy subsets of
them and construct sequence of join spaces for each type.
The fuzzy subset µ of the set of phenotypes in F2 of each type is defined by µ(x) =
probability of x for all x ∈ F2.

Example 4.1. Epistasis of dominant gene in the coat color of dogs. There are two al-
lelomorphic pairs which may be named Aa and Bb, A and B are dominant over a and b

respectively. They interact as follows: AxBy and Axbb have phenotype white, aaBy has
phenotype black and aabb has phenotype brown. Here x = A or a and y = B or b. The
results of this experiment can be summarized in the following way:

P: AABB ⊗ aabb

F1 : AaBb
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and
F1 ⊗ F1 : AaBb⊗AaBb

F2 : White, Black, Brown.

White is denoted by A1, Black by A2 and Brown by A3.

Let H = {A1, A2, A3} be the set of phenotypes in F2. It is easy to see that µ(A1) =
6
9 , µ(A2) =

2
9 and µ(A3) =

1
9 .

Proposition 4.1. Let H = {A1, A2, A3}. By definitions of (w) and (w′), we have
µ1(A2) < µ1(A1) = µ1(A3).

Proof. The table below represents (1H, ⋆1):

1H A1 A2 A3

A1 {A1} {A1, A2} H

A2 {A2} {A2, A3}

A3 {A3}

We have q(A1) = q(A3) = 5, q(A2) = 7, A(A1) = A(A3) = 1
1 + 2

2 + 2
3 = 8

3 and
A(A2) =

1
1 + 2

2 + 2
2 + 2

3 = 11
3 . Thus, µ1(A1) = µ1(A3) =

8
15 and µ1(A2) =

11
21 .

Proposition 4.2. Let H = {A1, A2, A3}. By definition of (w), we have µ2(A1) =
µ2(A3) < µ2(A2).

Proof. The table below represents (2H, ⋆1):

2H A1 A2 A3

A1 {A1, A3} H {A1, A3}

A2 {A2} H

A3 {A1, A3}

We have q(A1) = q(A3) = 8, q(A2) = 5, A(A1) = A(A3) = 4
2 + 4

3 = 10
3 and

A(A2) =
1
1 + 4

3 = 7
3 . Thus, µ2(A1) = µ2(A3) =

5
12 and µ2(A2) =

7
15 .

Proposition 4.3. Let H = {A1, A2, A3} be the set of phenotypes in F2. Then
S.F.G(H) = 2.

Proof. The table below represents (3H, ⋆1):
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3H A1 A2 A3

A1 {A1, A3} H {A1, A3}

A2 {A2} H

A3 {A1, A3}

Having (3H, ⋆1) = (2H, ⋆1) implies that S.F.G(H) = 2.

Example 4.2. Supplementary gene, The anthocyanin pigmentation of flowers. The red-
type anthocyanin color of many flowers is caused by two alleles which may be termed as
Aa and Bb. In the snapdragon (Antirrhinum) flower:

AxBy is the genotype of magenta flower, Axbb is the genotype of ivory flower and
aaBy, aabb are the genotypes of white flower where x = A or a and y = B or b. The
results of this experiment can be summarized in the following way:

P: AABB ⊗ aabb

F1 : AaBb

and
F1 ⊗ F1 : AaBb⊗AaBb

F2 : Magneta, Ivory, White.

Magneta is denoted by B1, White by B2 and Ivory by B3.

Let K = {B1, B2, B3} be the set of phenotypes in F2. It is easy to see that µ(B1) =
4
9 , µ(B2) =

3
9 and µ(B3) =

2
9 .

Theorem 4.1. Let K = {B1, B2, B3} be the set of phenotypes in F2. Then
S.F.G(K) = 2.

Proof. Since µ(B3) < µ(B2) < µ(B1) then using (w′), we may present (1K, ⋆1) as
follows:

1K B1 B2 B3

B1 {B1} {B1, B2} H

B2 {B2} {B2, B3}

B3 {B3}

It is easy to see that (1H, ⋆1) (of Proposition 4.1, Example 4.1) and (1K, ⋆1) are
isomorphic. This implies that S.F.G(K) = S.F.G(H). Therefore, S.F.G(K) = 2 by
Proposition 4.3.

Example 4.3. Inhibitory gene, Rice leaf. In some rice variety the presence of the gene
P causes its leaves to be colored deep purple. But if a gene I is present then the purple
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color is inhibited and the leaf becomes normal green. The I gene may be considered as
epistatic over P . They interact as follows:

The genotypes IxPy, Ixpp, iipp correspond to green and the genotype iiPy corresponds
to purple where x = I or i and y = P or p. The results of this experiment can be summa-
rized in the following way:

P: IIPP ⊗ iipp

F1 : IiPp

and
F1 ⊗ F1 : IiPp⊗ IiPp

F2 : Green, Purple.

Green is denoted by G and Purple by P .

Let L = {G,P} be the set of phenotypes in F2. It is easy to see that µ(G) = 7
9 and

µ(P ) = 2
9 .

Proposition 4.4. Let L = {G,P} be the set of phenotypes in F2. Then S.F.G(L) =
2.

Proof. The table below represents (1L, ⋆1):

1L G P

G {G} H

P {P}

It is easy to see that (1H, ⋆1) (of Proposition 3.1) and (1L, ⋆1) are isomorphic.
Therefore S.F.G(L) = S.F.G(H) = 2.

5. Conclusion

After the introduction of hyperstructures and fuzzy sets by Marty and Zadeh
there have been many researches that study their importance in different fields where
one of these fields is biological inheritance. This paper studied a new relationship
between hyperstructures, fuzzy sets and the phenotypes of the second generation F2.
Fuzzy subsets of F2 were defined and join spaces associated to F2 were constructed.
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Abstract. Let G be a finite group. The power graph P (G) of a group G is the graph
whose vertex set is the set of group elements where two elements are adjacent if one is
a power of the other. The commuting graph ∆(G) of a group G, is the graph whose
vertices are the group elements, two of them are joined if they commute. When the
vertex set is G \ Z(G), this graph is denoted by Γ(G). Since the results based on the
automorphism groups of these kinds of graphs are so sporadic, in this paper, we give
a survey of all results on the automorphism groups of power graphs and commuting
graphs obtained in the literature.
Keywords. Finite group; graph; vertex set; commuting graph; automorphism groups.

1. Introduction

There are many connections between graphs and groups. Generating graphs from
semigroups and groups has a long history. In 1964, Bosak [6] studied a certain
graph over semigroups. In [13], Zelinka studied the intersection graphs of nontrivial
subgroups of finite Abelian groups. The well-known study of a directed graphs de-
fined on the elements of a group is the Cayley digraph [7, 22, 40]. The investigation
of graphs like these is very important, because they have valuable and numerous
applications presented, for example, in the books [27], [28] and [29]. The directed
power graph of a group was introduced by Kelarev and Quinn [24]. The definition
was formulated so that it applied to semigroups as well. Accordingly, the power
graphs of semigroups were first considered in [25], [23] and [26]. It is also explained
in the survey [2] that the definition given in [24] covers all undirected graphs as
well. This means that the undirected power graphs were also defined in [24] (see [2]
for more detailed explanations). All of these papers used only the brief term ’power
graph’, even though they covered both directed and undirected power graphs. Ke-
larve and Quinn [23] defined another interesting classes of directed graphs, namely,

Received March 22, 2019; accepted July 19, 2019
2010 Mathematics Subject Classification. Primary 65F05; Secondary: 46L05, 11Y50.
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the divisibility graphs of semigroups. Let S be a semigroup, the divisibility graph,
Div(S), of a semigroup S is a directed graph with vertex set S and there is an arc
from u to v if and only if u 6= v and u|v, i.e., the ideal generated by v contains u.

On the other hand, the power graph,
−→
P (S), of a semigroup S is a directed graph

in which the set of vertices is again S and for a, b ∈ S there is an arc from a to b if
and only if a 6= b and b = am for some positive integer m.

ab a2b

b

a3

a2a

e

a3b

Figure 1. The directed power graph of the dihedral group D8.

The undirected power graph P (S) was also considered by Chakrabarty, Ghosh and
Sen in [11]. Recall that P (S) has vertex set S and two vertices a, b ∈ S are adjacent
if and only if a 6= b and < a >⊆< b > or < b >⊆< a > (which is equivalent to
saying a 6= b and am = b or bm = a for some positive integer m). As a consequence,
they proved that P (G) is connected for any finite group G and P (G) is complete if
and only if G is a cyclic group of order 1 or pm [11].

ab a2b

b

a3

a2a

e

a3b
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Figure 2. The undirected power graph of the dihedral group D8.

The undirected power graphs became the main focus of study in [11] and in the
subsequent papers by P. J. Cameron et al. [8, 9], which introduced the use of the
brief term ‘power graph’ in the second meaning of an undirected power graph. For a

group G, the digraph
−→
P (G) was considered in [37] as the main subject of study. The

interested readers can be consulted [2, 32, 1] for more information about the power
graphs. In this paper, we are also interested in the well-known commuting graphs
and their automorphism groups. Let G be a non-abelian group and let Z(G) be the
center of G. Associate a graph Γ(G) with G as follows: Take G\Z(G) as the vertices
of Γ(G) and join two distinct vertices x and y, whenever xy = yx. The complement
of the Γ(G) is said to be the noncommuting graph. The noncommuting graph was
first considered by Paul Erdos, when he posed the following problem in 1975 [36]:
Let G be a group whose noncommuting graph has no infinite complete subgraph.
Is it true that there is a finite bound on the cardinalities of complete subgraphs
of the noncommuting graph of G? B. H. Neumann [36] answered positively Erdos’
question. We refer the readers to [3, 4, 14, 35, 31] for more details about the
noncommuting graph. In [1], authors related the power graph to the commuting
graph and characterize when they are equal for finite groups. A new graph pops
up while considering these graphs, a graph whose vertex set consists of all group
elements, in which two vertices x and y are adjacent if they generate a cyclic group.
They called this graph as the enhanced power graph of G. The enhanced power
graph contains the power graph and is a subgraph of the commuting graph. We
consider the commuting graph with vertex set G and denoted it by ∆(G).

ab a2b

b

a3

a2a

e

a3b

Figure 3. The commuting graph ∆(D8).
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2. Preliminaries and background information

An action of a group G on a set X is the choice, for each g ∈ G of a permutation
πg : X → X such that the following two conditions hold:

1. πe is the identity: πe(x) = x for each x ∈ X ,

2. for every g1, g2 in G, πg1 ◦ πg2 = πg1g2 .

For example, any group G acts on itself (X = G) by left multiplication functions.
A group action of G on X is said to be faithful if different elements of G act on X

in different ways: when g1 6= g2 in G, there is an x ∈ X such that g1∆x 6= g2∆x.
For any graph Γ, we denote the sets of the vertices and the edges of Γ by V (Γ)
and E(Γ), respectively. Suppose v ∈ V (Γ) and V1(Γ) ⊆ V (Γ), then N(v) is the
set of neighbours of v and 〈V1(Γ)〉 is the subgraph of Γ induced by V1(Γ). The
closed neighbourhood of a vertex x, denoted by N [x], is the set of its neighbours
and itself. The complement of Γ is the graph Γ̄ on the same vertices such that
two vertices of Γ̄ are adjacent if and only if they are not adjacent in Γ. For two
graphs with disjoint vertex sets V1 and V2 their union is the graph H in which
V (H) = V1 ∪ V2 and E(H) = E1 ∪ E2. Define nH to be the union of n disjoint
copies of G. The automorphism group of a graph Γ is that set of all permutations
on V (Γ) that fix as a set the edges E(Γ). The set of all automorphisms of a
graph Γ forms a permutation group, Aut(Γ), acting on the object set V (Γ). See
[10] for the terminology and main results of permutation group theory. Let A

and B be permutation groups acting on object sets X and Y , respectively. Define
B ≀A = {(a, f) | a ∈ A, f : X → B}, (a, f)(x, y) = (ax, bxy) where f(x) = bx. B ≀ A
is said to be wreath product. It acts on X × Y as follows: for each a ∈ A and any
sequence b1, b2, · · · , bn (where n = |X |) in B, there is a unique permutation in A ≀B
written (a; b1, · · · , bn), and (a; b1, · · · , bn)(xi, yi) = (axi, biyi). Suppose Sn denotes
the symmetric group on {1, 2, · · · , n}, ϕ is the Euler’s totient function . In what
follows, we describe some important results relating the automorphism groups of
a graph which are crucial in this paper. Frucht [18] described if Γ is a connected
graph, then Aut(nΓ) ∼= (Aut(Γ)) ≀ Sn, if no component of Γ1 is isomorphic with a
component of Γ2, then Aut(Γ1 ∪ Γ2) ∼= Aut(Γ1) × Aut(Γ2) and applying the last
two theorems we have the result: Let Γ = n1Γ1 ∪ n2Γ2 ∪ · · · ∪nrΓr, where ni is the
number of components of Γ isomorphic to Γi, then

Aut(Γ) ∼= ((Aut(Γ1)) ≀ Sn1
)× ((Aut(Γ2)) ≀ Sn2

)× · · · × ((Aut(Γr)) ≀ Snr
).

An operation · on the set S is associative if it satisfies the following associative
law: x · (y · z) = (x · y) · z for all x, y, z ∈ S. A semigroup is a set S equipped
with an associative binary operation ·. The set of the orders of all elements of G
is denoted by πe(G) and is said to be the spectrum of G. For n ∈ N , the cyclic
group of order n can be defined as the group Zn = Z/nZ of residues modulo n, the
set < g >= {gn | n ∈ Z} is the cyclic group generated by g in G. For a prime p,
a group G is said to be an elementary abelian p-group if G is finite, abelian and
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every nontrivial element of G has order p. A group G is an AC-group, whenever
the centralizers of non-central elements are abelian. The dihedral group D2n is an
example of an AC-group. The group G is said to be an EPPO-group, if all elements
of G have prime power order.

3. Automorphism groups of power graphs

The first result about the automorphism groups of power graphs was obtained by
P. Cameron in [8], where he explained that when the automorphism group and its
graph are equal. P. Cameron proved the only finite group G for which Aut(G) =
Aut(P (G)) is the Klein group Z2 × Z2.

In 2013, Doostabadi, Erfanian and Jafarzadeh asserted that the full automor-
phism group of the power graph of the cyclic group Zn is isomorphic to the direct
product of some symmetry groups.

Conjecture 3.1. [16] For every positive integer n,

Aut(P (Zn)) ∼= Sϕ(n)+1 ×
∏

d∈D(n)\{1,n}

Sϕ(d)

where D(n) is the set of positive divisors of n, and ϕ is the Euler’s totient function.

In fact, if n is a prime power, then P (Zn) is a complete graph by [11] which
implies that Aut(P (Zn) ∼= Sn. Hence, the conjecture does not hold if n = pm for
any prime p and integer m > 2. In [17], proved that this conjecture holds for the
remaining case. Feng, Ma and Wang [17], describe the full automorphism group of
the power (di)graph of an arbitrary finite group. As an application, this conjecture
is valid if n is not a prime power. Denote by C(G) the set of all cyclic subgroups of
G. For C ∈ C(G), let [C] denote the set of all generators of C. Write

C(G) = {C1, · · ·Ck} and [Ci] = {[Ci]1, · · · [Ci]si}.

Define P(G) as the set of permutations σ on C(G) preserving order, inclusion and
noninclusion, i.e., |Cσ

i | = |Ci| for each i ∈ {1, · · · , k} and Ci ⊆ Cj if and only if
Cσ

i ⊆ Cσ
j . Note that P(G) is a permutation group on C(G). This group induces

the faithful action on the set G:

(3.1) G×P(G) −→ G, ([Ci]j , σ) 7−→ [Cσ
i ]j .

For Ω ⊆ G, let SΩ denote the symmetric group on Ω. Since G is the disjoint
union of [C1], · · · , [Ck], we get the faithful group action on the set G:

(3.2) G×

k∏

i=1

S[Ci] −→ G, ([Ci]j , (ξ1, · · · , ξk)) 7−→ ([Ci]j)
ξi .

By using the above-mentioned symbols we have:
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Theorem 3.1. [17] Let G be a finite group. Then

Aut(
−→
P (G)) = (

k∏

i=1

S[Ci])×P(G),

where P(G) and
∏k

i=1 S[Ci] act on G as in (3.1) and (3.2), respectively.

In the power graph P (G), for x, y ∈ G, define x ≡ y if N [x] = N [y]. Observe that
≡ is an equivalence relation. Let x̄ denote the equivalence class containing x. Write

U(G) = {x̄|x ∈ G} = {ū1, · · · , ūl}.

Since G is the disjoint union of u1, · · · , ul, the following is a faithful group action
on the set G:

(3.3) G×

l∏

i=1

Sūi
−→ G, (x, (τ1, τ2, · · · , τl)) 7−→ xτi , where x ∈ ūi.

Similar to the last theorem, for the automorphism groups of undirected power
graphs we have:

Theorem 3.2. [17] Let G be a finite group. Then

Aut(P (G)) = (

l∏

i=1

Sūi) ×P(G),

where P(G) and
∏l

i=1 Sūi
act on G as in (3.1) and (3.3), respectively.

By combining Theorems 3.1 and 3.2, the authors in [17], obtained that Aut(P (G)) =

Aut(
−→
P (G)) if and only if x = [x] for each x ∈ G. Indeed, this result demonstrates

relationship between power graphs and directed power graphs.

A graph Γ is said to be a subgraph of another graph ∆ (or ∆ is a supergraph of
Γ), if V (Γ) ⊂ V (∆) and E(Γ) ⊂ E(∆). Hamzeh and Ashrafi [19] defined the main
supergraph S(G) of P (G) with the vertex set G and two elements x, y ∈ G are
adjacent if and only if o(x)|o(y) or o(y)|o(x) and proved that there is not a group
G, such that Aut(S(G)) = Aut(G). In what follows, Ωai

(G) = |{y|o(y) = ai}|.
Authors in [19] also define the graph ∆ with vertex set V (δ) = πe(G) and two
vertices ai and aj are adjacent if and only if ai|aj or aj |ai.

Theorem 3.3. [19] Let G be a finite group with spectrum πe(G) = {a1, · · · , ak}
and choose a representative set {t1, t2, · · · , tk}, where for each i, 1 ≤ i ≤ k, ti ∈
KΩa

i

(G). Then,

1. If deg(ti)’s are distinct then Aut(S(G)) = SΩa1
(G)× · · · × SΩa

k

(G).
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2. If deg(ti1) = · · · = deg(tir ), any two distinct vertices of KΩa
i1

(G), · · · ,KΩa
ir

(G)

are adjacent and N∆[ai1 ] = · · · = N∆[air ] then Aut(S(G)) has a subgroup iso-
morphic to SΩa

i1
(G)+···+Ωa

ir

(G).

3. If deg(ti1) = · · · = deg(tir ), all vertices of KΩa
i1

(G), · · · ,KΩa
ir

(G) are adja-

cent and N∆[ail ]’s are distinct then Aut(S(G)) has a subgroup isomorphic to
SΩa

i1

(G)× · · · × SΩa
ir

(G).

4. If deg(ti1) = · · · = deg(tir ), N∆[ai1 ] = · · · = N∆[air ] and for each two
m,n, 1 ≤ m,n ≤ r, KΩa

im

(G) and KΩa
in

(G) are disjoint then Aut(S(G))

has a subgroup isomorphic to SΩa
i1

(G) ≀ Sr .

5. If deg(ti1) = · · · = deg(tir),N∆[ail ]’s are distinct and for each m,n, 1 ≤
m,n ≤ r, KΩa

im

(G) and KΩa
in

(G) are disjoint then Aut(S(G)) has a sub-

group isomorphic to SΩa
i1

(G)× · · · × SΩa
ir

(G).

6. Aut(S(G)) = A1 × · · · × Aq, where Ai, 1 ≤ i ≤ q, are subgroups appeared in
Cases ( 2–5).

In [[20], Theorem 2.8], it is proved that if G is an EPPO-group of order pn1

1 · · · pnk

k

and Vi = {1 6= g ∈ G | o(g)|pnii } then S(G) = K1 + (
⋃k

i=1 K|V i|). The authors
applied the structure of S(G) to determine its automorphism.

Theorem 3.4. [19] Let G be a finite group and e1, · · · , et are distinct values of
|V1|, · · · , |Vk|. Define Bi = |{|Vj | | |Vj | = ei}|. Then,

Aut(S(G)) = (S|V1| ≀ SB1
)× · · · × (S|Vk| ≀ SBk

).

Suppose G is a finite group and C(G) = {C1, · · · , Ck} is the set of all cyclic sub-
groups of G. Define LG to be the graph with vertex set C(G) in which two cyclic
subgroups Ci and Cj are adjacent if one is contained in the other or there is a cyclic
subgroup Ck such that Ci ⊆ Ck and Cj ⊆ Ck. It is clear that the subgraphs of P (G)
induced by a cyclic subgroup are complete. So, P (G) = WG[Kb1 ,Kb2 , · · · ,Kbk ] with
bi = ϕ(|Ci|).

