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Abstract. This paper proposes a new approach to determining the set of the most critical 

continuous-state components in continuous-state mechanical systems. Unlike traditional 

importance measures, which determine the criticality of individual components, our 

approach provides selection of the entire set of critical components. In addition, it 

enables determination of the minimal budget for achieving full or any required 

performance level of the mechanical system. We start from the continuum structure 

function and the system state definition through minimal cut sets. The problem defined in 

this paper is formulated as a determination of a set of components whose states maximize 

the system performance level under the budget constraint. Further, we prove that the 

solution of the formulated problem can be obtained based on the solution to a weighted 

minimal hitting set problem. The proposed approach is applied to a group of benchmark 

instances and the obtained results are compared to components’ rankings obtained by 

using traditional importance measures. 
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1. INTRODUCTION 

Identification of the critical system components has an important role in the mechanical 

system design, improvement, and maintenance. In the system design phase, it is used in 

deciding on the performance levels of the particular components included in the system 

[1]. When the system performance should be improved, the performances of the critical 

components are the ones that should be improved first. In the system maintenance planning 

they are used to effectively allocate maintenance resources [2]. In system engineering, 

critical components are the components whose performance mostly influence the system 
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performance. Performance of a system and components can be expressed using different 

measures: reliability, availability, maintainability, safety, utility, obsolescence, detrition, 

fatigue, capacity, throughput etc. [3]. Regardless of the performance type, system’s and 

components’ performance levels are generally called system’s and components’ states. 

Mechanical components’ and system’s states can be observed as: 

- binary-states, where components and system can either be in a perfect functionality 

or a complete failure state, 

- multi-states, with discrete degradation states between perfect functionality and 

complete failure, 

- continuous-states, with continuous degradation states between perfect functionality 

and complete failure. 

In the case of binary-states, only the so called “hard failure” appears. In multi-states 

and continuous-states cases, components can also have “soft failure” with different levels 

of degradation that do not exceed the predefined failure threshold [4]. 

In this paper we observe continuous-state components and systems. Factors that cause 

continuous degradation of components’ states are processes such as wear, fatigue, and 

erosion [5]. Components and systems performance degrade continuously in many real-life 

mechanical systems: automobile tire whose performance degrades continuously as the 

tread wears; a coal-fired power plant consisting of boilers operating at fewer megavolts 

than their full capacity; gas turbine fueled by nozzles in which the flow of fuel can be 

reduces due to the nozzles blockages; internal combustion engine valves wear out after a 

large number of engine cycles; production systems where production capacity can 

deteriorate with time [6]; light emitting diode luminosity degradation [7]; the voltage 

degradation of membrane electrode assemblies in polymer electrolyte membrane fuel cell 

stack system [8] etc. 

The approach used in reliability and risk theory to determine the most important 

(critical) system components is based on the importance measures (IM). The goal of IM is 

to rank the components according to their impact to make better system design or 

maintenance plan. In the system design phase, IM should be taken into consideration to 

determine the appropriate reliability of each of the components of the system being 

designed. In the maintenance process, IM are used to identify the component whose 

reliability should be improved to increase the system reliability, or to order spare parts [9], 

and/or in the component maintenance priority approach that prioritizes the components that 

need to be maintained during the repair of the failed component [10]. IMs can be used in 

diagnostics to rank components in terms of how likely they are to have caused a system 

failure [11]. In recent years, IM are used in the optimization of system resilience, which 

has become an important system performance [12, 13]. 

The first IM for binary systems was introduced by Birnbaum [14]. According to 

Birnbaum IM, the importance of a component is the difference between the reliability of 

the system when the component is fully functional and the reliability of the system when 

the component fails. Until now, more than sixty different binary IM were introduced [15]. 

A considerable number of IM for multi-state systems can also be found in literature [16-

19]. 

However, there are only few IMs defined for continuous-state system and most of them 

reduce continuous-state to binary or multi-state by introducing threshold or partitioning 

approaches. Kim and Baxter [20] defined reliability importance of component j at system 

level α, α(0, 1), where [0, α) corresponds to the failure states, and [α, 1] corresponds to 
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the operating states. To formulate a criticality measure model for continuous-state system, 

Lisnianski introduced discrete approximation [21, 22]. Consequently, the continuous-state 

system is represented by two multi-state systems that are then used as boundary points 

estimation for the given continuous-state system. Some of the continuous IM, such as 

Griffith IM [23] and mean absolute deviation IM [24], are obtained by adjustment of binary 

IM for continuous-states. De Jonge [25] reduced the continuous-state non-decreasing 

problem to a discrete-time discrete-state one using the probability of transition between 

states, and further modeled it using Markov chains. Chen, Qiu, and Zhao [26] used the 

Monte Carlo simulation method to determine optimal maintenance policies for continuous-

state systems. 

Most IMs rank individual components according to the calculated values of the selected 

IM and therefore cannot be applied to determine the simultaneous effect of a group of 

components on the system state [27]. This is one of the open issues on importance measures 

[28]. It was considered by few IMs, but only for pairs of binary or multi-state components 

[29, 30], module of three components [31] and for preselected group of components [32]. 

In this paper we propose an approach for simultaneous determination of the entire set 

of the most important continuous-state components of a continuous-state system. We 

formulate this new criticality measure as an optimization problem. The similar approach 

was already used in [33] for binary-state components and systems. It has been shown that 

investing in a set of critical components obtained using optimization approach provides 

higher reliability of the system than the reliability provided by investing in a set of 

components obtained using traditional IM. 

The optimization problem formulation in this paper starts from definition of system 

state function based on minimal cut sets. The resulting problem is the global optimization 

problem with max-min-max objective. Therefore, we are about to solve them by solving 

the weighted minimal hitting set problem [34], also known as the minimal cost hitting set 

problem [35], which is complementary to the set covering problem. 

The paper consists of five sections. The following section introduces the continuous-

states systems, definition of the problem of simultaneous determination of the critical 

components and its mathematical programming formulation. Section 3 is devoted to 

solving the approach, where we prove the relationship between the solution of original 

max-min-max and weighted minimal hitting set problems. In Section 4, computational 

results of experiments on a group of benchmark instances are given. We compare the 

results of max-min-max and weighted minimal hitting set problems. Then we examine the 

influence of costs variances on the selection of critical components and the system state. 

Finally, we compare the state of the systems obtained by the proposed approach with the 

state obtained based on two cost related IM. Section 5 contains the conclusions and 

directions for further research. 

2. PROBLEM DEFINITION AND MATHEMATICAL MODEL FORMULATION 

Let K = {1, 2, ..., n} be a set of system’s components and let xj ∈ [0, 1] be a state 

(performance level) of j-th component, j ∈ K. The vector x = (x1, x2, ..., xn) is called the 

state vector. The state of the continuous system is defined by the continuous structure 

function as follows [36]. 
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Definition 1. A function γ: [0, 1]n[0, 1] which is nondecreasing in each coordinate of 

x is said to be a continuum structure function. 

Continuum structure function expresses how the state of the coherent system depends 

on the components’ states. One way of determining the system state is through the minimal 

cut sets [37, 38]. 

Definition 2. Cut set is a set of components whose failure causes the system failure. 

Minimum cut set (MCS) is a cut set that does not contain another cut set, that is, it is 

reduced to the minimum number of components whose failure causes system failure. 

For the binary-state components and systems, the previous definition implies that 

disabling the failure of some component will eliminate all minimal cut sets containing that 

component as a potential cause of the system failure. 

According to [36], continuum structure function for coherent systems can be defined as 

 ( ) min max
i

j
i P j C

x x
 

  (1) 

where P= {1, 2, ..., m} represents the set of MCS and Ci is the set of components in i-th 

MCS. Function γ is also called the system state function and it represents the state of the 

”best” component in the ”worst” MCS. 

Starting from the last interpretation of the system state, initial problem can be defined 

as: determining the minimal number of components whose improving of states 

(performance level) maximizes ( )x , i.e., the state (performance level) of the system. 

Since the improving of the component’s performance levels requires costs and considering 

that the maintenance budget is almost always limited, the final definition of the problem 

that is observed in this paper is: 

Allocate the available budget to the components whose increasing of performance 

levels maximizes the system performance level. 