Theorem 3.5. [19] Let G be a finite group with C(G) = {C1, · · · , Ck} and choose
a representative set {t1, t2, · · · , tk}, where for each i, 1 ≤ i ≤ k, ti ∈ Kbi . Then,

1. If deg(ti)’s are distinct then Aut(P (G)) = Sb1 × · · · × Sbk .

2. If deg(ti1) = · · · = deg(tir ), any two distinct vertices of Kbi1
, · · · ,Kbir are

adjacent and NWG
[Ci1 ] = · · · = NWG

[Cir ] then Aut(P (G)) has a subgroup
isomorphic to Sba

i1
+···+ba

ir

.
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3. If deg(ti1) = · · · = deg(tir ), all vertices of Kbi1
, · · · ,Kbir are adjacent and

NWG
[Cil ]’s are distinct then Aut(P (G)) has a subgroup isomorphic to Sbi1

×
· · · × Sbir .

4. If deg(ti1) = · · · = deg(tir ), NWG
[Ci1 ] = · · · = NWG

[Cir ] and for each two
m,n, 1 ≤ m,n ≤ r, Kbim and Kbin are disjoint then Aut(P (G)) has a sub-
group isomorphic to Sbi1

≀ Sr .

5. If deg(ti1) = · · · = deg(tir ), NWG
[Cil ]’s are distinct and for each m,n, 1 ≤

m,n ≤ r, Kbim and Kbin are disjoint then Aut(P (G)) has a subgroup isomor-
phic to Sbi1

× · · · × Sbir .

6. Aut(P (G)) = A1 × · · · × Aq, where Ai, 1 ≤ i ≤ q, are subgroups appeared in
Cases ( 2–5).

3.1. Examples

In this section, we present Aut(P (G)) and Aut(
−→
P (G)) for some families of finite

groups such as Zn, Z
p
n, D2n, Q4n, U6n, V8n and so on. These results obtained in

several papers in different ways. In [5], the authors used the graph structure from
[30] and computed the automorphism groups of P (G) for the above groups. In [17],
the authors by using Theorem 3.1 and Theorem 3.2, computed the automorphism

groups of P (G) and
−→
P (G) for these groups. In [19], authors obtained these results

from Theorem 3.3.

Example 3.1. [17] If n be a positive integer then,

Aut(
−→
P (Zn)) ∼=

∏

d∈D(n)

Sϕ(d),

Aut(P (Zn)) ∼=

{
Sn n is a prime power

Sϕ(n)+1 ×
∏

d∈D(n)\{1,n} Sϕ(d) otherwise
,

and if n ≥ 2 then,

Aut(P (Zn
p )) = Aut(

−→
P (Zn

p ) ∼= Sp−1 ≀ Sm,

where m = pn−1
p−1

and Zn
p denote the elementary abelian p−group.

In the [21, 15], the dihedral group D2n, semi-dihedral group SD2n , generalized
quaternion group of Q4n, semidihedral groups SD8n are defined by the following
presentations:

D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉,

SD2n = 〈a, b | a2
n

= b2 = 1, b−1ab = a−1〉,

Q4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉,

U6n = 〈a, b | a2n = b3 = 1, a−1ba = b−1〉,

V8n = 〈a, b | a2n = b4 = 1, ba = a−1b−1, b−1a = a−1b〉.

Now, we are ready to state next example.
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Example 3.2. [17] For n ≥ 3,

Aut(
−→
P (D2n)) ∼=

∏

d∈D(n)

Sϕ(d) × Sn,

Aut(P (D2n)) ∼=

{
Sn−1 × Sn, n is a prime power

Sn ×
∏

d∈D(n) Sϕ(d) otherwise
,

and let n ≥ 3 then,

Aut(
−→
P (Q4n)) ∼=

∏

d∈D(2n)

Sϕ(d) × (S2 ≀ Sn),

Aut(P (Q4n)) ∼=

{
S2 × S2n−2 × (S2 ≀ Sn), n is a power of 2
∏

d∈D(2n) Sϕ(d) × (S2 ≀ Sn) otherwise
.

Example 3.3. [5] If k is nonnegative integer and satisfies n = 3kt for some positive
integer t such that 3 6 |t then,

Aut(P (U6n)) ∼=







∏

d|3n Sϕ(d) ×
∏

d|2n,d 6|n Sϕ(d) ≀ S3 k = 0
∏

d|2n,d 6|n Sϕ(d) ≀ S3 ×
∏

d|n Sϕ(d) ×
∏

d|n,d 6|t Sϕ(d) ≀ S3 k = 1
∏

d|2n,d 6|n Sϕ(d) ≀ S3 ×
∏

d|n Sϕ(d) ×
∏

d|3t,d 6|t Sϕ(d) ≀ S3

×
∏

d|n,d 6|3t Sϕ(d) ≀ S2 k ≥ 2

,

if n = 2kt for a nonnegative k and some positive odd integer t then,

Aut(P (V8n)) ∼=







S2n × S2 ≀ Sn ×
∏

d|2n,d 6|n Sϕ(d) ≀ S2 ×
∏

d|2n Sϕ(d) k = 0

S2n+1 × S2 ≀ Sn ×
∏k−1

l=1 S2
2l × S2k ≀ S2 t = 1, k ≥ 1

S2n × S2 ≀ Sn ×
∏

d|t S
4
ϕ(d) ×

∏k
s=2

∏

d|2st,d 6|2s−1t S
2
ϕ(d)

×
∏

d|2k+1t,d 6|2kt Sϕ(d) ≀ S2 t > 1, k ≥ 1

,

also,

Aut(P (SD8n)) ∼=

{
S4n−2 × S2n × (S2 ≀ Sn), n is a power of 2
∏

d|4n Sϕ(d) × S2n × (S2 ≀ Sn) otherwise
.

The smallest sporadic group is the first Mathieu groupM11, it has order 7920. There
are many presentations for the group M11, we give two of its known presentation,
[39].

M11
∼=< a, b, c|a11 = b5 = c4 − (ac)3 = 1, b4ab = a4, c3bc = b2 >,

∼=<a, b, c, d|a2= b2= c2= d2= (ab)5= (bc)3 = (bd)4= (cd)3= (abdbd)3 = 1> .

The paper by Around (1960) increased the interest to finite simple groups, as Janko
in Australia found (1965) the first new sporadic group J1 a century later after
Mathieu’s. It turns out that J1 had order 175560. A presentation for J1 in terms
of its standard generators is given below [12]:

J1 ∼=< a, b|a2 = b3 = (ab)7 = (ab(abab−1)3)5 = (ab(abab−1)6abab(ab−1)2)2 = 1 > .

The automorphism groups of M11 and J1 are determined as follows:
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Example 3.4. [5] Let M11 be the first Mathieu group and J1 be the first Janko group,
then,

Aut(P (M11)) ∼= (S10 ≀ S144)× (S4 ≀ S396)× (S2 ≀ S55)× ((S6 ≀ S3)× (S2 ≀ S4)× S2) ≀ S165,

Aut(P (J1)) ∼= (S10 ≀ S596)× (S6 ≀ S4180)× (S18 ≀ S1540)

× ((S2 × S8 × S4 × (S4 ≀ S3)× (S2 ≀ S5)) ≀ S2) ≀ S1463.

Moreover, in [30] the automorphism groups of P (Zpq), P (Zpqr) and P (Zp2q2) are
calculated as follows:

Aut(P (Zpq)) ∼= Sϕ(pq)+1 × Sp−1 × Sq−1,

Aut(P (Zpqr)) ∼= Sϕ(pqr) × Sp−1 × Sq−1 × Sr−1 × Sϕ(pq) × Sϕ(pr) × Sϕ(qr),

Aut(P (Zp2q2)) ∼= Sϕ(p2q2)+1 × Sp−1 × Sϕ(p2) × Sq−1 × Sϕ(q2) × Sϕ(pq) × Sϕ(pq2) × Sϕ(p2q).

As we mentioned in above Theorem 3.4 is playing a main role in finding auto-
morphism group of power graphs. In [19], the authors obtained the following results
from Theorem 3.3.

Example 3.5. [19] If n is odd, then

Aut(S(D2n)) =

{
Sn−1 × Sn n is a prime power

Sn ×
∏

d|n Sϕ(d) otherwise
,

and if n is even then

Aut(S(D2n)) =

{
S2n n is a power of 2
Sϕ(n)+1 × Sn+1

∏

{1,n,2}6=d|n Sϕ(d) otherwise
,

if n is odd, then

Aut(S(T4n)) = S2n ×
∏

d|2n

Sϕ(d),

and if n is even then

Aut(S(T4n)) =

{
S4n n is a power of 2
Sϕ(2n)+1 × S2n+2

∏

{1,2n,4}6=d|2n Sϕ(d) otherwise
,

for arbitrary n,

Aut(S(SD8n)) =

{
S8n n is a power of 2
Sϕ(4n)+1 × S2n+1 × S2n+2

∏

{1,4n,2,4}6=d|4n Sϕ(d) otherwise
,

if n = 2k then Aut(S(V8n)) ∼= S8n, and if n is an odd prime then Aut(S(V8n)) =

S2n+3 × S2n × S3ϕ(n) ×
∏

{1,2n,2}6=d|2n Sϕ(d).
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4. Automorphism groups of commuting graphs

The commuting graphs ∆(G) and Γ(G) of a group G are defined in the introduction.
The following theorem established the relation between Aut(G), Aut(∆(G)) and
Aut(Γ(G)).

Theorem 4.1. [33] Let G be a finite group, then

1. Aut(G) = Aut(∆(G)) if and only if |G| = 1.

2. Aut(∆(G)) ∼= Aut(Γ(G))× SZ(G).

Mirzargar, Pach and Ashrafi studied the subgroups of Aut(∆(G)) in [33, 34]. The
first subgroups are Aut(Γ(G)) and Aut(G), then they added some automorphisms
of graph to Aut(G) and constructed bigger subgroups. Define two permutations
Φx,y, φ : G → G as follows: Φx,y fixed each element a ∈ G \ {x, y} and maps x into
y and vice-versa; and, the permutation φ is defined by x → x−1 for each element
x ∈ G. They also defined Aut∗(G) = 〈Aut(G), φ〉 and considered to the equality of
the subgroups and the main group.

Theorem 4.2. [33] Aut∗(G) = Aut(∆(G)) if and only if G ∼= S3.

Let the cosets Z(G)x1, Z(G)x2, · · · , Z(G)xm−1 of the group G/Z(G) and define
a new graph ∆u(G) with V (∆u(G)) = {x0 = 1, x1, · · · , xm−1} and E(∆u(G)) =
{xixj |xixj = xjxi, 0 ≤ i < j ≤ m − 1}. Notice when |Z(G)| = 1 then ∆(G) ∼=
∆u(G). It is clear that every two elements in one of these cosets commute. Hence
we have a complete graph in any of these cosets. On the other hand, if there exists
xi ∈ Z(G)xi, xj ∈ Z(G)xj satisfying xixj = xjxi, then for every yi ∈ Z(G)xi, yj ∈
Z(G)xj we have yiyj = yjyi. Finally, the set of all φ ∈ Aut(∆(G)) such that for
a, b ∈ G if ab−1 ∈ Z(G), then φ(a)φ(b)−1 ∈ Z(G) is denoted by T . These notations
are applied in [33] to prove two following theorems.

Theorem 4.3. [33] Let G be a group. Then,

1. Aut(∆u(G)) is a subgroup of Aut(∆(G)). Moreover, Aut(∆u(G)) = Aut(∆(G))
if and only if |Z(G)| = 1.

2. If G is not centerless then T is a subgroup of Aut(∆(G)), and Aut(∆(G)) = T

if and only if for each pair a, b of elements of G with CG(a) = CG(b), we have
ab−1 ∈ Z(G).

Theorem 4.4. [33] Let |Z(G)| ≥ 2, where G be a nonabelian group. If T =
Aut(∆(G)) then G/Z(G) is an elementary abelian 2−group.
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For a finite group G define a labelled graph ∆v(G) as follows. For a, b ∈ G let
a ∼ b if CG(a) = CG(b). Clearly, ∼ is an equivalence relation, the equivalence class
of a ∈ G is A(a) = {x|CG(x) = CG(a)}. Let us denote the equivalence classes by
A1, . . . , Ak, these are the vertices of ∆v(G). Two vertices Ai and Aj are connected
if and only if aiaj = ajai, for some ai ∈ Ai, aj ∈ Aj . At first, we note that if there
exists ai ∈ Ai, aj ∈ Aj satisfying aiaj = ajai, then for every bi ∈ Ai, bj ∈ Aj we
have aj ∈ CG(ai) = CG(bi). So, bi ∈ CG(aj) = CG(bj) implies that bibj = bjbi.
Each equivalence class is the union of some sets of the form tZ(G), hence there exists
a positive integers ci such that |Ai| = ci|Z(G)|. Let α(Ai) = ci be the label of the
vertex Ai in ∆v(G). One can see φ : V (∆v(G)) → V (∆v(G)) is an automorphism
of the labelled graph ∆v(G) if φ is a bijection, it preserves the edges (and the
non-edges) and it preserves the labels. The automorphism group formed by these
automorphisms is denoted by Aut(∆v(G)). Define SAi

= {fσ | σ ∈ S|Ai|, ∀x ∈
Ai, fσ(x) = σ(x), ∀x /∈ Ai, fσ(x) = x}, 1 ≤ i ≤ k. Clearly, SAi

is a subgroup of
Aut(∆(G)). The connection between Aut(∆(G)) and Aut(∆v(G)) is described by
the following theorem:

Theorem 4.5. [33] There is a subgroup A of Aut(∆(G)) such that A ∼= Aut(∆v(G))
and Aut(∆(G)) = 〈SA1

, · · · , SAk
〉 ×A.

In [38], Rocke proved that the following are equivalent:

1. G has abelian centralizers;

2. If xy = yx, then CG(x) = CG(y) whenever x, y 6∈ Z(G);

3. If xy = yx and xz = zx, then yz = zy whenever x 6∈ Z(G);

4. If U and B are subgroups of G and Z(G) < CG(U) ≤ CG(B) < G then
CG(U) = CG(B).

Therefore, the intersection of two proper element centralizers of an AC-group is the
center of G. If G is an AC-group, then ∆(G) is a union of some complete graphs
with all vertices adjacent to the elements of Z(G). So, ∆(G) is n1(CG(x1)\Z(G))∪
n2(CG(x2) \ Z(G)) ∪ · · · ∪ (nrCG(xr) \ Z(G)) and also every element of Z(G) is
adjacent to all elements of G, such that for each i, 1 ≤ i ≤ r, we have ni isomorphic
components with complete graph of size |CG(xi)\Z(G)|. In [33], the authors proved
that if G is an AC-group with the above notations then,

Aut(∆(G)) ∼= ((S|CG(x1)|−|Z(G)|) ≀ Sn1
)× ((S|CG(x2)|−|Z(G)|) ≀ Sn2

)× · · ·

× ((S|CG(xn)|−|Z(G)|) ≀ Snr
)× SZ(G).

Finally, from [33], |Aut(∆(G))| can not be a prime power or a square-free num-
ber. Moreover, |Aut(∆(G))| = 1 if and only if G is trivial, Aut(Γ(G)) is abelian
if and only if G is a group of order 1 or 2. Also if |G| > 2 then Aut(∆(G)) is a
nonabelian group.



A Survey on the Automorphism Groups of Commuting Graphs and Power Graphs 741

Acknowledgements

We thank Prof. Alireza Ashrafi and one of the referees for a very careful reading
of the paper and their comments.

REFERENCES

1. G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish and F. Shaveisi:
On the structure of the power graph and the enhanced power graph of a group.
Electron. J. Comb. 24 (2017), 3–16.

2. J. Abawajy, A. Kelarev and M. Chowdhury: Power graphs: a survey. Elec-
tron. J. Graph Theory Appl. (EJGTA) 1 (2013), 125-–147.

3. A. Abdollahi, S. Akbari and H. R. Maimani :Non-commuting graph of a

group. J. Algebra 298 (2006), 468–492.

4. A. Abdollahi and H. Shahverdi :Non-commuting graphs of nilpotent groups.
Commun. Algebra 42 (2014), 3944-–3949.

5. A. R. Ashrafi, A. Gholami and Z. Mehranian :Automorphism group of certain

power graphs of finite groups. Electron. J. Graph Theory Appl. (EJGTA) 5 (2017),
70-–82.

6. J. Bosak :The graphs of semigroups, Theory of Graphs and Application. Aca-
demic Press, New York, 1964.

7. F. Budden: Cayley graphs for some well-known groups. Math. Gaz. 69 (1985),
271–278.

8. P. J. Cameron and S. Ghosh: The power graph of a finite group. Discrete Math.
311 (2011), 1220–1222.

9. P. J. Cameron: The power graph of a finite group II. J. Group Theory, 13

(2010), 779–783.

10. P. J. Cameron: Permutation Groups. Cambridge Univ. Press, Cambridge, 1999.

11. I. Chakrabarty, S. Ghosh and M. K. Sen:Undirected power graphs of semi-

groups. Semigroup Forum 78 (2009), 410–426.

12. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wil-
son: Atlas of finite simple groups, Maximal subgroups and ordinary characters

for simple groups. Oxford University Press, Eynsham, 1985.

13. B. Zelinka:Intersection graphs of finite Abelian groups. Czech. Math. J. 25

(1975), 171–174.

14. M. R. Darafsheh: Groups with the same non-commuting graph. Discrete Ap-
plied Math. 157 (2009), 833–837.

15. M. R. Darafsheh and N. S. Poursalavati: On the existence of the orthogonal

basis of the symmetry classes of tensors associated with certain groups. Sut J.
Math. 37 (2001), 1–17.

16. A. Doostabadi, A. Erfanian and A. Jafarzadeh: Some results on the power

graph of groups.In: The Extended Abstracts of the 44th Annual Iranian Mathe-
matics Conference, Ferdowsi University of Mashhad, Iran, 2013, pp. 27–30.



742 M. Mirzargar

17. M. Feng, X. Ma and K. Wang:The full automorphism group of the power

(di)graph of a finite group. European J. Combin. 52 (2016), 197–206.

18. R. Frucht: On the groups of repeated graphs. Bull. Amer. Math. Soc. 55 (1949),
418–420.

19. A. Hamzeh and A. R. Ashrafi:Automorphism groups of supergraphs of the power

graph of a finite group. Eur. J. Comb. 60 (2017), 82–88.

20. A. Hamzeh and A. R. Ashrafi: The order supergraph of the power graph of a

finite group. Turk. J. Math. 42 (2018), 1978–1989.

21. G. James and M. Liebeck: Representations and Characters of Groups. 2nd ed.,
Cambridge University Press, New York, 2001.

22. J. A. Gallian: Contemporary Abstract Algebra. Narosa Publishing House, Lon-
don, 1999.

23. A. V. Kelarev and S. J. Quinn: Directed graph and combinatorial properties

of semigroups. J. Algebra 251 (2002), 16–26.

24. A. V. Kelarev and S. J. Quinn: A combinatorial property and power graphs of

groups. The Vienna Conference, Contrib. General Algebra. 12 (2000), 229–235.

25. A. V. Kelarev, S. J. Quinn and R. Smolikova: Power graphs and semigroups

of matrices. Bull. Austral. Math. Soc. 63 (2001), 341–344.

26. A. V. Kelarev and S. J. Quinn: A combinatorial property and power graphs of

semigroups. Comment. Math. Univ. Carolinae. 45 (2004), 1–7.

27. A. V. Kelarev: Graph Algebras and Automata. Marcel Dekker, New York, 2003.

28. A. V. Kelarev: Ring Constructions and Applications. World Scientifc, River
Edge, NJ, 2002.

29. A. V. Kelarev, J. Ryan and J. Yearwood: Cayley graphs as for data mining:

The infuence of asymmetries. Discrete Mathematics. 309 (2009), 5360–5369.

30. Z. Mehranian, A. Gholami and A. R. Ashrafi: A note on the power graph of

a finite group. Int. J. Group Theory 5 (2016), 1–10.

31. M. Mirzargar and A. R. Ashrafi: Some distance-based topological indices of

the non-commuting graph. Hacet. J. Math. Stat. 41 (2012), 515–526.

32. M. Mirzargar, A. R. Ashrafi and M. J. Nadjafi-Arani: On the power graph

of a finite group. Filomat 26 (2012), 1201–1208.

33. M. Mirzargar, P. P. Pach and A. R. Ashrafi: The automorphism graph of

commuting graph of a finite group. Bull. Korean Math. Soc. 51 (2014), 1145–1153.