The main assumptions of the defined problem are: 

1. The continuous-state system is coherent. 

2. The state space of components is [0, 1]n and the state space of the system is [0, 1], 

where the state 1 represents the perfect functioning, while the state 0 represents total failure. 

The states in (0, 1) correspond to different degradation levels, but not to complete failure. 

3. All components’ failures are statistically independent. 

4. The cost of providing a component j with a certain performance level linearly 

depends on its performance level. 

5. MCSs of a given system are already determined. 

To formulate the mathematical model of the defined problem, we introduce the set of 

all components (K), the set of MCS (P), and the set of components in i-th MCS (Ci), such 

that i ∈ P, i P iC K  . For each component j ∈ K the cost of full performance level (cj) is 

known, as well as the total budget for achieving performance level of the system (b). 

Decision variable that should be determined (xj) represents the performance level of jth 

component, j ∈ K. Based on optimal values of variables, performance level of the system, 

pl(x), such that ( ) ( )pl x x  can be obtained. 

The mathematical model for maximization of the system performance level (MSPL) 

under the budget constraint, can now be formulated as follows: 
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c
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i
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j
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j

pl x x

x b

x j K

 







  


  

The objective function represents the continuous system state defined in (1). Its 

maximum is the value of the ”best” component in the ”worst” MCS. Constraint in MSPL 

refers to the limited budget. 

The formulated problem is the global optimization problem with max-min-max 

objective. The classes of max-min-max problems have been proven to be NP-hard [39]. It 

is possible to reformulate this problem in such a way that the optimal solution does not 

depend on the available budget. In the following section, weighted minimal hitting set 

formulation of the problem of determining the entire set of critical components will be 

presented. 

3. SOLVING APPROACH 

In order to formulate weighted minimal hitting set problem variant of critical 

components determination problem, the vector of binary variables y = (yj), j ∈ K is 

introduced. A variable yj is an indicator of criticality of the component j: if the component 

j is critical, then yj = 1, otherwise yj = 0. The remaining notation is the same as the notation 

used in MSPL model. 

The mathematical model for minimization of the critical components’ cost (MCCC) is 

formulated as follows. 

 

(min) ( )

s.t.

1,

{0,1},

i

j j
j K

j
j C

j

fc y c y

y i P

y j K







 

 




  

MCCC model corresponds to the weighted minimal hitting set problem [40]. The 

constraint ensures that each MCS is hit, i.e. each MCS contains at least one component j ∈ 

K such that yj = 1. The objective fc (y) represents the cost of the full performance level for 

components { | }j jy y y , since components in y  hit all MCSs. 

The following theorem determines the relationship between the MSPL and MCCC 

models, i.e., between the optimal solutions of these two problems. 

Theorem 1. If y* = {yj}, j ∈ K is the optimal solution of MCCC problem then x*={xj}, 

j ∈ K is the optimal solution of MSPL problem, where 

 min 1, ,
( *)

j

j

by
x j K

fc y

 
  

 
 (2) 
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 ̂

Proof. From (2) it follows 0 ≤ xj ≤ 1, for j ∈ K and 

( *) ( *)

j

j j j j j
j K j K j K

by b
c x c c y b

fc y fc y  

      

Therefore, x* = {xj}, j ∈ K is a feasible solution of MSPL. Let now prove that x∗ is the 
optimal solution of MSPL. 

Since for each i ∈ P
 
there is j ∈ Ci for which yj = 1, it follows that 

max min 1,
( *)i

j
j C

b
x

fc y

 
  

  . 

Moreover, 

( *) min max min 1,
( *)i

j
i P j C

b
pl x x

fc y 

 
   

  . 

In case of fc(y∗) ≤b, x* is the optimal solution of MSPL because pl(x*) = 1. 

In case of fc(y∗) > b, let us assume that x* is not an optimal solution of MSPL. That 

means that there is a feasible solution { },jx x j K   such that ( ) ( *)
( *)

b
pl x pl x

fc y
  . 

Further, let 

1, ( )
,

0, ( )

j

j

j

x pl x
y j K

x pl x

 
 



. 

Given that ( ) min max
i

j
i P j C

pl x x
 

 , it follows that for each iP there is iCi for which 

( )jx pl x , i.e. for which 1
j

y  . Hence, { },jy y j K   is a feasible solution of MCCC. 