34. M. Mirzargar, P. P. Pach and A. R. Ashrafi: Remarks On Commuting

Graph of a Finite Group. Electron. Notes Discrete Math. 45 (2014), 103–106.

35. A. R. Moghaaddamfar: About noncommuting graphs, Siberian Math. J. 47

(2006), 911–914.

36. B. H. Neumann, A problem of Paul Erdos on groups. J. Aust. Math. Soc. Ser.
21 (1976), 467–472.

37. G. R. Pourgholi and H. Yousefi-Azari:On the 2-connected power graphs of

finite groups. Australiasian J. Combinatorics 62 (2015), 1–7.

38. D. M. Rocke: p-groups with abelian centralizers. Proc. London Math. Soc. 30
(1975), 55–75.



A Survey on the Automorphism Groups of Commuting Graphs and Power Graphs 743

39. H. E. Rose: A Course on Finite Groups. Cambridge University press, Cambridge,
1978.

40. D. Witte, G. Letzter and J. A. Gallian: On Hamiltonian circuits in Carte-

sian products of Cayley digraphs. Discrete Math. 43 (1983), 297–307.

Mahsa Mirzargar

Faculty of Science

Mahallat institute of higher education

Mahallat, I. R. IRAN

m.mirzargar@gmail.com



 

 



FACTA UNIVERSITATIS (NIŠ)
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Abstract. In this research, a new version of Sinc–collocation method incorporated
with a Double Exponential (DE) transformation is implemented for a class of con-
vectiondiffusion equations that involve time fractional derivative in the Caputo sense.
Our approach uses the DE Sinc functions in space and the Euler polynomials in time,
respectively. The problem is reduced to the solution of a system of linear algebraic
equations. A comparison between the proposed approximated solution and numer-
ical/exact/available solution reveals the reliability and significant advantages of our
newly proposed method.
Keywords. Time-fractional convection–diffusion equation; Shifteted Legendre poly-
nomials; Euler-Sinc collocation; Caputo fractional derivative; Double exponential.

1. Introduction

We focus on a time–fractional convection–diffusion equation with variable coeffi-
cients of the form

(1.1)
∂αu(x, t)

∂tα
+ a(x)

∂u(x, t)

∂x
+ b(x)

∂2u(x, t)

∂x2
= f(x, t), 0 < x < 1, 0 < t 6 1,

with initial condition

(1.2) u(x, 0) = g(x), 0 < x < 1,

and boundary conditions

(1.3) u(0, t) = h(t), u(1, t) = k(t), 0 < t 6 1,

Received May 16, 2019; accepted August 05, 2019.
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where a(x), b(x) 6= 0 are continuous functions, α ∈ (0, 1] and the oprator ∂α

∂tα (or
Dα

t ) is defined in the Caputo sense as follows:

(1.4) Dα
t u(x, t) =

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)
α .

We recall that the Caputo fractional derivative of the power function satisfies
(1.5)

Dα
t t

p =

{
Γ(p+1)

Γ(p+1−α) t
p−α, p ∈ N0 and p > ⌈α⌉ or p /∈ N and p > ⌊α⌋ ,

0, p ∈ N0 and p < ⌈α⌉ .

where ⌈α⌉ and ⌊α⌋ denote the ceil and floor of α, respectively.
The problem (1.1)–(1.3) is a class of time–fractional diffusion/wave equations which
appears frequently e.g., in earthquake modeling, non-Markov Processes and in the
mathematical modelling of the earth surface transport [6, 4]. In recent years, due
to its extensive engineering applications, much attention has been focused on pro-
viding an effective numerical method to solve it.
Izadkhah and Saberi-Najafi [2] expanded the required approximate solution as the
elements of the Gegenbauer polynomials in time and Lagrange polynomials in space
and by using a global collocation, reduced the problem to a system of linear algebraic
equations. Other numerical/analytic methods, such as standard Sinc–Legendre col-
location, finite difference, finite element, ADM, HAM and VIM have also been
developed to solve time–fractional diffusion/wave equations and have been fully ad-
dressed in [6, 2].
The numerical methods based on Sinc approximations have been studied exten-
sively during the last three decades. Recently, these approaches have been used
for solution of fractional ordinary/partial differential equations and usually give a
result with high accuracy even for problems with an algebraic singularity at the
end point. Many of these methods have been found very effective and reliable and

under some conditions, have convergency of order O

(

exp
(

−cN
ln(N)

))

, where c > 0

is a constant and N ∈ N depends on number of mesh points. For more historical
remarks and technical details about Sinc numerical methods see [7, 8] and the ref-
erences therein. In the present paper, we apply the Euler–Sinc collocation method
coupled with Double Exponential (DE) transformation for solving equations (1.1)–
(1.3). Our method consists of reducing the solution to a set of algebraic equations
by expanding u(x, t) as a combination of modified Sinc functions (in space) and
Euler polynomials (in time) with a special boundary treatment. The numerical ex-
periments are implemented in Maple 15 programming. The programs are executed
on a Notebook System with 2.0 GHz Intel Core 2 Duo processor with 2 GB 533
MHz DDR2 SDRAM.

2. Basic Definitions and Theorems of the Method

In this section, we introduce some basic definitions and derive preliminary results
for developing our method.
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2.1. Sinc Functions

The sine cardinal or Sinc function on C defined by

Sinc(z) =

{
sin(πz)

πz , z 6= 0,
1, z = 0.

For step size h > 0, and any integer k, the translated Sinc function on uniform
meshes is denoted S(k, h)(z) and defined by

S(k, h)(z) = Sinc

(
z − kh

h

)

.

For target equation (1.1) on spatial interval 0 < x < 1, we employ a conformal map

w = φ(x) = ln




1

π
ln

(
x

1− x

)

+

√

1 +

(
1

π
ln

(
x

1− x

))2


 ,

with inverse

(2.1) x = ψ(w) =
1

2
+

1

2
tanh

(π

2
sinhw

)

,

as the DE transformation, on a subinterval Γ = (0, 1) = ψ(R) with φ(0) = −∞ and
φ(1) = ∞. Now we have

f(x) ≃

N∑

k=−N

f(xk)Sk(x),

as a method of interpolation where, xk = ψ(kh) ∈ (0, 1) and Sk(x) = S(k, h) ◦φ(x)
are defined as Sinc grid points and the translated Sinc basic functions, respectively.
Also, the pth order derivative of Sj(x) with respect ot φ at the node xk is denoted

by δ
(p)
j,k and computed by the following relation

(2.2)

δ
(p)
j,k =

dp

dφp
[S(j, h) ◦ φ(x)]

∣
∣
∣
∣
x=xk

=
πp

hp







lim
t→0

dp

dtp

(
sin t

t

)

, j = k

dp

dtp

(
sin t

t

)

|t=π(k−j), j 6= k

, p = 0, 1, . . .

Leibniz’s rule for higher-order derivatives of products provides the following recur-
rence formulas of (2.2) [5]:

δ
(2r)
j,k =

1

h2r







(−1)rπ2r

2r+1 , j = k,

(−1)k−j(2r)!

(k−j)2r

r−1∑

s=0

(−1)s+1π2s

(2s+1)! (k − j)
2s
, j 6= k,
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δ
(2r+1)
j,k =

1

h2r+1







0, j = k,

(−1)k−j(2r+1)!

(k−j)2r+1

r∑

s=0

(−1)sπ2s

(2s+1)! (k − j)2s, j 6= k,

with r = 0, 1, 2, . . . .
Hence for p = 0, 1, 2 these quantities are as following

(2.3) δ
(0)
j,k =

{
1, j = k,

0, j 6= k,

(2.4) δ
(1)
j,k =

1

h

{

0, j = k,
(−1)k−j

k−j , j 6= k,

(2.5) δ
(2)
j,k =

1

h2

{

−π2

3 , j = k,
−2(−1)k−j

(k−j)2 , j 6= k,

Definition 2.1. [8] A function f is said to decay double exponentially with respect
to ψ, if there exist positive constants α and β such that

|f(ψ(ξ))| ≤ α exp (−β exp(|ξ|)) , for all ξ ∈ R.

Moreover, under some conditions on f , f(ψ(ξ)) decays double exponentially with
respect to ψ.

If the function f is double exponentially decreasing, then the interpolation formula
of it over [0, 1] takes the form

N∑

j=−N

f(xj)Sj(x)

and under some restrictions on f , it is shown by both theoretical analysis and
numerical experiments that the approximation error on x ∈ [0, 1] can be estimated
by

(2.6)

∥
∥
∥
∥
∥
∥

f(x)−

N∑

j=−N

f(xj)Sj(x)

∥
∥
∥
∥
∥
∥
∞

6 C exp

[
−πdN

ln (πdN/β)

]

where h is taken as

(2.7) h =
ln (πdN/β)

N
,

and C is a constant independent of f and N [8].
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2.2. Euler Functions

We end this section by introducing the classical Euler polynomials En(t) and deriv-
ing some of their features. The classical Euler polynomials denoted by En(t), are
usually defined by means of the following generating function:

(2.8)
2etx

ex + 1
=

∞∑

n=0

En(t)
xn

n!
, |x| < π.

It is possible to get explicit expressions for the Euler polynomials as following [3]:

(2.9) En(t) =
1

n+ 1

n∑

k=0

(
2− 2n+2−k

)
(
n+ 1

k

)

Bn+1−k t
k, n = 0, 1, 2, 3, . . .

where Bk’s are the Bernoulli numbers.

Lemma 2.1. Let α > 0. Then the fractional derivative of Ej(t) of order α is

(2.10) Dα
t Ej(t) =

j
∑

k=⌈α⌉

ej,kt
k−α, j = 0, 1, 2, 3, . . .

where ej,k = 1
j+1

(
2− 2j+2−k

) (
j+1
k

)
Bj+1−k

Γ(k+1)
Γ(k−α+1) .

Proof. The proof is straightforward and deduces from (1.5) and (2.9).

3. Euler–Sinc Collocation Method

In order to discretize equations (1.1)–(1.3) by using Euler–Sinc collocation approach,
we approximate u(x, t) as

(3.1) um,n(x, t) =

m∑

i=−m

n∑

j=0

ci,jSi(x)Ej(t) +B(x, t).

Here, Sk(x)’s convege to zero as x tends to 0 or 1. Hence we can pick a nice function
satisfying the boundary conditions (1.3), say B(x, t) = (1 − x)h(t) + xk(t). The
(2m + 1)(n + 1) unknown expansion coefficients {ci,j} in (3.1) are determined by
substituting um,n(x, t) into equations (1.1)–(1.2) and evaluating the results at the
collocation points xk = ψ(kh), k = −m, . . . , m, and tl, l = 1, . . . , n (as the n first
roots of the shifteted Legendre polynomial Pn+1(t) in [0, 1]).

Lemma 3.1. If the assumed approximate solution of the initial–boundary value
problem (1.1)–(1.3) is (3.1), then the discrete Euler–Sinc collocation system for the
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determination of the unknown coefficients {ci,j} is given by the following (2m+1)×
(n+ 1) equations

(3.2)

n∑

j=0

j
∑

r=⌈α⌉

ck,jej,rt
r−α
l + a (xk)

m∑

i=−m

n∑

j=0

ci,jλi,kEj (tl)

+ b (xk)

m∑

i=−m

n∑

j=0

ci,jµi,kEj (tl) = F (xk, tl) ,

n∑

j=0

ck,jEj(0) = g (xk) , k = −m, −m+ 1, . . . ,m, l = 0, 1, . . . , n,

where,

(3.3) λi,k = δ
(1)
i,kφ

′ (xk) , µi,k = δ
(2)
i,k (φ′ (xk))

2
+ δ

(1)
i,kφ

′′ (xk) ,

and

(3.4) F (xk, tl) = f (xk, tl)−Dα
t B (xk, tl)−

∂B (xk, tl)

∂x
−
∂2B (xk, tl)

∂x2
.

Proof. The process of proof is similar to the proof of lemma 1 in [6] and left to the
reader.

Finally, the linear system (3.2) for the unknown coefficients
{ci,j : i = −m, −m+ 1, . . . ,m, j = 0, 1, . . . , n} can be solved by using fsolve

command in MAPLE.

4. Illustrative Examples

In this section we show numerical results of the Euler–Sinc collocation method.
In order to verify the performance and reliability of the proposed method, three
examples are examined in this section. In all examples, we heuristically choose
d = π

6 and β = π
2 which leads to h = 1

m ln
(
mπ
3

)
. In the presence of exact solutions,

we also define maximum absolute error em,n as

em,n := max {|u(x, t)− um,n(x, t)| : 0 6 x 6 1, 0 < t 6 1}

.

Example 4.1. [6] Consider the following time–fractional diffusion equation

(4.1)
∂αu(x, t)

∂tα
−

∂2u(x, t)

∂x2
= f(x, t), 0 < x < 1, 0 < t 6 1, 0 < α 6 1

with h(t) = 0, k(t) = 0, f(x, t) = 2
Γ(3−α)

t2−α sin(2πx) + 4π2t2 sin(2πx) and u(x, 0) = 0.

This problem has the exact solution u(x, t) = t2 sin(2πx).
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m = 5 m = 10

m = 15 m = 20

Fig. 4.1: The convergence of the sequence em,3 for different values of m.
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In Figure 4.1, as a convergence criterion of um,n(x, t) to u(x, t), we illustrate the
error function em,n for n = 3 and m = 5, 10, 15, 20. This figure illustrates that the
error function em,3 gets smaller and smaller values by increasing spatial resolution
m.

Example 4.2. [6, 2] Consider the problem (1.1)–(1.3) of order 0 < α < 1 with a(x) = x,

b(x) = 1, f(x, t) = 2tα + 2x2 + 2, g(x) = x2, h(t) = 2Γ(α+1)t2α

Γ(2α+1)
, k(t) = 1 + 2Γ(α+1)t2α

Γ(2α+1)
and

the exact solution u(x, t) = x2 + 2Γ(α+1)t2α

Γ(2α+1)
.

Table 4.1: Comparison of absolute error em,n for α = 0.5, n = 3 and t = 1
2 , for

Example 4.2.

x Method of [1] Method of [6] Present method
for m = 64 for m = 25 and n = 7 m = 5 m = 10

0.1 1.210× 10−03 6.462× 10−06 7.816× 10−05 5.648× 10−07

0.2 1.259× 10−03 1.578× 10−05 1.100× 10−04 5.198× 10−07

0.3 1.865× 10−03 2.272× 10−05 9.353× 10−05 4.891× 10−07

0.4 7.412× 10−03 2.674× 10−05 8.441× 10−05 5.835× 10−07

0.5 1.000× 10−06 2.759× 10−05 8.440× 10−05 5.951× 10−07

0.6 7.460× 10−03 2.534× 10−05 8.604× 10−05 5.736× 10−07

0.7 1.724× 10−03 2.035× 10−05 9.540× 10−05 4.833× 10−07

0.8 4.990× 10−03 1.320× 10−05 1.101× 10−04 5.227× 10−07

0.9 1.678× 10−02 4.653× 10−06 7.636× 10−05 5.591× 10−07

Taking α = 0.5 and temporal resolution n = 3, in Table 4.1, we compare our method
for moderate values of spatial resolution, say m = 5 and m = 10, together with
the results obtained by using the wavelet method [1] for m = 64 and Sinc-Legendre
collocation method [6] with n = 7 and m = 25. The results of this Table show
that our computations are in good agreement with those obtained by the existing
methods and a slight increase in m significantly improves our numerical results.

5. Conclusion

The present work exhibits the reliability of the Euler–Sinc method to solve a Caputo
time fractional convection-diffusion equation that arises frequently in the mathemat-
ical modeling of real-world physical problems such as earthquake modeling, traffic
flow model and financial option pricing problems. Approximated results are in close
agreement with numerical/exact solutions and the results of the previous section re-
veal that our scheme can be used to obtain accurate numerical solutions of problem
(1.1)-(1.3) with very little computational effort.
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Abstract. The aim of this paper is to compute the number of subgroups and normal

subgroups of the group U2np = 〈a, b | a2n = bp = e, aba−1 = b−1〉, where p is an

odd prime. Suppose n = 2r
∏

1≤i≤s p
αi
i in which pi’s are distinct odd primes, αi’s are

positive integers and t =
∏

1≤i≤s p
αi
i . It is proved that the number of subgroups is

2τ (2n) + (p − 1)
(

τ (n
p
) + τ ( n

2r
)
)

, when p | n and 2τ (2n) + (p − 1) [τ (t)], otherwise. It

will be also proved that this group has τ (2n) + τ (n) normal subgroups.

Keywords. group; subgroup; dihedral group; finite group.

1. Introduction

Cavior [1] proved that the number of subgroups of a dihedral group of order 2n
can by computed by τ(n)+σ(n). After publishing this work Calhoun [2] computed
the number of subgroups in certain finite groups. For more information on this
problem, we encourage the readers to consult the interesting book of Tărnăuceanu
[6].

Following Darafsheh and Yaghoobian [3], we define:

U2nm = 〈a, b | a2n = bm = e | aba−1 = b−1〉.

This group has order 2nm and can be written as the semi-direct product of two
cyclic groups that one of them is of order m and another one has order 2n. Set
n = 2r

∏

1≤i≤s p
αi

i , where pi’s are distinct odd prime numbers and αi’s are positive
integers. Shelash [4], introduced an algorithm for computing all subgroups and nor-
mal subgroups of a finite group. Shelash and Ashrafi [5] applied this algorithm to
compute the number of minimal and maximal subgroups of certain finite groups.
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Here, we apply this algorithm to obtain the number of subgroups and normal sub-
groups of the group U2np, where p is an odd prime.

The order table of U2np is defined as the matrix A = [aij ] with aij = 2i−1cj−1,
1 ≤ i ≤ τ(2r+1) and 1 ≤ j ≤ τ(

∏

1≤i≤s p
αi

i ), where cj is an odd divisor of |U2np| and
the function τ(n) is defined as the number of positive divisors of n. For simplicity
of our argument, we assume that c0 < c1 < · · · < cα−1, where α = τ(

∏

1≤i≤s p
αi

i ).
For example if |G| = 60, then the order table of G is as follows:

aij 1 2 22

c0 = 1 1 2 4
c1 = 3 3 6 12
c2 = 5 5 10 20
c3 = 15 15 30 60

Throughout this paper our notations are standard and can be taken from the
standard books on group theory. The function σ(n) is defined as the summation of
all divisors of n. Furthermore, the number of subgroups and normal subgroups of a
group G are denoted by Sub(G) and NSub(G), respectively. Our calculations are
done with the aid of GAP [7].

2. Main Results

The group U2np = 〈a, b | a2n = bp = e | aba−1 = b−1〉 is a finite group of order 2np,
where p is an odd prime. Suppose n = 2r

∏

1≤i≤s p
αi

i in which pi’s are distinct
odd primes and αi’s are positive integers. For simplicity of our argument, we
assume that t =

∏

1≤i≤s p
αi

i . If p = pk | n then the order of U2np is equal to

2r+1pα1

1 · · · p
αk+1

k · · · pαs
s , otherwise it is 2r+1p

∏

16i≤s p
αi

i .

Lemma 2.1. The following hold:

1. If q is even then aqbw = bwaq;

2. If q is odd then aqbw = b−waq.

Proof. By presentation of the group U2np, we have aba−1 = b−1 and so if q is even
then aqb = baq. Furthermore, if q is odd then aqb = b−1aq. Choose positive integer
w. Then aqbw = baqbw−1. If q is even number, thus aqbw = bwaq. If q is odd
number then aqbw = b−1aqbw−1, then aqbw = b−waq.

Proposition 2.1. Let n = 2rt, t =
∏

1≤i≤s p
αi

i and m = p be an odd prime
number. Then the structure description of the group U2np is Ct × (Cp : C2r+1).

Proof. Suppose Φ = 〈a2
r+1

〉, Ψ = 〈b〉 and Ω = 〈at〉 are subgroups of U2np. By

Lemma 2.1, one can see that gΦg−1 = g〈a2
r+1

〉g−1 = 〈a2
r+1

〉 = Φ, for all g ∈ U2np.
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Thus Φ✂ U2np. Define (Ψ : Ω) = 〈b, at〉. If i is odd then,

aibj(Ψ : Ω)b−ja−i = aibj〈b, at〉b−ja−i

= 〈aibjbb−ja−i, aibjatb−ja−i〉

= 〈b, atb2j〉

= (Ψ : Ω),

and if i is an even number,

aibj(Ψ : Ω)b−ja−i = aibj〈b, at〉b−ja−i

= 〈aibjbb−ja−i, aibjatb−ja−i〉

= 〈b, atb2〉

= (Ψ : Ω).

Hence (Ψ : Ω) is a normal subgroup of U2np. On the other hand, 〈a2
r+1

〉∩〈b, at〉 = e

and |〈a2
r+1

〉|×|〈b,at〉|

|〈a2r+1 〉∩〈b,at〉
= 2np, which completes our argument.