Furthermore, from the definition of jy  it follows that 
( )

j

j

x
y

pl x
 , from which we obtain 

1
( ) ( *)

( ) ( ) ( )

j
jj j jj

j K j K j K

x b
fc y c y c c x fc y

pl x pl x pl x  

       . 

However, this is contrary to the fact that y∗ is the optimal solution of MCCC, i.e. to the 

assumption that x* is not an optimal solution of MSPL. Hence, x* is the optimal solution 

of the MSPL problem, which has been proved. 

Therefore, the optimal solution of the MSPL problem can be obtained from the optimal 

solution of the MCCC problem. Based on the equation (2), we conclude that there is an 

optimal solution x* = {xj}, j ∈ K of MSPL such that all values of xj are equal to 0 (when yj 

= 0) or are equal to min 1,
( *)

b
spl

fc y

 
  

 
 (when yj = 1). 

If fc(y*) < b, then the system can be provided with the full performance level (spl = 1) 

using less founds then the provided budget b. 
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If fc(y*)  b, then the system can be provided with maximal performance level, in 

relation to the given budget b. 

The performance level of the entire system pl (x*) is also equal to  

 min 1,
( *)

b
spl

fc y

 
  

 
 (3) 

The MCCC model refers to the weighted minimal hitting set problem which is proven 

to be NP-hard. However, solving MCCC is much more efficient than solving MSPL for 

the problem of determining the critical components. 

Moreover, in MCCC, the amount of available budget does not influence the optimal 

solution. Consequently, changes in the available budget do not require a restart of the 

optimization process, unlike the MSPL formulation. The new optimization should be done 

only if the cost cj of some component jK changes. In addition, MCCC can be used for 

determining the system states that can be reached with different values of available budget. 

When the optimal solution is obtained, it is enough to use the formula (3) to calculate the 

new state (performance level) of the system or to calculate minimal budget needed to 

achieve a required level of system performance. 

4. NUMERICAL RESULTS 

Three sets of experiments were conducted on 13 Benchmark Fault Trees (BFT) from 

[41], whose characteristics are given in Table 1. Columns C and MCS give the total number 

of components and the minimal cut sets of BFTs, respectively. Column R shows the range 

of MCSs, i.e. the minimal and maximal number of components in MCSs. 

Table 1 Benchmark Fault Trees [41] 

No BFT C MCS R 

1 baobab1 61 46188 2-11 

2 baobab2 32 4805 2-6 

3 baobab3 80 24386 2-11 

4 chineese 25 392 2-6 

5 das9201 122 14217 2-7 

6 das9202 49 27778 1-11 

7 das9208 103 8060 2-6 

8 edf9205 165 21308 1-8 

9 ftr10 152 305 1-3 

10 isp9603 91 3434 2-8 

11 isp9605 32 5630 3-7 

12 isp9606 89 1776 1-5 

13 jbd9601 532 14007 1-7 

All experiments were performed on a laptop computer equipped with Intel i7 CPU at 

2.7GHz and 16 GB of RAM. Problems were solved using AMPL modeling environment 

and LGO solver for MSPL problems and CPLEX solver for MCCC problems. LGO solver 
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is intended to solve global optimization problems with potentially many local optima. 

CPLEX is considered a state-of-the-art solver for linear and mixed integer programming.  

Random instances were generated using the library of BFTs from Table 1 and assigning 

random values to the components’ cost. The budget for improving the system performance 

level for each instance was determined as a constant percentage of the sum of all 

components’ cost. The percentage was adjusted for each BFT in such a way that all 

instances have maximal performance level between 0.4 and 1. 

Components’ costs were generated as random integers that have Erlang’s distribution. 

Mean and variance were adjusted differently in each set of experiments. 

Considering that system performance level for all problems is in interval [0, 1] 

independently of the values of components’ cost, we were allowed to aggregate 

experimental results and finally find some conclusion. 

4.1 Comparison of MSPL and MCCC 

In the first set of experiments, we were testing the usability of models MSPL and 

MCCC. MSPL is a global optimization problem that can have many local optima. MCCC 

is an NP hard binary programming problem. 