Lemma 2.2. The group U2np has the following types of subgroup:

1. The cyclic subgroups 〈ai〉 of order 2n
i , where i | 2n;

2. The subgroups 〈ai, b〉 of order 2np
i , where i | 2n;

3. The cyclic subgroups 〈aibj〉, where i | 2n, 2pk ∤ i and j = 1, · · · , p− 1.

Proof. Set H = 〈ai〉 and K = 〈b〉, i | 2n. By presentation of U2np, K is normal and
so HK = 〈ai, b〉 has order 2np

i . The result now follows from Lemma 2.1.

Proposition 2.2. Let n = 2r
∏

1≤i≤s p
αi

i be a positive integer and p be an odd
prime number. The following hold:

1. There is at most one subgroup of order k such that 2 | k, 2r+1 ∤ k and p ∤ k;

2. If p | n, then there exists one subgroup of order k such that pαi+1 | k;

3. There exists p subgroups of order k when p ∤ k and 2r+1 | k;

4. There exists σ(p) subgroups of order k when p | k and pαi+1 ∤ k.

Proof. Our main proof will consider the following parts:

1. Suppose p ∤ 2hv, 1 ≤ h ≤ r, and v | n. Then 〈a
2
r+1−ht

v 〉 is a cyclic group of

order 2hv and the order of subgroups 〈a
2
r+1−hm

v b〉 and 〈a
2
r+1−hm

v , b〉 are not
2hv. We now apply Lemma 2.2 to get the result.
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2. Suppose 2r+1 | k. Since t
v is an odd number, by Lemma 2.1 〈a

t
v bj〉 are cyclic

subgroups of order 2r+1v, 1 ≤ j ≤ p.

3. Consider the subgroups 〈a
2n

2hp 〉 and 〈a
2n

2hp , b〉, where 1 ≤ h ≤ r + 1. Since

there are p − 1 subgroups of type 〈a
2n

2hp bj〉, 1 ≤ j ≤ p− 1, the number of all
subgroups of order k is equal to σ(p)

Hence the result.

Theorem 2.1. Let p be an odd prime and n = 2r
∏

1≤i≤s p
αi

i , where pi’s are
distinct odd primes, αi’s are positive integers and t =

∏

1≤i≤s p
αi

i . Then the number
of all subgroups of the group U2np is given by the following:

1. If p | n then Sub(U2np) = 2τ(2n) + (p− 1)
[

τ(np ) + τ( n
2r )

]

.

2. If p ∤ n then Sub(U2np) = 2τ(2n) + (p− 1) [τ(t)].

Proof. By presentation of the group U2np, it has τ(2n) subgroups contained in 〈a〉.
Since 〈b〉 is a normal subgroup, the group U2np has τ(2n) subgroups of the form
H〈b〉 such that H is a subgroup of 〈a〉. We now assume that p | n. By Lemma 2.2, it
is enough to count the number of subgroups in the form 〈aibj〉, where i | 2n, 2pα ∤ i
and 1 ≤ j ≤ p− 1. Note that 2n has exactly τ( 2n

2r+1 ) = τ( n
2r ) odd divisors and the

number of all divisors of 2n such that 2p | i and 2pα ∤ i is equal to τ(2n2p ) = τ(np ). So

the group U2np has exactly (p−1)[τ(np )+τ( n
2r )] subgroups, when p | n. If p ∤ n, then

the number of subgroups of type 〈aibj〉 is equal to (p− 1)τ( n
2r ) = (p− 1)τ(t).

We are now ready to count the number of normal subgroups of the group U2np.

Lemma 2.3. The normal subgroup of the group U2np has one of the following
forms:

1. All cyclic subgroups 〈ai〉 such that 2 | i | 2n;

2. All subgroups 〈ai, b〉, when i | 2n.

Proof. The first part follows from Lemma 2.1. We apply the presentation of U2np

to prove that 〈ak, b〉 is normal, when k | 2n. Choose the element aibj in U2np. Then
we have four cases for the subgroup aibj〈ak, b〉b−ja−i as follows:

1. k and i are even numbers. In this case 〈aibjakb−ja−i, aibjbb−ja−i〉 = 〈ak, b〉,
as desired.

2. k is even and i is odd. Then, 〈aibjakb−ja−i, aibjbb−ja−i〉 = 〈ak, b〉 which
proves our claim.
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3. k and i are odd numbers. This shows that 〈aibjakb−ja−i, aibjbb−ja−i〉 =
〈akb2j, b〉 = 〈ak, b〉.

4. k is even and i is odd. In this case, 〈aibjakb−ja−i, aibjbb−ja−i〉 = 〈akb−2j , b〉 =
〈ak, b〉.

Note that ak and akbj has the same order, when k is odd number.

Choose ai ∈ U2np, where i is an odd number. Then ai〈aibj〉a−i = 〈aiaibja−i〉 =
〈aib−j〉. Since 〈aib−j〉 6= 〈aibj〉, all subgroups 〈aibj〉, 1 ≤ j ≤ p and i | 2n, are not
normal in U2np.

Theorem 2.2. The number of normal subgroups in the group U2np is given by
NSub(U2np) = τ(2n) + τ(n).

Proof. Let p be an odd prime and n = 2r
∏

1≤i≤s p
αi

i , where pi’s are distinct odd

primes, αi’s are positive integers and t =
∏

1≤i≤s p
αi

i . To prove the theorem, we

apply Lemma 2.3. We now that each subgroup of type 〈ai〉, i is even, is normal.
Since

τ (2
r+1

t)− τ (t) =

τ (2
r+1

p
α1

1 p
α2

2 · · · pαs
s )− τ (p

α1

1 p
α2

2 · · · pαs
s ) = (r + 2)τ (p

α1

1 p
α2

2 · · · pαs
s )− τ (p

α1

1 p
α2

2 · · · pαs
s )

= (r + 1)τ (p
α1

1 p
α2

2 · · · pαs
s )

= τ (2
r
p
α1

1 p
α2

2 · · · pαs
s )

= τ (n),

τ(2r+1t) is the number all divisors of 2n and τ(t) is the number of odd divisors of
2n, τ(2r+1t) − τ(t) = τ(2rt) = τ(n) is the number of even divisors of 2n. On the
other hand, the number of all normal subgroups of type 〈ai, b〉, i | 2n, is equal to
τ(2n). Therefore, NSub(U2np) = τ(2n) + τ(n).
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Abstract. If sk is the number of independent sets of cardinality k in a graph G, then

I(G;x) = s0 + s1x + . . . + sαx
α is the independence polynomial of G [ Gutman, I.

and Harary, F., Generalizations of the matching polynomial, Utilitas Mathematica 24

(1983) 97-106] , where α = α(G) is the size of a maximum independent set. Also the

PI polynomial of a molecular graph G is defined as A+
∑

x|E(G)|−N(e), where N(e) is

the number of edges parallel to e, A = |V (G)|(|V (G)|+ 1)/2 − |E(G)| and summation

goes over all edges of G. In [T. Došlić, A. Loghman and L. Badakhshian, Computing

Topological Indices by Pulling a Few Strings, MATCH Commun. Math. Comput.

Chem. 67 (2012) 173-190], several topological indices for all graphs consisting of at

most three strings are computed. In this paper we compute the PI and independence

polynomials for graphs containing one, two and three strings.

Keywords. independent sets; molecular graph; independence polynomials.

1. Introduction

Let G be a simple molecular graph without directed and multiple edges and
without loops, the vertex and edge-sets of which are represented by V (G) and
E(G), respectively. The set of neighbors of the vertex v will be denoted by NG(v),
if there is no confusion we will simply write N(v) instead of NG(v). The closed
neighborhood of the vertex v is NG[v] = NG(v) ∪ {v}. The degree of the vertex v

will be denoted by d(v) = |NG(v)|. For S ⊂ V (G) the graph G − S denotes the
subgraph of G induced by the vertices V (G) \ S. If e ∈ E(G) then G − e denotes
the graph with vertex set V (G) and edge set E(G) \ {e}.

An edge set X is called independent if there is no vertex in common between any
two edges in X . Also if this set has r elements we call r-edge set to be independent.
Matching polynomial of graph G is defined by the sum of (−1)rq(G, r)xn−2r [10].

Received May 19, 2019; accepted June 21, 2019
2010 Mathematics Subject Classification. Primary 05C69; Secondary 05C80

∗Corresponding author (E-mail: Amirloghman@pnu.ac.ir)

761



762 A. Loghman and M. Khanlar Motlagh

In which q(G, r) is the number of r-edge independent set of G. A vertex set Y is
called independent if there is no edge between any two vertices in Y and if this set
has r elements we call r-vertex independent set. Let sk be the number of r-vertex
independent set of cardinality k in a graph G. The polynomial

I(G;x) =

α(G)
∑

k=0

skx
k = s0 + s1x+ · · ·+ sα(G)x

α(G)

is called the independence polynomial of G, (Gutman and Harary,[5]). We have
s0 = 1 , s1 = |V (G)| , the number of vertices of G and s2 = |E(G)|, the number
of edges of the complement of G. The following results are easily obtained,(see [2]
and [5, 6]). The join of two disjoint graphs G and H is the graph G+H such that
V (G+H) = V (G)∪V (H) and E(G+H) = E(G)∪E(H)∪{v1v2 : v1 ∈ V (G), v2 ∈
V (H)}.

Theorem 1.1. If G and H be two vertex-disjoint graphs. Then:

a). I(G ∪H ;x) = I(G;x)I(H ;x)

b). I(G+H ;x) = I(G;x) + I(H ;x)− 1

In [2], Arocha showed that I(Pn;x) = Fn+1(x), where Fn(x), n ≥ 0, are the so-
called Fibonacci polynomials. Hoede and Li [6] obtained the following recursive
formula for the independence polynomial of a graph.

Theorem 1.2. For any vertex v of a graph G, we have:

I(G;x) = I(G− v;x) + xI(G−NG[v];x)

In [1], Ashrafi, Manoochehrian and Yousefi-Azari defined a new polynomial and they
named the Padmakar-Ivan polynomial. They abbreviated this new polynomial as
PI(G, x), for a molecular graph G and investigate some of the elementary properties
of this polynomial. PI polynomial of G is defined as follow :

PI(G, x) =
∑

f∈E(G)

x|E(G)|−N(f) +
|V (G)|(|V (G)| + 1)

2
− |E(G)|

Where N(f) is the number of edges parallel to f . ( See survey article [8] and [11]
for details)

A thread in a graph G is any maximal connected subgraph induced by a set of
vertices of degree 2 in G. A string in G is a subgraph induced by a thread and the
vertices adjacent to it. A graph G consists of s strings if it can be represented as a
union of s strings so that any two strings have at most two vertices in common [4].
In the extreme case s = 1, G is either a path or a cycle, and this, together with the
number of vertices, gives us complete information on G. In general, the smaller s,
the more information on G is packed into its string decomposition.
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The first attempt on a systematic investigation of topological indices of graphs
consisting of a few strings was made in a paper by Lukovits [9]. Also in [4], Došlić
and co-authors computed explicit formulas for the values of several topological in-
dices (the eccentric connectivity index, the reverse Wiener index, the geometric-
arithmetic index, two connectivity indices and two Zagreb indices) for all graphs
consisting of at most three strings. The ten classes of graphs considered in paper
[4] are shown in Fig 3.1.

Throughout the paper we will consider G1 denotes a path of length k (or Pk+1),
G4 denotes two cycles of length k and m spliced in one vertex, and G5 denotes
three paths of lengths k, m and n spliced together in one of their respective end
vertices. Further, whenever referring to the strings of the same type, we assume that
the lengths increase with the lexicographic order of the corresponding notational
parameter. For example, we assume k ≤ m in G4, G6 and k ≤ m ≤ n in G5, G8

and G10. Similarly, we take m ≤ n in G7 and G9, but do not make any assumptions
about the relationship of either of them with k. Also, sometimes it will be necessary
to refer to the values of the string lengths. In such cases, we put the lengths in the
superscripts in the alphabetic order. For example, G1,1,n

5 denotes a graph of type
(5) whose two path-like strings have length 1. Similarly, G1,m,n

9 denotes a graph
of type (9) whose path-like string is trivial. Our notation is standard and mainly
taken from [3, 7].

2. Independence and PI Polynomials for few Strings

In this section we compute independence and Pi polynomials of graphs Gi, 1 ≤ i ≤
10.

Theorem 2.1. The independence polynomial of Pn, n ≥ 3, can be obtained from
the following equality:

I(Pn;x) =
1

√
1 + 4x

((
1 +

√
1 + 4x

2
)n+2 + (

1−
√
1 + 4x

2
)n+2)

Proof. It is easy to see that I(P0;x) = 1 and I(P1;x) = 1 + x . By Theorem 1.2,
The independence polynomial of Pn, n ≥ 3, satisfies the following equation:

I(Pn;x) = I(Pn−1;x) + xI(Pn−2;x)

In order to solve this recurrence we use a characteristic equation. The characteristic
equation corresponding to the above recurrence is:

λ2 − λ− x = 0

This gives λ = 1±s
2 , where s =

√
1 + 4x. Then we have:

I(Pn;x) = c1(
1 + s

2
)n + c2(

1 − s

2
)n
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By I(P0;x) = 1 and I(P1;x) = 1 + x we can compute c1 and c2 are as follows:

c1 =
1 + 2x+ s

2s
,

c2 =
−1− 2x+ s

2s

And so

I(Pn;x) = (
1 + 2x+ s

2s
)(
1 + s

2
)n + (

−1− 2x+ s

2s
)(
1 − s

2
)n

= (
1

2n+1s
)((2 + 4x+ 2s)(1 + s)n − (2 + 4x− 2s)(1− s)n)

= (
1

2n+1s
)((1 + s)2(1 + s)n − (1− s)2(1 − s)n)

=
1

s
[(
1 + s

2
)n+2 − (

1− s

2
)n+2].

We know G1 = Pk+1 and G2 = Ck then we have:

Corollary 2.1. The independence polynomial of G1, k ≥ 2, is as follows:

I(G1;x) =
1

s
[(
1 + s

2
)k+3 − (

1− s

2
)k+3]

Where s =
√
1 + 4x.

Corollary 2.2. The independence polynomial of G2, k ≥ 3, is as follows:

I(G2;x) =
1

2k
[(1 + s)k + (1− s)k

Where s =
√
1 + 4x.

Proof. By Theorem 1.2, the independence polynomial of Ck satisfies the following
equation:

I(Ck;x) = I(Pk−1;x) + xI(Pk−3;x)

and by Theorem 2.1, we have:

I(Ck;x) = I(Pk−1;x) + xI(Pk−3;x)

=
1

s
[(
1 + s

2
)k+1 − (

1− s

2
)k+1] +

x

s
[(
1 + s

2
)k−1 − (

1− s

2
)k−1]

= (
1

2k+1s
)[((1 + s)k+1 − (1 − s)k+1) + 4x((1 + s)k−1 − (1 − s)k−1)]

= (
1

2k+1s
)[(1 + s)k+1 − (1− s)k+1 + (s2 − 1)((1 + s)k−1 − (1− s)k−1)]

= (
1

2k+1s
)[2s(1 + s)k + 2s(1− s)k] =

1

2k
[(1 + s)k + (1− s)k].
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Figure 3.2, shows some selected points in these graphs. Apply Theorem 1.1 and
Theorem 1.2, for selected vertex u, to compute this polynomial for Gi, 3 ≤ i ≤ 10.

Corollary 2.3. The independence polynomials of Gi, 3 ≤ i ≤ 10, are as follows:

I(Gk,m
3 ;x) =

(Zk+2 −Mk+2)(Zm+2 −Mm+2) + x(Zk+1 −Mk+1)(Zm −Mm)

s2

I(Gk,m
4 ;x) =

(Zk+2 −Mk+2)(Zm+2 −Mm+2) + x(Zk −Mk)(Zm −Mm)

s2

I(Gk,m,n
5 ;x) =

(Zk+2 −Mk+2)(Zm+2 −Mm+2)(Zn+2 −Mn+2)

s3

+
x(Zk+1 −Mk+1)(Zm+1 −Mm+1)(Zn+1 −Mn+1)

s3

I(Gk,m,n
6 ;x) =

(Zk+2 −Mk+2)(Zm+2 −Mm+2)(Zn+2 −Mn+2)

s3

+
x(Zk+1 −Mk+1)(Zm+1 −Mm+1)(Zn −Mn)

s3

I(Gk,m,n
7 ;x) =

(Zn+2 −Mn+2)(Zk+1 −Mk+1)(Zm+2 −Mm+2)

s3

+
x(Zn+2 −Mn+2)(Zk −Mk)(Zm −Mm)

s3

+
x(Zn −Mn)(Zk −Mk)(Zm+2 −Mm+2)

s3

+
x2(Zn −Mn)(Zk−1 −Mk−1)(Zm −Mm)

s3

I(Gk,m,n
8 ;x) =

(Zn+1 −Mn+1)(Zk+1 −Mk+1)(Zm+1 −Mm+1)

s3

+
2x(Zn −Mn)(Zk −Mk)(Zm −Mm)

s3

+
x2(Zn−1 −Mn−1)(Zk−1 −Mk−1)(Zm−1 −Mm−1)

s3

I(Gk,m,n
9 ;x) =

(Zn+2 −Mn+2)(Zk+2 −Mk+2)(Zm+2 −Mm+2)

s3

+
x(Zn −Mn)(Zk+1 −Mk+1)(Zm −Mm)

s3

I(Gk,m,n
10 ;x) =

(Zn+2 −Mn+2)(Zk+2 −Mk+2)(Zm+2 −Mm+2)

s3

+
x(Zn −Mn)(Zk −Mk)(Zm −Mm)

s3

Where s =
√
1 + 4x, Z = 1+s

2 and M = 1−s
2 .

Now, we are ready to compute the PI polynomial of graphs Gi, 1 ≤ i ≤ 10. For
computing the PI polynomial of Gi, it is enough to calculate N(e), for every e ∈
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E(Gi). To calculate N(e), we consider two cases that e is edge of paths or edge of
cycles. We start by quoting known results for paths and cycles.

Lemma 2.1. Let G2 = Ck and G1 = Pk+1 be a cycle and a path of length k.
Then we have:

PI(G1, x) = k(xk−1 − 1) + C(k + 2, 2),

P I(G2, x) =

{
kxk−2 + C(k, 2) k is even

kxk−1 + C(k, 2) k is odd
.

The results for two-parameter graphs depend on the parity of the cycle length(s).

Theorem 2.2. The PI polynomial of G3 and G4 are computed as follows:

PI(G3, x) =

{
kxk+m−1 +mxk+m−2 + C(k +m, 2) m is even

(k +m− 1)xk+m−1 + xm−1 + C(k +m, 2) m is odd
,

PI(G4, x) =







(k +m)xk+m−2 + T k,m are even

mxk+m−2 + (k − 1)xk+m−1 + xk−1 + T k is odd,m is even

kxk+m−2 + (m− 1)xk+m−1 + xm−1 + T m is odd, k is even

(k +m− 2)xk+m−1 + xm−1 + xk−1 + T k,m are odd

.

Where T = (k+m)(k+m−1)
2 .

Proof. Consider G3 to compute its PI polynomial. It is clear that |E(G3)| =
|V (G3)| = k + m. From Figures 3.1, one can see that there are two types of
edges of G3. If e ∈ E(Pk+1) then N(e) = 1 and if e ∈ E(Cm) then N(e) = 1 or 2
(m is odd or even). Now, by according to definition PI polynomial we have:

PI(G3, x) =
∑

f∈E(G3)

x|E(G3)|−N(f) +
|V (G3)|(|V (G3)|+ 1)

2
− |E(G3)|

=
∑

f∈E(Pk+1)

x|E(G3)|−N(f) +
∑

f∈E(Cm)

x|E(G3)|−N(f) + C(k +m, 2)

= kxk+m−1 +

{
mxk+m−2 + C(k +m, 2) m is even

(m− 1)xk+m−1 + xm−1 + C(k +m, 2) m is odd

=

{
kxk+m−1 +mxk+m−2 + C(k +m, 2) m is even

(k +m− 1)xk+m−1 + xm−1 + C(k +m, 2) m is odd
.

To compute PI(G4, x), we consider four separate cases as follow:

PI(G4, x) =
∑

f∈E(G4)

x|E(G4)|−N(f) +
|V (G4)|(|V (G4)|+ 1)

2
− |E(G4)|

=
∑

f∈E(Ck)

x|E(G3)|−N(f) +
∑

f∈E(Cm)

x|E(G3)|−N(f) +
(k +m)(k +m− 1)

2
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=







(k +m)xk+m−2 + T k,m are even

mxk+m−2 + (k − 1)xk+m−1 + xk−1 + T k is odd,m is even

kxk+m−2 + (m− 1)xk+m−1 + xm−1 + T m is odd, k is even

(k +m− 2)xk+m−1 + xm−1 + xk−1 + T k,m are odd

.

This completes the proof.

Finally, we compute the PI polynomial of the graphs with three strings. Using a
similar argument as above, we have:

Theorem 2.3. The PI polynomial of Gi, 5 ≤ i ≤ 10, are computed as follows:

PI(G5, x) = txk+m+n−1 + C(t+ 2, 2)− t

PI(G6, x) =

{
(m+ k)xt−1 + nxt−2 + C(t, 2) n is even

(m+ k)xt−1 + (n− 1)xt−1 + xn−1 + C(t, 2) n is odd
,

PI(G7, x) = PI(G9, x) =

=







(n+m)xt−2 + s n,m are even

mxt−2 + (n− 1)xt−1 + xn−1 + s n is odd,m is even

nxt−2 + (m− 1)xt−1 + xm−1 + s m is odd, n is even

(m+ n− 2)xt−1 + xn−1 + xm−1 + s n,m are odd

.

If k is even then:

PI(G8, x) =







txt−3 + w n,m are even

(m+ k)xt−2 + nxt−1 + w n is odd,m is even

(n+ k)xt−2 +mxt−1 + w m is odd, n is even

(m+ n)xt−2 + kxt−1 + w n,m are odd

,

PI(G10, x) =







txt−2 + w n,m are even

(m+ k)xt−2 + (n− 1)xt−1 + xn−1 + w n is odd,m is even

(n+ k)xt−2 + (m− 1)xt−1 + xm−1 + w m is odd, n is even

kxt−2 + (m+ n− 2)xt−1 + xn−1 + xm−1 + w n,m are odd

.

If k is odd then:

PI(G8, x) =







txt−3 + w n,m are odd

(m+ k)xt−2 + nxt−1 + w m is odd, n is even

(n+ k)xt−2 +mxt−1 + w n is odd,m is even

(m+ n)xt−2 + kxt−1 + w n,m are even

,

PI(G10, x) =







(m+ n)xt−2 + (k − 1)xt−1 + xk−1 + w n,m are even

mxt−2 + (n+ k − 2)xt−1 + xn−1 + xk−1 + w n is odd,m is even

nxt−2 + (m+ k − 2)xt−1 + xm−1 + xk−1w m is odd, n is even

(t− 3)xt−1 + xn−1 + xk−1 + xm−1 + w n,m are odd

.

Where t = k +m+ n, s = kxt−1 + t(t−3)
2 and w = t2−5t+2

2 .
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3. Tables and Figures

Fig. 3.1: Graphs from [4], including at most three strings

Fig. 3.2: Graphs Gi, 3 ≤ i ≤ 10, with vertex u
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Abstract. In this paper we present a design construction from primitive permutation

representations of a finite simple group G. The group G acts primitively on the points

and transitively on the blocks of the design. T he construction has this property that

with some conditions we can obtain t-design for t ≥ 2. We examine our design for

fourteen sporadic simple groups. As a result we found a 2-(176,5,4) design with full

automorphism group M22.

Keywords. primitive permutation; group; finite simple group; automorphism group.

1. Introduction

Designs are interesting combinatorial objects. They have important applications
in coding theory and information theory. Constructing combinatorial designs by
using finite permutation groups is a well-studied subject. Well-known methods
to construct 1-design from primitive permutation representations of finite simple
groups were introduced by Moori and Key [10, 11]. Also in [5] a generalization
of the construction in [10] was described. Here we present a design construction
from primitive representations of a finite simple group. The groups we consider are
primitive on the points and transitive on the blocks of constructed designs. In some
conditions we can construct t-designs for t ≥2. We employ this method on some
simple groups and calculate full automorphism groups of constructed designs.

Sporadic simple groups are interesting family of the finite simple groups. Designs
that are invariant under sporadic groups or have full automorphism group equal
to sporadic groups are very interesting. Some of these designs were presented in
[2, 8, 10, 12, 13]. Here we consider fourteen sporadic groups for our purpose. For
these sporadic groups we obtained some designs for which the full automorphism
groups are the same as the sporadic group or double cover of that. These constructed
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designs from sporadic groups are usually 1-design or 2-design and in some cases
groups act primitively on the points and the blocks of the designs.

In Section 2, first we present some preliminary definitions and lemmas which
will be used in the proof of our main results. In Theorem 2.1 we give our design
construction from primitive permutation representations of a finite simple group.
Then some properties of these design are considered. One advantage of our design
in comparison with the designs presented in [5, 10, 11] is that we can determine
some conditions to construct t-design for t ≥ 2. In Proposition 2.3 these conditions
are determined. Applying this result on some finite simple groups we found some
2-designs from 1-transitive actions of these simple groups. In Section 3 we describ
constructed designs from fourteen sporadic simple groups. Especially we make use
of large sporadic simple groups Co3 and Fi23. These groups are full automorphism
group of the constructed designs which act primitively on the points and the blocks.
In Section 4 we present a 2-(176,5,4) design from Mathieu group M22. With the
best of knowledge, this design is new and group M22 acts primitively on the points
and transitively on the blocks of this design. The full automorphism group of this
design is isomorphic to M22.

2. Design Construction

In this paper all groups are assumed to be finite. Our notations are standard
and for design are from [3] and for group theory and character theory are from
[6, 9]. For the name and structure of finite simple groups we use the Atlas notation
[4]. All computations were done with GAP [14] and Magma [1]. All programs are
accessible from the author upon request.

Let t, λ, v and k be integers such that 1 ≤ t ≤ k ≤ v and λ > 0. Let X be
an v-set. A t-(v, k, λ) design is a pair D = (X,B) such that B is a collection of
k-subsets of X called blocks such that every t-subset of X appears in exactly λ

blocks. A design is called simple if it has no repeated blocks. All designs in this
paper are simple. The design D is called symmetric if the number of points and the
blocks are equal.

An automorphism of D is a permutation f on X such that f(b) ∈ B for each
b ∈ B. A group whose elements are automorphism of D is called an automorphism
group of D. We use Aut(D) to denote the full automorphism group of D.

Let G be a finite permutation group acting on a set X . The orbit of x ∈ X

is defined as O(x) = {xg|g ∈ G} and the stabilizer subgroup of x is Gx = {g ∈
G|xg = x}. It is well-known that |G| = |O(x)|.|Gx|. For g ∈ G, the conjugacy class
of g is cl(g) = {a−1ga|a ∈ G}. It is well-known that |G| = |cl(g)|.|CG(g)| such that
CG(g) = {a ∈ G|ag = ga} is centralizer subgroup of g in G.

Let G be a finite group and H be a subgroup of G. Assume that Ω is the
set of all conjugates of H in G. Let χH = χ(G|H) be the permutation character
corresponding to the action of G on Ω. For g ∈ G if cl(g)∩H = Ø then χH(g) = 0.

In what follows we present some lemmas that are used in constructing design.
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Lemma 2.1. [6, Corollary 1.5A] Let G be a group acting transitively on a set Ω
with at least two points. Then action of G on Ω is primitive if and only if for each
x ∈ Ω, Gx is a maximal subgroup of G.

Lemma 2.2. [7, Corollary 3.1.3] Let G be a finite group and H a subgroup of G
containing a fixed element x. Then the number h of conjugates of H in G containing
x is given by

h = [NG(H) : H ]−1
m∑

i=1

|CG(x)|

|CH(xi)|

where x1, ..., xm are representatives of H-conjugacy classes that fuse to the G-class
cl(x).

Lemma 2.3. [9, Corollary 5.14] Let G be a finite group and H be a subgroup of
G. Let Ω be the set of all conjugates of H in G. Then for all g ∈ G, χH(g) is equal
to the number of points in Ω fixed by g.

Let G be a finite simple group and M be a maximal subgroup of G. Let Ω be
the set of all conjugates of M in G. In the action of G on Ω, the stabilizer subgroup
of each point of Ω is conjugate to M . For g ∈ G let cl(g) ∩ M 6= Ø. Then by

Lemma 2.2 each g ∈ G is in r =
∑m

i=1
|CG(g)|
|CM(gi)|

conjugates of M , where g1, ..., gm

are representatives of the M -conjugacy classes that fuse to the G-class cl(g). Then
by Lemma 2.3, χM (g) = r. Let nX be a conjugacy class of the elements of order n
such that nX ∩M 6= Ø. Consider g ∈ nX . Then g is contained in r conjugates of
M . We define Bg,M = {M1, ...,Mr} such that Mi for i ∈ {1, 2, ..., r}, is a conjugate
of M for which g ∈ Mi. Also set Sg,M = ∩r

i=1Mi. Clearly for g, g′ ∈ nX if the
subgroups Sg,M and Sg′,M are conjugate, then |Sg,M ∩ nX | = |Sg′,M ∩ nX |.

Lemma 2.4. Let G be a finite simple group and M be a maximal subgroup of G.
Let nX be a conjugacy class of the elements of order n such that nX ∩ M 6= Ø.
Then for each g, g′ ∈ nX the following hold:

1. Bg,M = Bg′,M if and only if Sg,M ∩ nX = Sg′,M ∩ nX,

2. if Sg,M ∩ Sg′,M ∩ nX 6= Ø then Sg,M ∩ nX = Sg′,M ∩ nX,

3. |nX|
|Sg,M∩nX| is a positive integer,

4. |M∩nX|
|Sg,M∩nX| is a positive integer.

Proof. (1) Let Bg,M = Bg′,M . Then obviously Sg,M ∩ nX = Sg′,M ∩ nX . Now
suppose Sg,M ∩ nX = Sg′,M ∩ nX . Then g, g′ ∈ Sg,M and g, g′ ∈ Sg′,M . If
Bg,M 6= Bg′,M without lose of generally, there exists M ′, a conjugate of M such that
M ′ ∈ Bg,M but M ′ /∈ Bg′,M . Now since g′ ∈ Sg,M then g′ ∈ M ′ and M ′ ∈ Bg′,M

which is a contradiction. (2) Suppose x ∈ Sg,M ∩ Sg′,M ∩ nX . So x ∈ Sg,M
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and x ∈ Sg′,M . Then we have Bx,M = Bg,M = Bg′,M and by (1) the result is
achieved. (3) By (2) each element of nX is contained in a unique Sg,M ∩ nX .
Then nX = ∪k

i=1(Sgi,M ∩ nX), which is a disjoint union of the elements of class

nX for some Sgi,M for i ∈ {1, 2, ..., k}. Therefore k = |nX|
|Sg,M∩nX| is positive integer.

(4) According to the proof of (3) we have nX = ∪k
i=1(Sgi,M ∩ nX). For each

i ∈ {1, 2, ..., k}, Sgi,M ∩M ∩ nX = Sgi,M ∩ nX or Sgi,M ∩M ∩ nX = Ø. Therefore
nX ∩M = ∪h

j=1(Sgj ,M ∩ nX) such that for each j ∈ {1, 2, ..., h} we have Sgj ,M ∩

M ∩ nX = Sgj ,M ∩ nX hence h = |M∩nX|
Sg,M∩nX is positive integer.

Now we are ready to present a design construction from primitive permutation
representations of a finite simple group.

Theorem 2.1. Let G be a finite simple group. Let M be a maximal subgroup of
G and Ω be the set of all conjugates of M in G. Let nX be a conjugacy class of the
elements of order n such that M ∩nX 6= Ø and g ∈ nX. Set B = {Bx,M |x ∈ nX}.
Then D = (Ω, B) is a,

1− ([G : M ], χM (g),
|M ∩ nX |

|Sg,M ∩ nX |
)

design which has |nX|
|Sg,M∩nX| blocks. Also G is an automorphism group of D which

acts primitively on the points and transitively on the blocks of D.

Proof. In the action of G on Ω, the stabilizer of each point of Ω is conjugate to M .
Since Bg,M is the collection of all conjugates of M that contain g, by Lemma 2.3
the length of a block is χM (g). Clearly |Sg,M ∩nX | ≥ 1. If |Sg,M ∩nX | = 1 then by
Lemma 2.4(1) for every g′, g′′ ∈ nX we have Bg′,M 6= Bg′′,M and so |B| = |nX |. If
|Sg,M ∩nX | = m > 1 then by Lemma 2.4(1) for m elements g1, ..., gm of Sg,M ∩nX

we have Bg1,M = Bg2,M = ... = Bgm,M . So according to the proof of Lemma
2.4(3), nX = ∪k

i=1(Sgi,M ∩ nX) for i ∈ {1, 2, ..., k}, which is a disjoint union of the
elements of Sgi,M ∩ nX . Then for each Sgi,M ∩ nX there exists a unique block.

Hence the number of different blocks is equal to |nX|
|Sg,M∩nX| which by Lemma 2.4(3)

is a positive integer. By the proof of Lemma 2.4(4) M ∩ nX = ∪h
j=1(Sgj ,M ∩ nX)

for j ∈ {1, 2, ..., h}, which is a disjoint union of the elements of Sgj ,M ∩ nX . Then
for each j ∈ {1, 2, ..., h}, subgroup M is in a unique block. Then each point appears

in exactly |M∩nX|
|Sg,M∩nX| blocks which by Lemma 2.4(4) is a positive integer. The group

G acts on the points and the blocks with conjugation. Since M is maximal then
by Lemma 2.1, G acts primitively on the points. Each block is corresponding to an
element of nX and since G is transitive on nX then is transitive on the blocks.

We denote the constructed design in Theorem 2.1 by D(G,M, nX). The design
D(G,M, nX) is not necessary symmetric and the action of G on the blocks is not
necessary primitive. In the following propositions we consider some conditions to
achieve these properties.
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Proposition 2.1. Let G be a finite simple group. Let M be a maximal subgroup
of G and Ω be the set of all conjugates of M in G. Let nX be a conjugacy class of
the elements of order n such that M ∩ nX 6= Ø and g ∈ nX. If CG(g) is maximal
subgroup then the action of G on the blocks of D(G,M, nX) is primitive.

Proof. Since CG(g) is maximal, by Lemma 2.1 the action of G on right cosets of
CG(g) is primitive. Each block is corresponding to an element of nX and respec-
tively to a right coset of CG(g). Then the action of G on the blocks of D(G,M, nX)
is primitive.

Let g ∈ nX and consider D(G,M, nX). According to the definition, for every
x ∈ CG(g) we have Bg,M = Bgx,M = (Bg,M )x. Therefore CG(g) is a subgroup of
stabilizer of the block Bg,M .

Proposition 2.2. Let G be a finite simple group. Let M be a maximal subgroup
of G and Ω be the set of all conjugates of M in G. Let nX be a conjugacy class of
the elements of order n such that M ∩ nX 6= Ø and g ∈ nX. Then the following
hold,

1. if CG(g) is conjugate to M and |Sg,M ∩ nX | = 1 then D(G,M, nX) is sym-
metric and G acts on the blocks primitively,

2. if |Sg,M ∩ nX |.|CG(g)| = |M | then D(G,M, nX) is symmetric.

Proof. (1) The number of points and blocks inD(G,M, nX) are |G|
|M| and

|nX|
|Sg,M∩nX| =

|G|
|Sg,M∩nX|.|CG(g)| , respectively. Since CG(g) is conjugate to M then |CG(g)| = |M |

and the number of points and blocks are equal. Also by Proposition 2.1 the action
of G on blocks is primitive. (2) In this case clearly the number of points and blocks
are equal and D(G,M, nX) is symmetric.

In Table 2.1, 2.2 and 2.3 the columns from left are: number of row, the con-
sidered finite simple group G, maximal subgroup M of G, a conjugacy class of G,
properties of the constructed design from G, number of the blocks of the design,
full automorphism group of the design and symmetric property of the design.

Example 2.1. In Table 2.1 D(G,M, nX) for some finite simple groups was constructed.

By [4] in L2(11) centralizer of an element of class 2A is maximal subgroup D12. The

design D(L2(11), D12, 2A) in row 3 of the table is a 1-(55,7,7) design with 55 blocks then

is symmetric and L2(11) acts on the blocks primitively. This design is an example such

that satisfies Lemma 2.2(1). In G2(3) for maximal subgroup M = (31+2 × 32) : 2S4,

consider D(G2(3),M, 3A). Let g ∈ 3A, in this case |Sg,M ∩ 3A| = 2 and |CG2(3)(g)| =
|M|
2

then D(G2(3),M, 3A) in row 2 of the table is a 1-(364,13,13) symmetric design. This is

an example that satisfies Lemma 2.2(2).

Always t-designs with t ≥ 2 are interesting. In two following propositions we
consider some conditions to construct t-designs for t ≥ 2.
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Table 2.1: D(G,M,nX) for some finite simple groups

No. G M nX D(G,M,nX) No. Blocks Aut(D) Symm
1 A9 L2(8) : 3 2B 1-(120,8,9) 135 A9 NO

2 G2(3) (31+2 × 32) : 2S4 3A 1-(364,13,13) 364 G2(3) YES
3 L2(11) D12 2A 1-(55,7,7) 55 L2(11) : 2 YES

4 S6(2) 2.[26] : (S3 × S3) 2B 1-(315,43,43) 315 S6(2) YES

5 U5(2) (21+6 × 31+2) : 2A4 2A 1-(165,37,37) 165 U5(2) YES

6 U3(3) 42 : S3 3B 1-(63,3,16) 336 S6(2) NO

7 O+

8
(2) (3 × U4(2)) : 2 6A 1-(1120,8,360) 50400 O+

8
(2) NO

8 O+

8
(2) (3 × U4(2)) : 2 3A 1-(1120,40,40) 1120 O+

8
(3) : 4 YES

Proposition 2.3. Let G be a finite simple group, M be a maximal subgroup of G
and Ω be the set of all conjugates of M in G. Let nX be a conjugacy class of the
elements of order n such that M ∩nX 6= Ø and g ∈ nX. Let m ∈ {1, 2, ..., χM(g)}.
If intersection of every m different conjugates of M has f ≥ 1 elements of the class
nX then D(G,M, nX) is an m− ([G : M ], χM (g), f

|Sg,M∩nX|) design. Also G is an

automorphism group of D(G,M, nX) such that acts primitively on the points and
transitively on the blocks of D(G,M, nX).

Proof. Consider an m-set of different conjugates of M , set S intersection of these
subgroups. By the proof of Lemma 2.4(4) we have this partition S ∩ nX =
∪h
j=1(Sgj ,M ∩ nX). Therefore for each j ∈ {1, 2, ..., h} these m conjugates of

M are in a unique block. Then every m conjugates of M appears in exactly
|S∩nX|

|Sg,M∩nX| =
f

|Sg,M∩nX| blocks and result is concluded.

Example 2.2. In Table 2.2 we consider some finite simple groups in their 1-transitively

action such that satisfy conditions of Proposition 2.3.

Table 2.2: Constructed D(G,M,nX) from Proposition 2.3

No. G M nX D(G,M,nX) No. Blocks Aut(D) Symm

1 S4(3) 31+2 : 2A4 3A 2-(40,13,4) 40 L4(3) : 2 YES

2 S4(4) 26 : (3 × A5) 2A 2-(85,21,5) 85 L4(4) : 2 YES

3 S4(5) 51+2 : 4A5 5A 2-(156,31,6) 156 L4(5) : 4 YES
4 L2(8) D18 2A 2-(28,4,1) 63 L2(8) : 3 NO
5 L2(16) D34 2A 2-(120,8,1) 255 L2(16) : 4 NO

Corollary 2.1. Let G be a finite simple group. Let M be a maximal subgroup
of G and Ω be the set of all conjugates of M in G. Let nX be a conjugacy class
of the elements of order n such that M ∩ nX 6= Ø and g ∈ nX. For t > 1 let
the action of G on Ω be t-transitive. For m ∈ {1, 2, ..., t} consider an m-set of
different conjugates of M and set S intersection of these subgroups. If S 6= 〈1〉 and
|S ∩ nX | = k ≥ 1 then D(G,M, nX) is an m− ([G : M ], χM (g), k

|Sg,M∩nX| ) design
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and G is an automorphism group of D(G,M, nX) that acts t-transitively on the
points and transitively on the blocks.

Proof. Since G is t-transitive on Ω then intersection of any m-set of different con-
jugates of M is conjugate to S and result is concluded by Proposition 2.3.

Example 2.3. In Table 2.3 we consider some finite simple groups in their 2-transitively

action such that satisfy conditions of Corollary 2.1.

Table 2.3: Constructed D(G,M,nX) from Corollary 2.1

No. G M nX D(G,M,nX) No. Blocks Aut(D) Symm
1 L2(11) A5 2A 2-(11,3,3) 55 L2(11) NO

2 L3(3) 32 : 2S4 2A 2-(13,5,15) 117 L3(3) NO

3 L3(3) 32 : 2S4 3A 2-(13,4,1) 13 L3(3) YES

4 L3(5) 52 : GL2(5) 2A 2-(31,7,35) 775 L3(5) NO

5 L3(5) 52 : GL2(5) 5A 2-(31,6,1) 31 L3(5) YES
6 S6(2) U4(2) : 2 2A 2-(28,16,20) 63 S6(2) NO

3. Constructed Designs from Sporadic Groups

In this section we construct some designs from fourteen sporadic simple groups.
For each considered sporadic group, we present one or two designs that their full
automorphism groups are as the same sporadic group. These results are presented
in Table 3.1. For information on the sporadic simple groups and their maximal
subgroups we use Atlas [4].

In Table 3.1 the columns from left are: number of row, group G, maximal
subgroup M of G, a conjugacy class of G, properties of the constructed design from
G, number of the blocks of the design, full automorphism group of the design and
symmetric property of the design.

For instance we study properties of the designs in row 15 and 18 of Table 3.1.

The Conway group Co3 has order 495766656000 = 210.37.53.7.11.23. The group
Co3 has forty two conjugacy classes of elements and fourteen conjugacy classes of
maximal subgroups. The centralizer subgroup of an elements of class 2A in Co3 is
maximal subgroup isomorphic to 2.S6(2). The group McL : 2 is maximal subgroup
of index 276 and Co3 acts 2-transitive on conjugates of McL : 2. We consider design
D = D(Co3,McL : 2, 2A). Intersection of every two different maximal subgroups
conjugate to McL : 2 have 2835 elements of class 2A therefore by Corollary 2.1 D

is a 2-(276,36,2835) design. The design D has 170775 blocks and since centralizer
of an element of the class 2A is maximal hence by Proposition 2.1 group Co3 acts
primitively on the blocks of this design. Also Co3 acts 2-transitively on the points
of D. The full automorphism group of D is Co3.
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Table 3.1: Designs constructed from some sporadic groups

No. G M nX D(M11,M, nX) No. Blocks Aut(D) Symm
1 M11 L2(11) 2A 3-(12,4,3) 165 M11 NO
2 M11 2.S4 2A 1-(165,13,13) 165 M11 YES
3 M12 M9 : S3 3A 1-(220,4,4) 220 M12 YES
4 M22 A7 4B 1-(176,4,315) 13860 M22 NO
5 M23 M22 3A 4-(23,5,16) 28336 M23 NO
6 M23 L3(4) : 2 2A 1-(253,29,435) 3795 M23 NO
7 J1 2 × A5 2A 1-(1463,31,31) 1463 J1 YES
8 J1 D6 × D10 2A 1-(2926,46,23) 1463 J1 NO
9 J3 L2(19) 2A 1-(14688,96,171) 26163 J3 NO
10 HS U3(5) : 2 2B 2-(176,12,66) 15400 HS NO
11 McL M22 2A 1-(2025,105,1155) 22275 McL NO

12 McL 24 : A7 2A 1-(22275,435,435) 22275 McL YES

13 He 26 : 3.S6 2A 1-(29155,651,558) 24990 He NO
14 Suz U5(2) 3A 1-(32760,252,176) 22880 Suz : 2 NO
15 Co3 McL : 2 2A 2-(276,36,2835) 170775 Co3 NO
16 Fi22 O7(3) 2A 1-(14080,1408,351) 3510 Fi22 NO
17 Co2 U6(2) : 2 2A 1-(2300,284,7029) 56925 Co2 NO
18 Fi23 2.F i22 2A 1-(31671,3511,3511) 31671 Fi23 YES

The Fischer sporadic simple group Fi23 has order 4089470473293004800 =
218.313.52.7.11.13.17.23. The group Fi23 has ninety eight conjugacy classes of el-
ements and fourteen conjugacy classes of maximal subgroups. The group 2.F i22
is maximal subgroup of index 31671 and also is centralizer subgroup of an ele-
ment of the class 2A. By Proposition 2.2(1) D(Fi23, 2.F i22, 2A) is a symmetric
1−(31671, 3511, 3511) design. The group Fi23 acts primitively on the points and the
blocks of D(Fi23, 2.F i22, 2A). The full automorphism group of D(Fi23, 2.F i22, 2A)
is isomorphic to Fi23.

4. A 2-design invariant under M22

The Mathieu sporadic group M22 has order 443520 = 27.32.5.7.11. The group
M22 has twelve conjugacy classes of elements and eight conjugacy classes of maximal
subgroups [4].

Consider permutation representation of M22 on 176 conjugates of maximal sub-
group A7. The group M22 has one conjugacy class of elements of order 3. The
centralizer of an element of the class 3A is isomorphic to 3×A4. Each elements of
class 3A is contained in 5 conjugates of maximal subgroup A7.

Proposition 4.1. The D(M22, A7, 3A) is a 2-(176,5,4) design with full automor-
phism group isomorphic to M22.

Proof. Let M1 and M2 be two different maximal subgroups isomorphic to A7. Then
M1 ∩M2 is isomorphic to 32:4 or S4. Both subgroups 32:4 and S4 have 8 elements
of order 3. Also for each g ∈ 3A, Sg,A7

is subgroup of order 3. Hence by Proposition
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2.3 D(M22, A7, 3A) is a 2-(176,5,4) design. The automorphism group is calculated
by GAP [14].

Acknowledgement. The author thanks Dr. Ebrahim Ghorbani that computed
automorphism groups of the designs from Co3 and Fi23 at Math. Computing Center
of IPM (http://math.ipm.ac.ir/mcc).
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Abstract. A set W of vertices in a graph G is called a resolving set for G if for every
pair of distinct vertices u and v of G, there exists a vertex w ∈ W such that the distance
between u and w is different from the distance between v and w. The cardinality of
a minimum resolving set is called the metric dimension of G, denoted by β(G). A
resolving set W for G is fault-tolerant if W \ {w} is also a resolving set, for each w

in W . The fault-tolerant metric dimension of G is the size of a smallest fault-tolerant
resolving set for G, denoted by β′(G). In this paper, we study the fault-tolerant metric
dimension of a family of circulant graphs Xn,3 with connection set C = {1, n

2
, n − 1},

when n is even and circulant graphs Xn,4 with connection set C = {±1,±2}.
Keywords. Circulant graphs; resolving set; fault-tolerant metric dimension.

1. Introduction

The metric dimension problem was introduced independently by Slater [15] and
Harary and Melter [8]. The metric dimension arises in many diverse areas, including
telecommunications [3], connected joints in graphs and chemistry [4], the robot
navigation [12] and geographical routing protocols [13], etc.

For a connected graph G with vertex set V (G) and edge set E(G), the dis-
tance between two vertices u and v in V (G) is the number of edges in a short-
est path connecting them, and is denoted by d(u, v). Consider an ordered set
W = {w1, w2, · · · , wk} ⊆ V (G). For each v ∈ V (G) the code of v with respect
to W is (d(v, w1), d(v, w2), · · · , d(v, wk)), denoted by cW (v). The set W is called a
resolving set for G, if all vertices of G have distinct codes. The minimum cardinality
of a resolving set of G is called the metric dimension of G and is denoted by β(G).
A resolving set of order β(G) is called a metric basis of G [2].
Elements of bases were referred to as sensors in an application given in [5]. If one
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of the sensors does not work properly, we will not have enough information to deal
with the intruder (fire, thief etc). In order to overcome this kind of problems, con-
cept of fault-tolerant metric dimension was presented in [9]. Fault-tolerant resolving
sets provide correct information even when one of the sensors is not working. A
resolving set W of a graph G is fault-tolerant if W \ {w} is also a resolving set, for
each w in W . The fault-tolerant metric dimension of G is the minimum cardinality
of a fault-tolerant resolving set, denoted by β′(G). A fault-tolerant resolving set of
order β′(G) is called a fault-tolerant metric basis.
The circulant graph is a graph with vertex set Zn, an additive group of integers mod-
ulo n, and two vertices labeled i and j are adjacent if and only if i− j (mod n) ∈ C,
where C ⊂ Zn, which is called connection set, has the property that C = −C and
0 /∈ C. The circulant graph is denoted by Xn,∆ where ∆ = |C|.
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there is a
bijective mapping f from V1 to V2 such that uv ∈ E1 if and only if f(u)f(v) ∈ E2.
An automorphism of a graph is an isomorphism from the graph to itself. The set
of all automorphisms of a graph, G, forms a group, denoted by Aut(G). It is well
known that, if G is a circulant graph, then Zn is a subgroup of Aut(G) [7].
In this paper, we consider a family of circulant graphs Xn,3 with connection set
C = {1, n2 , n−1}, when n is even and prove that the fault-tolerant metric dimension
of this family of graphs is independent of choice of n by showing that β′(Xn,3) = 4,
for all n ≥ 4 and n ≡ 0 (mod 4), in Theorem 2.2, and β′(Xn,3) ≤ 6, for all n ≥ 10
and n ≡ 2 (mod 4), in Theorem 2.4. We also consider a family of circulant graphs
Xn,4 with connection set C = {±1,±2} and prove that the fault-tolerant metric
dimension of this family of graphs is independent of choice of n by showing that
β′(Xn,4) = 4, for all n ≥ 10 and n ≡ 2(mod4), in Theorem 3.1.

2. Fault-Tolerant Metric Dimension Of Circulant Graphs Xn,3

Salman et al. [14] characterized the metric dimension for family of circulant graphs
Xn,3 with connection set C = {1, n2 , n − 1} for even n. Now we obtain the fault-
tolerant metric dimension of this family of graphs.

Theorem 2.1. [14, Theorem 2.2] Let n be an integer and n ≡ 0 (mod 4). If
k = n

4 , then for any 1 ≤ i ≤ k the set W = {vi, vi+1, vi+2k} is a resolving set and
hence β(Xn,3) = 3.

The following lemma, gave a new family of resolving set of Xn,3 of size 3, where
n ≡ 0 (mod 4).

Lemma 2.1. Let n be an integer, n ≡ 0 (mod 4) and k = n
4 . Then the set W =

{vi, vi+1, vi+2k+1} is a resolving set of Xn,3, for any 1 ≤ i ≤ k.

Proof. Let W = {vi, vi+1, vi+2k+1} for fixed i; 0 ≤ i ≤ k where k = n
4 . We compute

the codes of all v ∈ V (Xn,3) \W . We have

cW (vi+k) = (k, k − 1, k), cW (vi+k+1) = (k, k, k), cW (vi+3k) = (k, k, k − 1),
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cW (vi+3k+1) = (k − 1, k, k), cW (vi+2k) = (1, 2, 1).

The codes of other vertices are listed in Table 1. By a simple computing these codes
are distinct and hence W is a resolving set of Xn,3.

Table 1
Shortest paths between vi vi+1 vi+2k+1

vi+j+1(1 ≤ j ≤ k − 2) j + 1 j j + 1
vi+k+j(2 ≤ j ≤ k − 1) k − j + 1 k − j + 2 k − j + 1
vi+2k+j(2 ≤ j ≤ k − 1) j j − 1 j − 1
vi+3k+j(2 ≤ j ≤ k − 1) k − j k − j + 1 k − j + 2

Theorem 2.2. For all n ≥ 4 and n ≡ 0 (mod 4), β′(Xn,3) = 4.

Proof. From the definition of fault-tolerant metric dimension it can be seen that
β′(G) ≥ β(G)+1 [11]. This implies that β′(Xn,3) ≥ 4 since β(Xn,3) = 3 by Theorem
2.1.

Now for the lower bound, Let W ′ = {vi, vi+1, vi+2k, vi+2k+1} for fixed i; 0 ≤ i ≤
k where k = n

4 . We will show that for each x ∈ W ′, the set W ′\{x} is a resolving set
forXn,3. At first note that Zn is subgroup of Aut(Xn,3) and if f = (vo, v1, · · · , vn−1)
is a cycle of order n, then Zn

∼=< f >. In addition f j(vi) = vi+j . Now we consider
the following cases:

Case 1. Suppose that x = vi. We have

f j({vi+1, vi+2k, vi+2k+1}) = {vj+i+1, vj+i+2k , vj+i+2k+1}

. If j = 2k, then

f j({vi+1, vi+2k, vi+2k+1}) = {vi+2k+1, vi, vi+1},

and

f j({vi+2k+1, vi, vi+1}) = {vi+1, vi+2k, vi+2k+1}.

By Lemma 2.1, {vi, vi+1, vi+2k+1} is a resolving set for Xn,3 and since automor-
phisms of graphs preserves the properties of the graph, we conclude that W ′ \{x} =
{vi+1, vi+2k, vi+2k+1} is a resolving set for Xn,3.

Case 2. Let x = vi+1. We have

f j({vi, vi+1, vi+2k}) = {vj+i, vj+i+1, vj+i+2k}.

If j = 2k, then

f j({vi, vi+1, vi+2k}) = {vi+2k, vi+2k+1, vi}
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. Hence By the same argument of Case 1, the set W ′ \ {x} = {vi+2k, vi+2k+1, vi} is
a resolving set for Xn,3.

Case 3. If x = vi+2k, then according to the Lemma 2.1, W ′ \ {x} is a resolving
set for Xn,3.

Case 4. If x = vi+2k+1, then according to the Theorem 2.1, W ′ \ {x} is a
resolving set for Xn,3.

Therefore, W ′ is the fault-tolerant resolving set for this family of graphs. Thus
β′(Xn,3) ≤ 4, for all n ≥ 10 and n ≡ 2 (mod 4). This completes the proof.

Now we study the fault-tolerant metric dimension of Xn,3 in the case n ≡ 2 (mod 4).

Theorem 2.3. [14, Theorem 2.5] Let n ≥ 6 be an integer and n ≡ 2 (mod 4). If
k = n−2

4 , then W = {vi, vi+1, vi+2k, vi+2k+1} is a resolving set for Xn,3 for any
1 ≤ i ≤ k. In addition β(Xn,3) = 4.

In the following lemma we gave some resolving sets of size 3 for Xn,3.

Lemma 2.2. Let n ≥ 10 be an integer and n ≡ 2 (mod 4). For k = n−2
4 and any

1 ≤ i ≤ k the following sets are resolving sets of size 4 of Xn,3,
i) W1 = {vi, vi+1, vi+2k+1, vi+2k+2};
ii) W2 = {vi+1, vi+2k, vi+2k+2, vi+4k+1};
iii)W3 = {vi, vi+2k+1, vi+2k+2, vi+4k+1}.

Proof. Suppose that k = n−2
4 and W = {vi, vi+1, vi+2k+1, vi+2k+2} where 0 ≤ i ≤ k

. We compute cW1
(v) for v ∈ V (Xn,3) \W1. We have

cW1
(vi+k) = (k, k − 1, k + 1, k), cW1

(vi+k+1) = (k + 1, k, k, k + 1),

cW1
(vi+2k) = (2, 3, 1, 2), cW1

(vi+3k+2) = (k, k + 1, k + 1, k).

The codes of other vertices respect to W1, are shown in Table 2. It is not difficult
to see that all codes are distinct and hence W1 is a resolving set of Xn,3.

Table 2
Shortest paths between vi vi+1 vi+2k+1 vi+2k+2

vi+j+1(1 ≤ j ≤ k − 2) j + 1 j j + 2 j + 1
vi+k+j(2 ≤ j ≤ k − 1 k − j + 2 k − j + 3 k − j + 1 k − j + 2
vi+2k+j+1(2 ≤ j ≤ k) j + 1 j j j − 1
vi+3k+j+1(2 ≤ j ≤ k) k − j + 1 k − j + 2 k − j + 2 k − j + 3

For W2 we have,

cW2
(vi+k) = (k − 1, k, k, k + 1), cW2

(vi+k+1) = (k, k − 1, k + 1, k),
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Table 3
Shortest paths between vi+1 vi+2k vi+2k+2 vi+4k+1

vi+j+1(1 ≤ j ≤ k − 2) j j + 3 j + 1 j + 2
vi+k+j(2 ≤ j ≤ k − 1 k − j + 3 k − j k − j + 2 k − j + 1
vi+2k+j+1(2 ≤ j ≤ k) j j + 1 j − 1 j

vi+3k+j+1(2 ≤ j ≤ k − 1) k − j + 2 k − j + 1 k − j + 3 k − j

cW2
(vi+2k) = (2, 1, 1, 2), cW2

(vi+3k+2) = (k + 1, k, k, k − 1),

and the codes of other vertices are listed Table 3. These codes are distinct and we
conclude that W2 is a resolving set for Xn,3.

Similarly for W3, we have

cW3
(v1) = (1, 2, 1, 2), cW3

(vi+k) = (k, k+1, k, k+1), cW3
(vi+k+1) = (k+1, k, k+1, k),

cW3
(vi+2k) = (2, 1, 2, 1), cW3

(vi+3k+2) = (k, k + 1, k, k − 1),

and for other vertices, the codes are listed in Table 4. By these codes, we conclude
that W3 is a resolving set for Xn,3.

Table 4
Shortest paths between vi vi+2k+1 vi+2k+2 vi+4k+1

vi+j+1(1 ≤ j ≤ k − 2) j + 1 j + 2 j + 1 j + 2
vi+k+j(2 ≤ j ≤ k − 1) k − j + 2 k − j + 1 k − j + 2 k − j + 1
vi+2k+j+1(2 ≤ j ≤ k) j + 1 j j − 1 j

vi+3k+j+1(2 ≤ j ≤ k − 1) k − j + 1 k − j + 2 k − j + 3 k − j

Theorem 2.4. For all n ≥ 6 and n ≡ 2 (mod 4), β′(Xn,3) ≤ 6.

Proof. For n = 6, X6,3 ≃ K3,3. This implies that β′(X6,3) = 6 since β′(Km,n) =
m+ n [6, Proposition 1].
Now suppose that n ≥ 10. Let k = n−2

4 . For a fixed i, where 0 ≤ i ≤ k, consider
the set

W = {vi, vi+1, vi+2k, vi+2k+1, vi+2k+2, vi+4k+1}.

Since W contains the set W1 of Theorem 2.3 (i), so W is a resolving set for Xn,3.
Now we will show that for each x ∈ W ′, the set W ′ \ {x} is a resolving set for Xn,3.
We have the following cases:

Case 1. If x ∈ {vi, vi+2k+1}, then W \ {x} contains a set W2 listed in Lemma
2.2 (ii). Thus W \ {x} is a resolving set for Xn,3.

Case 2. If x = vi+1, then W \ {x} contains a set W3 listed in Lemma 2.2 (iii).
So W \ {x} is a resolving set for Xn,3.
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Case 3. If x = vi+2k, then W \ {x} contains a set W listed in Lemma 2.2 (i).
Hence W \ {x} is a resolving set for Xn,3.

Case 4. If x ∈ {vi+2k+2, vi+4k+1}, then W \ {x} contains a set W ′ listed in
Theorem 2.3. Hence W \ {x} is a resolving set for Xn,3.

Therefore, W is the fault-tolerant resolving set for this family of graphs. Thus
β′(Xn,3) ≤ 6, for all n ≥ 10 and n ≡ 2 (mod 4).

3. Fault-Tolerant Metric Dimension Of Circulant Graphs Xn,4

In this section consider Xn,4 with connection set C = {±1,±2}. In [1], Borchert
and Gosselin showed that dim(Xn,4) = 4 if n = 1 (mod 4) and dim(Xn,4) = 3 oth-
erwise. Now we study the fault-tolerant metric dimension of this family of graphs
in the case n ≡ 2 (mod 4).

In the following lemma we obtain some resolving sets for Xn,4.

Lemma 3.1. Let n ≥ 10 and n ≡ 2 (mod 4). For k = n−2
4 and any 1 ≤ i ≤ k, the

following sets are resolving sets for Xn,4,
i)W1 = {vi, vi+1, vi+2};
ii)W2 = {vi, vi+1, vi+3};
iii)W3 = {vi, vi+2, vi+3}.

Proof. The set W1 is a resolving set by [10, Theorem 5]. For the parts (ii) and
(iii), we prove that the sets W2 and W3 are resolving sets of Xn,4 for i = 0. The
remaining cases, obtained by this fact that Zn is a subgraph of Aut(Xn,4). By a
simple computing we can obtain the codes of vertices respect to W2 and W3. These
codes listed in Table 5 and Table 6. Clearly these codes are distinct and hence the
sets W2 and W3 are resolving sets.

Table 5
Shortest paths between v0 v1 v3

v2 1 1 1

vj (4 ≤ j ≤ n
2 ) ⌈ j

2⌉ ⌈ j−1
2 ⌉ ⌈ j−3

2 ⌉
vn

2
+1 ⌈n−2

4 ⌉ ⌈n
4 ⌉ ⌈n−4

4 ⌉

vn

2
+2 ⌊n−2

4 ⌋ ⌈n−2
4 ⌉ ⌈n−2

4 ⌉

vn

2
+3 ⌈n−6

4 ⌉ ⌈n−4
4 ⌉ ⌈n

4 ⌉

vj (n2 + 4 ≤ j ≤ n− 1) ⌈n−j
2 ⌉ ⌊n−j+2

2 ⌋ ⌊n−j+4
2 ⌋

Theorem 3.1. For n ≥ 10 and n ≡ 2 (mod 4), β′(Xn,4) = 4.
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Table 6
Shortest paths between v0 v2 v3

v1 1 1 1

vj (4 ≤ j ≤ n
2 ) ⌈ j

2⌉ ⌈ j−2
2 ⌉ ⌈ j−3

2 ⌉

vn

2
+1 ⌈n−2

4 ⌉ ⌊n
4 ⌋ ⌊n−4

4 ⌋

vn

2
+2 ⌊n−2

4 ⌋ ⌈n
4 ⌉ ⌈n−2

4 ⌉

vn

2
+3 ⌈n−6

4 ⌉ ⌈n−4
4 ⌉ ⌈n

4 ⌉

vj (n2 + 4 ≤ j ≤ n− 1) ⌈n−j
2 ⌉ ⌊n−j+2

2 ⌋ ⌊n−j+4
2 ⌋

Proof. From the definition of fault-tolerant metric dimension it can be seen that
β′(G) ≥ β(G) + 1 [11]. This implies that β′(Xn,4) ≥ 4 since β(Xn,4) = 3 [1].
Now for the lower bound, consider the set W ′ = {v1, v2, v3, v4}. Since W contains
the set W1 listed in Theorem 3.1, so W is a resolving set for Xn,4. Now we will show
that for each x ∈ W , the set W \ {x} is a resolving set for Xn,4. If x ∈ {v1, v4},
then W \ {x} is a resolving set by setting i = 1 and i = 2 in part (i) of Lemma
3.1. If x = v2, then by setting i = 1 in part (iii) of Lemma 3.1, we conclude that
W \ {x} is a resolving set. Finally {v1, v2, v4} is a resolving set of Xn,4 by Lemma
3.1 (ii). Therefore β′(Xn,4) = 4
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Abstract. A dominating set of a graph G = (V,E) is a subset D of V such that every

vertex not in D is adjacent to at least one vertex in D. A dominating set D is a total

dominating set, if every vertex in V is adjacent to at least one vertex in D. The set P

is said to be an open packing set if no two vertices of P have a common neighbor in

G. In this paper, we obtain domination number, total domination number and open

packing number of the molecular graph of a new type of graphene named CorCor that

is a 2-dimensional carbon network.

Keywords. Graph; vertex; dominating set; domination number; total domination

number.

1. Introduction

Throughout this paper, all graphs are assumed to be simple connected, undi-
rected with n ≥ 1 vertices and m edges. Let G = (V,E) be a graph with the vertex
set V = V (G) and the edge set E = E(G). By the neighborhood of a vertex v

of G, we mean the set NG(v) = N(v) = {u ∈ V : uv ∈ E}. The closed neigh-
borhood of vertex v is NG[v] = N(v) ∪ v. For S ⊆ V , the neighborhood of S is
N(S) = ∪v∈SN(v) and the closed neighborhood of S is N [S] = N(S) ∪ S.

A set P of vertices of G is an open packing of G, if the open neighborhoods
of the vertices of P are pairwise disjoint in G. The open packing number of G,
denoted by ρ0(G), is the maximum cardinality among all open packings of G.

A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) −D has
a neighbor in D. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. A subset D ⊆ V (G) is a total dominating
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set, abbreviated TDS, of G if every vertex of G has a neighbor in D. The total
domination number of G, denoted by γt(G) and introduced by Cockayne, Dawes,
and Hedetniemi [2],[4].

Open packing is the natural dual object of total dominating sets, and so ρ0(G) ≤
γt(G) holds for every graph G, [5]. Moreover, if there exists a total dominating set
D of G and D is also an open packing, then ρ0(G) = γt(G) = |D|.

Molecules arranging themselves into predictable patterns on silicon chips could
lead to microprocessors with much smaller circuit elements. Mathematically, as-
sembling in predictable patterns is equivalent to packing in graphs. An H-packing
of a graph G is a set of vertex disjoint subgraphs of G, each of which is isomorphic
to a fixed graph H . From the optimization point of view, maximum H-packing
problem is to find the maximum number of vertex disjoint copies of H in G called
the packing number denoted by λ(G,H). For our convenience λ(G,H) is some-
times represented as λ. An H-packing in G is called perfect if it covers all vertices
of G. If H is the complete graph K2, the maximum H-packing problem becomes
the familiar maximum matching problem. Structures realized by arrangements of
regular hexagons in the plane are of interest in the chemistry of benzenoid hydro-
carbons, where perfect matchings correspond to kekule structures and feature in the
calculation of molecular energies associated with benzenoid hydrocarbon molecules.
H-Packing, is of practical interest in the areas of scheduling, wireless sensor track-
ing, wiring-board design, code optimization and many others. A benzenoid system
is a geometric collection of congruent regular hexagons arranged in the plane, so
that two hexagons are either disjoint or have a common edge. It follows from the
conditions of regularity and congruence that benzenoid systems are subsets (with
1-connected interior) of a regular tiling of the plane by hexagonal tiles. Benzenoid
systems are of considerable importance in theoretical chemistry because they are
the natural graph representation of benzenoid hydrocarbons. In each benzenoid
system as a graph, we assign vertices of hexagons as the vertices of the graph, and
the sides of hexagons as the edges of the graph. Benzenoid graph is simple, plane,
and bipartite. A vertex of a hexagonal system belongs to, atmost, three hexagons.
A vertex shared by three hexagons is called an internal vertex, other vertices, it
called external vertex.

Domination and its variations in graphs have attracted considerable atten-
tion, including a few chemically relevant applications, [6], [7] and [9]. A new 2-
dimensional carbon network (benzenoid system), named Coronene of coronene (
CorCor for short) was introduced by M. V. Diudea [3], [8]. CorCor is a benzene of
benzenes, a domain of graphene. In this paper, we obtain domination number, total
domination number and open packing number of the molecular graph of CorCor.

2. Domination Number of CorCor

In this paper we obtain domination number, total domination number and open
packing for a new 2-dimensional carbon network, named CorCor.
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The graphs G[n] = CorCor[n] with n layers (CorCor of dimension n), have
been shown in Figure 1. For n = 1, we have one coronene, for n = 2 , this coronene
is surrounded by 6 other coronenes, for n = 3, graph G[3] is obtained from G[2]
surrounded by 12 coronenes and in generalG[n] is obtained fromG[n−1] surrounded
by 6(n− 1) coronenes. Number of coronenes in G[n] are 3n2 − 3n+ 1.

Theorem 2.1. ([7], Theorem 2.5) In a graphG, if there exists a perfect H-packing
when H ∼= K1,∆(G), then γ(G) = λ, where ∆(G) and λ are the maximum degree
and the packing number of G respectively.

By Theorem 2.1, packing number of CorCor[n] is equal with domination number
because it is clear that γ(K1,∆(G)) = 1. In a perfect H-packing when H ∼= K1,∆(G),
all the vertices are dominated by exactly one vertex. Hence, the packing number
and the domination number of G are same. In other words γ(G[n]) = λ.

Theorem 2.2. Let G[n] be a CorCor of dimension n. Then

γ(G[n]) =

{
3
2 (2n+ ⌈n

3 ⌉ − 2)2 +N − 34 if ⌈n
3 ⌉ is even

3
2 (2n+ ⌈n

3 ⌉ − 3)(2n+ ⌈n
3 ⌉ − 1) +N − 34 if ⌈n

3 ⌉ is odd
.

where N = (n− ⌈n
3 ⌉+ 3)(n− ⌈n

3 ⌉+ 4).

Proof. Let D be any minimum dominating set of G[n]. For computing γ(G[n]), it
is enough to calculate |D|.

For n = 1, it is easy to see γ(G[1]) = 6. We determine vertices in dominating set
G[2] and G[3] in Figure 3.2, also we can dominate G[3] with six hexagonal that it has
been shown in Figure 3.2. The number of vertices of dominating set, respectively
from interior of the hexagonal dominating to the outside as follows:

2, 6, 6, 12, 12, 18.

So γ(G[3]) = 2 + 6 + 6 + 12 + 12 + 18 + 24 = 80.

For n > 3, we have two cases.

Case 1. If ⌈n
3 ⌉ is even. Then the number of dominating vertices in a hexagonal

dominating (see Figure 3.2, G[3]) as follows:

2, 6, 6, 12, 12, · · · , 6(n− 1), 6(n− 1), 6n, 6(n− ⌈
n

3
⌉+ 3), 6(n− ⌈

n

3
⌉+ 2), · · · , 30.

Where:

2, 6, 6, 12, 12, · · · , 6(n− 1), 6(n− 1), 6n
︸ ︷︷ ︸

(2n+⌈n

3
⌉−2)

,

6(n− ⌈
n

3
⌉+ 3), 6(n− ⌈

n

3
⌉+ 2), · · · , 30

︸ ︷︷ ︸

(n−⌈n

3
⌉−1)

.
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Also we have 24 vertices of dominating set are located out of hexagonal dominating.
For obtaining γ(G[n]), it is that to sum the numbers.

Case 2. If ⌈n
3 ⌉ is odd. Then the number of dominating vertices in a hexagonal

dominating (see Figure 3.2, G[3]) as follows:

2, 6, 6, 12, 12, · · · , 6(n− 1), 6(n− 1), 6n, 6n, 6(n− ⌈
n

3
⌉+ 3), 6(n− ⌈

n

3
⌉+ 2), · · · , 30.

where

2, 6, 6, 12, 12, · · · , 6(n− 1), 6(n− 1), 6n, 6n
︸ ︷︷ ︸

(2n+⌈n

3
⌉−2)

,

6(n− ⌈
n

3
⌉+ 3), 6(n− ⌈

n

3
⌉+ 2), · · · , 30

︸ ︷︷ ︸

(n−⌈n

3
⌉−1)

.

Similarly Case 1, we may to calculate the. γ(G[n]). The bold vertices in Figure 3.2
are in dominating set.

Theorem 2.3. Let G[n] be a CorCor of dimension n. Then

ρ0(G[n]) ≥ 12n2 − 12n+ 4

This inequality is sharp.

Proof. We consider G be a CorCor of dimension n, we can see in Figure 3.3, number
of vertices of open packing G[2] is shown, ρ0(G[2]) = 29. As we mentioned earlier,
number of coronenes in G[n] are 3n2 − 3n + 1 and every coronenes can have four
points from set of open packing, so

ρ0(G[n]) ≥ 4(3n2 − 3n+ 1)

Also ρ0(G) ≤ γt(G) holds for every graph G, according to the before theorem, ρ0(G)
have upper bound.

For n = 3, can see in Figure 3.3, ρ0(G[3]) = 76, so inequality is sharp.

In the next result the total domination of CorCor[n] is studied, but at first, we
notice that the molecular graph of G[n] has exactly 42n2 − 24n + 6 vertices and
63n2 − 45n+ 12 edges. The molecular graph G[n] is constructed from 6n− 3 rows
of hexagons. For example, the graph G[3] has exactly 15 rows of hexagons and the
number of hexagons in each row is according to the following sequence:

2, 5, 9, 10, 11, 12, 12, 11, 12, 12, 11, 10, 9, 5, 2.

The (3n− 1)th row of G[n] is called the central row of G[n]. This row has exactly
2(3⌈n

3 ⌉ + 2(n − ⌈n
3 ⌉)) − 3 = 4n + 2⌈n

3 ⌉ − 3 hexagons. The central hexagon of
G[n] is surrounded by six hexagons. If we replace each hexagon by a vertex and
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connect such vertices according to the adjacency of hexagons, then we will find a
new hexagon containing the central hexagon of G[n] hexagon containing the last
one and so on, see Figure 3.1. The hexagons constructed from this algorithm are
called the big hexagons.

Theorem 2.4. Let G[n] be a CorCor of dimension n. Then

4(3n2 − 3n+ 1) < γt(G[n]) ≤
|V (G[n])|

3
+ 6n− 2.

Proof. If G is a CorCor of dimension 1, then G[1] consists of just a single coronene,
and it is easy to see that γt(G[1]) = 12. Now we consider the case of dimension
at least two. In the CorCor, any zigzag line not containing vertical edges is called
a zigzag horizontal line, [1]. The zigzag horizontal lines of CorCor are denoted by
Lj, 1 ≤ j ≤ 6n− 2, Figure 3.4. We have

|L1| = |L(6n−2)|

and

L1 = {v1,1, v1,2, v1,3, v1,4, v1,5},

L(6n−2) = {v(6n−2,1), v(6n−2,2), v(6n−2,3), v(6n−2,4), v(6n−2,5)}.

Also
|L2| = |L(6n−3)|

And so on.

Let T be any minimum total dominating set of G[n]. For computing γt(G), it
is enough to calculate |T |.

|T | = 2|{v1,3, v1,4, v2,1, v2,2, v2,7, v2,8, v2,9, v3,1, v3,2, v3,7, v3,8, v3,13, v3,14

, v4,2, v4,5, v4,6, v4,11, v4,12, v4,15, v5,2, v5,3, v5,8, v5,9, v5,14, v5,15, v6,4}|.

Then |T | ≤ |V (G[n])|
3 +6n− 2 = 14n2 − 2n. Since ρ0(G) ≤ γt(G) holds for every

graph G[5]. So that the inequality is hold. Also in Figure 3.5 is shown vertices of
total dominating set of G[2].

3. Tables and Figures

Acknowledgement. This research was in part supported by a grant from Payame
Noor Universtiy.



794 D. A. Mojdeh, M. Habibi, L. Badakhshian and A. Loghman

Fig. 3.1: G[n]=CorCor[n] for n=1,2,3.

Fig. 3.2: Domination number of G[2] and Hexagonal dominating set of G[3].

Fig. 3.3: Open packing of G[2] and Open packing of G[3].
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Fig. 3.4: The vertices and level in CorCor[2].

Fig. 3.5: Total domination number of CorCor[2].
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Abstract. The support of an (n,M, d) binary code C over the set A = {0, 1} is the set

of all coordinate positions i, such that at least two codewords of C have distinct entry in

coordinate i. If C is a code of size M , then r-th generalized Hamming weight, dr(C), 1 ≤
r ≤ 1+ log2(M −1), of C is defined as the minimum of the cardinalities of the supports

of all subset of C of cardinality 2r−1 + 1. The sequence (d1(C), d2(C), . . . , dk(C)) is

called the Hamming weight hierarchy (HWH) of C. In this paper we obtain HWH for

(2k − 1, 2k, 2k−1) binary Hadamard code corresponding to Sylvester Hadamard matrix

H2k and we show that

dr = 2
k−r

(2
r − 1).

Also we compute the HWH of (4n− 1, 4n, 2n) Hadamard codes for 2 ≤ n ≤ 8.

Keywords. Binary code; Hamming weight; Hadamard codes.

1. introduction

Let A = {0, 1}. For positive integer n, every non-empty subset, C, of An is called
a binary code of length n. The Hamming distance of two vectors X,Y is defined
the number of the coordinates that they differ and is denoted by d(X,Y ). The
Hamming distance of C is denoted by d = d(C) and defined as

min
X 6=Y ∈C

d(X,Y ).

A binary code C of length n, size M and distance d is called (n,M, d) binary code.
The support of an (n,M, d) binary code C over the set A = {0, 1} is the set of
all coordinate positions i, such that at least two codewords have distinct entry
in coordinate i and is denoted by supp(C). The rth generalized Hamming weight
(GHW), dr(C), 1 ≤ r ≤ 1 + log2(M − 1), of C is defined as follows
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dr = dr(C) = min{‖D‖ : D ⊂ C, |D| = 2r−1 + 1},

where ‖D‖ = |supp(D)|. The sequence (d1(C), d2(C), . . . , dk(C)) is called the Ham-
ming weight hierarchy (HWH) of C.

For the first time, the generalized Hamming weights (GHW) were introduced
by V. K. Wei in [17] for linear codes. In [17] , the basic properties of GHW are
studied and the weight hierarchy for Hamming code, Reed-Solomon codes, binary
Reed-Muller code, etc are determined. This concept is a generalization of minimum
Hamming weight of a code. It is not difficult to see that d1(C) = d(C). The concept
of GHW were extended for various version of codes, such as non-linear code and
codes over rings, for example see [2, 3]. Study of this notion was motivated by
applications in cryptography. It is a well-known fact that the sequence of generalized
Hamming weights is strictly increasing, that is,

d1(C) < d2(C) < · · · < dk(C) = n.

Among non-linear codes, Hadamard codes are the most useful codes in engineer-
ing, coding theory and mathematics. First we mention the definition of Hadamard
matrices and specific version of Hadamard codes which are not linear. Then we
obtain GHW for these codes.

A square matrix H of order n with elements in {1,−1} is called a Hadamard
matrix when HHt = In, in which In denotes the identity matrix. We will denote
by Hn the Hadamard matrix of order n. For clarifying we bring some examples:

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







(1.1)

It is known (Paley, 1933) that if Hadamard matrices of order n exist, then
n = 1, 2 or n = 4s, where s is a positive integer. Note that changing the sign of
elements in a row or column can not affect the orthogonality. Hence a Hadamard
matrix can always be reduced to the standard form in which the initial row and
column contain only +1.

The Kronecker product or tensor product of matrices A and B is defined as
follows

A⊗B =








a11B a12B ... a1nB

a21B a22B ... a2nB
...

...
. . .

am1B am2B ... amnB








(1.2)

Lemma 1.1. (Sylvester) Let H1 and H2 be Hadamard matrices of orders h1 and
h2, then the Kronecker product of H1 and H2 is an Hadamard matrix of order h1h2.
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Lemma 1.2. (Sylvester (1867)) There is an Hadamard matrix of order 2t for all
non-negative t.

The matrices of order 2t constructed using Sylvester’s construction are usually
referred to as Sylvester-Hadamard matrices. The Sylvester-Hadamard matrices are
associated with discrete orthogonal functions called Walsh functions [15].

A (v, k, λ) design, is a pair (P ,B) where P is a set of v elements, called points
and B is a collection of distinct subsets of P of size k, called blocks, such that every
pair is contained in precisely λ blocks. The number of blocks in B is denoted by
b and Fisher’s inequality state that b ≥ v. If b = v, the (v, k, λ) design is called
symmetric. Symmetric designs have interesting properties. One of them is that
every two distinct blocks intersect in exactly λ points. Another properties is that
every point appears in exactly k blocks. For a (v, k, λ) design D = (P ,B), consider
B = {P\B : B ∈ B}. It is not difficult to see that D = (P ,B is a (v, v−n, v−2k+λ)
design. Let P = {x1, x2, . . . , xv} and B = {B,B2, · · · , Bv}. The Incidence matrix
of a (v, k, λ) design, (P ,B), is the v × b matrix M whose entries mij are defined
as mij = 1 if xi ∈ Bj and mij = 0 if xi /∈ Bj . In the next section we compute
the weight hierarchy of some families of code arising from Hadamard matrix by
properties of symmetric designs.

2. Main Result

We firstly recall Levenshtein’s method [13] for constructing optimal error correcting
codes from suitable Hadamard matrices. Starting from a normalized (i.e. the first
row and column formed all of 1′s) Hadamard matrix H of order 4n, some codes
(which are termed Hadamard codes) may be constructed (see [14], for instance).
More concretely, consider the matrix A4n related to H4n, which consists in replacing
the +1′s by 0′s and the −1′s by 1′s. Since the rows of H4n are orthogonal, any
two rows of A4n agree in 2n places and differ in 2n places and so have Hamming
distance 2n apart. In these circumstances, one may construct an (4n − 1, 4n, 2n)
code, C4n, consisting of the rows of A4n with the first column deleted. This code
called Hadamard code. Also if we deleted the first row and column of A4n, then the
remaining matrix is the incidence matrix of a (4n− 1, 2n, n− 1) symmetric design,
which called Hadamard design. For further information about Hadamard matrices
and Hadamard design reader can see [1].

Theorem 2.1. Suppose that Hn is a Hadamard matrix and Cn is the Hadamard
code corresponding to Hn. Then d2(Cn) =

3n
4 .

Proof. Since d2(Cn) = min{‖D‖;D ⊆ Cn, |D| = 3}, therefore there are the rows
r1, r2, r3 in An such that ‖r1, r2, r3‖ = d2(Cn). Let D = {{r1, r2, r3}}. Hence the
elements of D may have the following cases:
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1 1 1 1

1 1 -1 -1

1
︸︷︷︸

a−tuple

-1
︸︷︷︸

b−tuple

1
︸︷︷︸

c−tuple

-1
︸︷︷︸

d−tuple

Note that 1 denotes the m− tuple vector of 1, in which m ≤ n.

Using the orthogonality of the distinct rows and HnH
t
n = In, we have the

following equations:

a+ b+ c+ d = n− 1, a+ b− c− d = −1, a− b+ c− d = −1, a− b− c+ d = −1.

The solution of this system of equations is b = c = d = n
4 . So, we have

‖D)‖ = b+ c+ d =
3n

4
.

Theorem 2.2. Suppose that H2k is the Sylvester Hadamard matrix. If C2k is the
Hadamard code of order 2k corresponding to H2k , then

dr(C2k) = 2k−r(2r − 1).

Proof. Let C2k be the code associated with the Sylvester Hadamard matrix H2k .
The proof is by induction on k. It is true for k = 1. Suppose that the relation
is true for k. In the other words, suppose that the weight hierarchy of C2k is
dr = 2k−r(2r − 1). We know that

dr = min{‖D‖;D ⊂ C2k , |D| = 2r−1 + 1}.

Therefore there are 2r−1 + 1 rows in C2k , say them h1, h2, ..., h2r−1+1, such that

supp(h1, h2, ..., h2r−1+1) = 2k−r(2r − 1).

We know that

H2k+1 =

(
H2k H2k

H2k −H2k
.

)

Now by using the construction of H2k+1 , the support of h1, h2, ..., h2r−1+1 in
C2k+1 is equal to 2.2k−r(2r − 1).

Two Hadamard matrices are called equivalent if one is obtained from the other by a
sequence of permutations and negations of rows and columns. The equivalent classes
of Hadamard matrices of small orders have been determined by several authors. It
is well known that order up to 12, there is a unique Hadamard matrix. For orders



The Weight Hierarchy of Hadamard Codes 801

16, 20, 24, 28 and 32 there are 5, 3, 60, 487 and 3710027 inequivalent Hadamard ma-
trices, respectively [4, 5, 6, 7, 8, 9, 10, 11, 12, 16].
It is obvious that, if H and H ′ are two equivalent Hadamard matrices of order 4n
and C and C′ are two (4n − 1, 4n, 2n) nonlinear codes correspondence to H and
H ′, with r − th generalized Hamming weight dr and d′r, respectively, then dr = d′r.
In the following theorem, we prove that if Cn is a code from Hn, then dr(Cn) is
independent of choice of Hn for 8 ≤ n ≤ 32.

Theorem 2.3. Let C4n be a (4n−1, 4n, 2n) Hadamard code. If k = 1+[log2(4n−
1)], then dk = 4n− 1 and dk−1 = 4n− 2.

Proof. Let D4n be the (4n − 1, 2n− 1, n− 1) Hadamard design, corresponding to
C4n. If dk ≤ 4n − 2, then there exist a coordinate, i, such that all code words
are equal to 1 or all code words are equal to 0 in position i. Hence there exists
an element of x ∈ P such that x belong to every blocks of D4n (or D4n), which is
impossible. Hence dk = 4n − 1. If dk−1 ≤ 4n − 3, then there are a subset D Of
C4n of size 2k−2 + 1 and two coordinates j1 and j2, such that all code word of D
are agree in these coordinates. If j1 = j2 = 1, then every code word of D indicated
a block of D4n, and hence there exists a pair, which appear in |D| blocks, which is
impossible. If j1 = j2 = 0, then there exists a pair, which appear in at least |D| − 1
blocks of D4n, which is impossible. If j1 = 1 and j2 = 0, then there exists a pair
{x, y} such that there are at least |D| blocks B1, B2, · · · , B|D| of D4n, which x ∈ Bi

and y /∈ Bi for 1 ≤ i ≤ |D|. But the number of blocks , B, such that x ∈ B and
y /∈ B is equal to n and we get a contradiction. Hence dk−1 = 4n− 2.

Theorem 2.4. Suppose that n = 4k and 2 ≤ k ≤ 8. If C4n and C′
4n are two

(4n − 1, 4n, 2n) binary Hadamard codes, corresponding to two Hadamard matrices
H4n and H ′

4n, respectively, then dr(C4n) = dr(C
′
4n).

Proof. For n ∈ {2, 3}, the result is obvious, since H8 and H12 are unique. Suppose
that C16 is the (15, 16, 8) binary Hadamard, constructed by a Hadamard matrix of
order 16. By Theorem 2.2, d2(C16) = 12. Since generalized Hamming weights is
strictly increasing, then d3(C16) = 13, d4(C16) = 14, d5(C16) = 15. Now consider
the code C20 constructed from H20. The code C20 is a (19, 20, 10) binary code.
Theorem 2.2 implies that d2(C20) = 15 and by Theorem 2.3 we have d4(C20) = 18
and d5(C20) = 19. If d3(C20) = 16, then there are 5 code words, which agree in 3
coordinates. But all 3 inequivalent Hadamard matrices have not this property. The
same argument works for other cases.

In the following table we give the generalized Hamming weights of Hadamard ma-
trices of order up to 32.
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Hadamard Matrix Code Design d1 d2 d3 d4 d5
H8 (7, 8, 4) (7, 3, 1) 4 6 7 - -
H12 (11, 12, 6) (11, 5, 2) 6 9 10 11 -
H16 (15, 16, 8) (15, 7, 3) 8 12 13 14 15
H20 (19, 20, 10) (19, 9, 4) 10 15 17 18 19
H24 (23, 24, 12) (23, 11, 5) 12 18 21 22 23
H28 (27, 28, 14) (27, 13, 6) 14 21 25 26 27
H32 (31, 32, 16) (31, 15, 7) 16 24 28 30 31
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Abstract. In this paper we show that for any two primes p and q greater than 5, the

elliptic curve E(p,q) : y
2 = x3 − p2x + q2 has rank at least 2. We will also provide two

independent points on E(p,q). Then we will show that, conjecturally, the family {E(p,q)}
contains an infinite subfamily of rank three elliptic curves.

Keywords. Elliptic curves; Abelian group; group homomorphism.

1. Introduction

Let E be an elliptic curve over Q and E(Q) be its Mordell-Weil group over Q
which is a finitely generated Abelian group. The rank of the free part of E(Q) as
a Z -module is called the rank of E over Q. There has been a lot of research to
compute the rank of the families of elliptic curves. Despite these attempts, there
is no efficient algorithm for finding the rank of elliptic curves. So finding special
forms of elliptic curves whose structure is known is very interesting. Many authors
[7, 8, 9, 10, 11, 12, 16, 5, 6] have considered different families of elliptic curves and
have computed their rank and integral points.
In this paper, we study elliptic curves of the form E(p,q) : y

2 = x3 − p2x + q2 over
Q, where p and q are primes greater than 5. We show that the torsion group of
these curves is trivial, and also find at least two independent points on these curves,
which means that E(p,q) has rank at least 2.

2. feature of points in E(Q)

In this section, we consider the structure of the group of rational points on the
family of the following elliptic curves

(2..1) E = E(p,q) : y
2 = x3 − p2x+ q2,
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where p and q are primes greater than 5. We will show that E has no torsion points
and has rank at least 2. To show that E(Q) has no nontrivial torsion point we need
the following lemma.

Lemma 2.1. Let E be an elliptic curve with integer coefficients. Suppose that E
has good reduction modulo the prime r, and Er is the reduction modulo r. The map

E(Q)Tor −→ Er(Fr)

is an injective group homomorphism.

Proof. This is a direct corollary of [14].

Theorem 2.2. Let p and q be prime numbers greater than 5. The torsion part of
E is trivial.

Proof. We have ∆E = −4p6 + 27q4. It is easy to see that 3 ∤ ∆E and 5 ∤ ∆E ,

therefore E has good reductions modulo 3 and 5. Let E3 and E5 be reductions of
E modulo 3 and 5 respectively. By direct computation, we see that |E3(F3)| = 7
and we have

|E5(F5)| =

{

8 p2 ≡ 1 (mod 5).

9 p2 ≡ 4 (mod 5).

Now using Lemma 2.1, we see that |Etors(Q)| divides 7, and also 8 or 9, which
means that |Etors(Q)| = 1. This means that Etors(Q) = {O}.

By the Mordell-Weil theorem, E(Q) is a finitely generated abelian group. Hence

E(Q) = E(Q)Tor ⊕ Zr,

where r is the rank of E(Q). In fact, (2..1) shows that in our case

E(Q) ∼= Zr.

Using this we have
E(Q)/2E(Q) ∼= (Z/2Z)r.

Therefore E(Q)/2E(Q) determines r. We record the above as the following propo-
sition:

Proposition 2.3. Let E be an elliptic curve on Q such that E(Q) has no torsion
point. Then

E(Q)/2E(Q) ∼= (Z/2Z)r,

where r is the rank of E(Q).

To study our elliptic curve E(p,q), we start by the following lemmas about the
features of the points in E(Q).
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Proposition 2.4. Assume that P = (x, y) ∈ E(Z). Then

(i) y is odd.

(ii) x 6≡ 2, 4, 6 (mod 8).

Proof. The proof of (i) and (ii) are straightforward.

Lemma 2.5. Let P = (x, y) be a point in E(Q). Then, x =
u

s2
and y =

u′

s3
, where

s, u, u′ ∈ Z and gcd(u, s) = gcd(u′, s) = 1.

Proof. See [17].

Lemma 2.6. For every point P = (x, y) ∈ E(Q), we have

(2..2) x(2P ) =
x4 + 2p2x2 + p4 − 8q2x

4y2
.

Proof. The proof is straightforward.

In the following proposition, we see some features of elements of 2E(Q).

Proposition 2.7. Let P = (
u

s2
,
u′

s3
) and Q = (

w

t2
,
w′

t3
) ∈ E(Q), where u, u′, s, w, w′, t ∈

Z and gcd(uu′, s) = gcd(ww′, t) = 1. If P = 2Q then:

(i) t|s.

(ii) If s is odd, then w and t are odd.

(iii) u is odd and u 6≡ s2 (mod 4).

Proof. Suppose that P = 2Q, since x(2Q) = x(P ) =
u

s2
, using Lemma 2.6 and the

fact that Q is on E we have

(2..3) 4ut2(w3 − p2wt4 + q2t6) = s2[(w2 + p2t4)2 − 8q2wt6].

Since gcd(t, w) = 1, from the above equality we see that t|s. This proves (i).
Considering (2..3) modulo 8, proves part (ii). For part (iii), it suffices to consider
(2..3) modulo 16.
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3. group structure of E(Q)

In this section, using previous results, we will find two independent points in E(Q),
which proves that r ≥ 2. Fix two prime numbers p > 5 and q > 5 and let E be
the elliptic curve E : y2 = x3 − p2x + q2 over Q. Consider the points P1 = (0, q),
P2 = (−p, q) and P3 = (p, q) in E(Q). We will show that P1 and P2 are independent.

Lemma 3.1. None of the points P1, P2 and P3 belong to 2E(Q).

Proof. By part (iii) in Proposition 2.7, P1 and P2 /∈ 2E(Q). We prove the lemma

for P3, other parts is similar. Suppose that there exist Q = (
w

t2
,
w′

t3
) ∈ E(Q), such

that P3 = 2Q. By Proposition 2.7(i), t|1, so t = ±1 and by Lemma 2.6, we have

(3..1) 4p(w3 − p2w + q2) = [(w2 + p2)2 − 8q2w].

Which is equivalent to

(3..2) (w − p)4 − 4p2(w − p)2 − 8q2(w − p)− 12pq2 + 4p4 = 0.

By Proposition 2.4, we know w is odd, let w − p = 2s. We have

(3..3) (2s2 − p2)2 = 4q2s+ 3pq2.

Assume that n = 2s2 − p2 hence q|n so n is odd. Therefore we have

s =
n2 − 3q2p

4q2
.

Hence

n+ p2 = 2s2 =
(n2 − 3pq2)2

8q4
,

and therefore

(3..4) n4 − 6q2pn2 − 8q4n+ p2q4 = 0.

On the other hand

p =
n2 − 4q2s

3q2
.

So

n = 2s2 −
n4 + 16q4s2 − 8n2q2s

9q4
,

and therefore

(3..5) 9nq4 + n4 − 8n2q2s = 2s2q4.

From this we have n|2s2q4. Since gcd(n, 2s2) = 1, we have n|q4. This is impossible
since the product of roots of equation is p2q4. In fact, we have no integer roots
for the equation (3..4). Therefore, we must reject the assumption that there exist
Q ∈ E(Q), such that P3 = 2Q. Hence P3 6= 2Q.
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Theorem 3.2. Let P i = Pi+2E(Q), i = 1, 2, 3, be elements in E(Q)/2E(Q). The
set H = {O,P1, P2, P3} is a subgroup of E(Q)/2E(Q) of order 4, so 4||E(Q)/2E(Q)|
and hence |E(Q)/2E(Q)| ≥ 4.

Proof. By Lemma 3.1, we know that P̄1, P̄2, P̄3 6= Ō. On the other hand, it is
easy to see that −P3 = P1 + P2 and H is closed. This shows that H is a subgroup
of E(Q)/2E(Q). To prove the theorem, we consider the following cases:

1. Suppose that P̄1 = P̄2 then, P̄3 = 2P̄1 = Ō, which is a contradiction according
to Lemma 3.1.

2. Suppose that P̄1 = P̄3 then, P̄2 = Ō, which is a contradiction according to
Lemma 3.1.

3. Suppose that P̄2 = P̄3 then, P̄1 = Ō, which is a contradiction according to
Lemma 3.1.

Therefore, these four classes are distinct classes of E(Q)/2E(Q) , so |H | = 4.

We have shown that |E(Q)/2E(Q)| ≥ 4, which implies that rank(E) ≥ 2, by
Proposition 2.3. In fact, we have the following theorem.

Theorem 3.3. The point P1 and P2 are independent rational points in E(Q) and
so rank(E(Q)) ≥ 2.

Proof. Assume on the contrary that two rational points P1 and P2 are dependent.
Then there exist m,n ∈ Z ,not both zero, such that mP1 + nP2 = O. Without loss
of generality, let m ∈ N be the smallest among all. We have four cases,

1. Assume that m is even and n is odd then, Ō = P̄2, which contradicts Theorem
3.2.

2. Assume that m is odd and n is even then, Ō = P̄1, which is a contradiction
according to Theorem 3.2.

3. Assume that m is odd and n is odd then, Ō = P̄3, which contradicts Theorem
3.2.

4. Assume that m = 2t and n = 2t′, both are even then 2(tP1 + t′P2) = O. Now
Theorem 2.2 implies that (tP1 + t′P2) = O. This contradicts the minimality
of m.

This completes the proof.

Example 3.4. By Theorem 3.3 the points P1 = (0, 7) and P2 = (−7, 7) are inde-
pendent points on the elliptic curve E = E(7,7) : y

2 = x3 − 72x+ 72. The computer
algebra system Sage [15] suggests that the rank of E = E(7,7) is in fact, 2 and the
points P1 = (0, 7) and P2 = (−7, 7) generate E = E(7,7).
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4. A family of rank 3 elliptic curves

Already, we have identified an infinite family of rank two elliptic curves. In this
section, we find a subfamily of rank three elliptic curves in this family. We will
show that under a famous conjecture this subfamily has infinitely many members.
Suppose that p and q satisfy p2 + q2 − 1 = b2 for an integer, then the point P4 =
(−1, b) is a point on E(p,q). We will show that P1, P2 and P4 are independent. We
need the following:

Lemma 4.1. Let p and q are prime numbers greater than 5. If there exists b ∈ Z
such that p2 + q2 − 1 = b2, then the point P4 = (−1, b) ∈ E(Q), satisfies the
followings:

(i) P4 /∈ 2E(Q).

(ii) P5 = P4 + P1 /∈ 2E(Q).

(iii) P6 = P4 + P2 /∈ 2E(Q).

(iv) P7 = P4 + P3 /∈ 2E(Q).

Proof. First, we will show that P4 /∈ 2E(Q). Assume on the contrary that there ex-

ists Q = (
w

t2
,
w′

t3
) ∈ E(Q), such that P4 = 2Q. Then, −1 = x(2Q). By Proposition

2.7 we can set t = 1. Now by Lemma 2.6 We have

4(w3 − p2w + q2) + (w2 + p2)2 = 8q2w.

From this and Proposition 2.4 1 ≤ w ∈ Z. We rewrite the above formula as a
quadratic equation in p2. Then we have

(4..1) p4 + 2p2(w2 − 2w) + (w4 + 4w3 − 8wq2 + 4q2) = 0.

The above equation has integer solutions if and only if

∆p2 = 16(−2w3 + w2 + 2wq2 − q2)

is the square of an integer. Now from this we have

−2w3 + w2 + 2wq2 − q2 = m2

for some integer m. Hence w satisfies the equation

−2w3 + w2 + 2wq2 − q2 −m2 = 0.

The sum of the roots of this equation is 1
2 . This impossible since 1 ≤ w ∈ Z. This

prove (i).
(ii) Let P5 = 2Q we have (q − b)2 + 1 ≡ 1 (mod 4). This contradicts Proposition
2.7(iii). The proofs of (iii) and (iv) are similar to that of (ii).
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Lemma 4.2. Let P i = Pi + 2E(Q), 1 ≤ i ≤ 7. The set

H = {O, P̄1, P̄2, P̄3, P̄4, P̄5, P̄6, P̄7}

is a subgroup of E(Q)/2E(Q) of order 8.

Proof. The fact that the 8 elements in H are distinct and H is closed under addition
is easy to prove using Theorem 3.2 and Lemma 4.1.

The Lemma 4.2 and Proposition 2.3 show that the rank of E(Q) is at least 3.
In fact, we have the following result.

Theorem 4.3. The points P1, P2 and P4, are independent rational points on
E(Q) and therefore the rank of E(Q) is at least three.

Proof. Assume on the contrary that two rational points P1, P2 and P4 are depen-
dent. Then there exist m,n, s ∈ Z ,not both zero, such that mP1 + nP2 + sP4 =
O.First we note that since P1, P2 are independent by Theorem 3.3 we have s 6= 0.
Without loss of generality, let s ∈ N be the smallest among all. We have eight cases.
When s is odd we have the following four cases,

1. Assume that m is even and n is odd. Then, Ō = P̄6, which contradicts
Theorem 4.2.

2. Assume that m is odd and n is even. Then, Ō = P̄5, which is a contradiction
according to Theorem 4.2.

3. Assume that m is odd and n is odd. Then, Ō = P̄7, which contradicts
Theorem 4.2.

4. Assume that m is even and n is even. Then, Ō = P̄4, which contradicts
Theorem 4.2.

If s is even we have four cases,

1. Assume that m is even and n is odd. Then, Ō = P̄2, which contradicts
Theorem 4.2.

2. Assume that m is odd and n is even. Then, Ō = P̄1, which is a contradiction
according to Theorem 4.2.

3. Assume that m is odd and n is odd. Then, Ō = P̄3, which contradicts
Theorem 4.2.

4. Assume that m = 2t, n = 2t′ and, s = 2t′′ both are even then

2(tP1 + t′P2 + t′′P4) = O.

Now Theorem 2.2 implies that (tP1 + t′P2 + t′′P4) = O. This contradicts the
minimality of s.
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This completes the proof.

Example 4.4. By Theorem 4.2 the points P1 = (0, 11), P2 = (−7, 11), P4 =
(−1, 13) are independent points on the elliptic curves E = E(7,11) : y

2 = x3 − 72x+
112. The computer algebra system Sage [15] suggests that the rank of E = E(7,11)

is in fact, 3 and the points P1 = (0, 11), P2 = (−7, 11), P4 = (−1, 13) generate
E = E(7,11).

Here we investigate the number of primes p and q, for which p2+q2−1 is square.
For this, we recall the Schinzel and Sierpinski [13] conjecture.

Conjecture 4.5. Let f1(x), f2(x), . . . , fm(x) ∈ Z[x] be irreducible polynomials
with positive leading coefficients. Assume that there exists no integer n > 1 di-
viding f1(k), f2(k), . . . , fm(k) for all integers k. Then there exist infinitely many
positive integers l such that each of the numbers f1(l), f2(l), . . . , fm(l) is prime.

Proposition 4.6. There are infinitely many prime p and q for which p2 + q2 − 1
is a square.

Proof. Consider f1(x) = 2x + 1, f2(x) = x2 + x − 1 and f3(x) = x2 + x + 1. We
have

f1(x)
2 + f2(x)

2 − 1 = f3(x)
2.

On the other hand if there exist integers k and n such that n|f2(k), f3(k), then
n|f2(k)− f3(k) = 2, thus n ∤ f1(k).
So Conjecture 4.5 implies that there exist infinitely many k, such that p = f1(k),
q = f2(k) and b = f3(k) are prime, which completes the proof.

Corollary 4.7. Assuming the above conjecture, there is an infinite family elliptic
curves of the form E = E(p,q) of rank at least 3.

Proof. This follows from Theorem 4.3.
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