For the test, we used BFTs and we generated 30 random instances for each of them. We 

solved them using both mathematical models. The average system performance levels 

(SPL) and time in seconds needed to solve the problems are presented in Table 2. 

Table 2 MSPL and MCCC results 

 MSPL MCCC Gap [%] 

BFT SPL Time [sec.] SPL Time [sec.] SPL 

baobab1 0.6071 300.07∗ 0.7138 0.68 14.95 

baobab2 0.6229 6.03 0.6966 0.28 10.58 

baobab3 0.5438 300.03∗ 0.6621 0.55 17.87 

chineese 0.5776 0.36 0.5788 0.01 0.21 

das9201 0.1225 190.21 0.6584 0.13 81.39 

das9202 0.5574 121.73 0.5821 0.38 4.24 

das9208 0.3949 112.46 0.6313 0.06 37.45 

edf9205 0.8181 300.02∗ 0.8212 0.38 0.38 

ftr10 0.7258 6.96 0.7399 0.01 1.91 

isp9603 0.4238 33.05 0.6055 0.05 30.01 

isp9605 0.6071 8.42 0.6572 0.19 7.62 

isp9606 0.6603 9.63 0.7386 0.03 10.60 

jbd9601 0.7395 300.05* 0.8188 0.25 9.68 

Average: 0.5693 129.92** 0.6849 0.23 16.89 

* Optimization was interrupted after 5 minutes time limit. 

** The average was calculated using the limited time. 
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It is obvious that LGO was not able to solve all of the problems to optimality, since the 

values in SPL column of MSPL are less than those in the SPL column of MCCC. The gap 

between obtained SPLs varied from 81.39% for “das9201” BFT to relatively modest 0.81% 

for “chineese”. Moreover, for “das9201” the gap is very big even the solver “concluded” 

that the optimal solution was found. On the other hand, optimality of solutions obtained by 

MCCC is guaranteed.  

Also, the difference in execution time is significantly better for MCCC model. Even 

relatively big instances like “baobab1” were solved in less than a second. After this 

practical confirmation of dominance of MCCC model over MSPL, further experiments 

were performed only using MCCC model. 

4.2 Sensitivity of MCCC Solutions 

The aim of the second set of experiments was to assess the sensitivity of solutions on 

the dispersion of components’ cost. For each BFT, we generated three sets of 10 random 

instances with variances 4v1 = 2v2 = v3, respectively, but with the same mean. For each 

value of variance, we presented the average number of components in the solution (CS), 

and the average system performance level of the entire system in Table 3. 

Table 3 MCCC results for different variance of cost values 

 V1  V2  V3 

BFT CS SPL CS SPL CS SPL 

baobab1 11.0 0.6451 11.6 0.6982 11.5 0.7981 

baobab2 14.2 0.5214 14.1 0.5561 14.4 0.5943 

baobab3 17.7 0.6167 17.4 0.6659 18.7 0.7037 

chineese 5.4 0.5611 5.6 0.5847 5.8 0.5905 

das9201 9.0 0.6604 9.0 0.6631 9.0 0.6517 

das9202 8.0 0.5256 8.0 0.5348 8.2 0.6858 

das9208 17.2 0.6144 17.4 0.6480 17.4 0.6315 

edf9205 40.0 0.8349 40.0 0.8112 40.0 0.8176 

ftr10 83.6 0.7317 83.2 0.7401 83.6 0.7477 

isp9603 17.2 0.5899 17.7 0.5881 17.7 0.6385 

isp9605 8.0 0.6179 8.0 0.6375 8.6 0.7161 

isp9606 34.2 0.7140 35.3 0.7308 35.9 0.7709 

jbd9601 270.0 0.8044 269.6 0.8163 275.5 0.8356 

Average 41.2 0.6490 41.3 0.6673 42.0 0.7063 

From the presented results, we can see that a better system performance level can be 

obtained if the components have more disperse costs. We explain that by the possibility 

that a set of cheaper components that hit all cuts can be found if there are more both cheap 

and expensive components, i.e., if variance is greater.  
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4.3 Comparison of MCCC and Traditional IMs 

In the third set of experiments, we compared the MCCC model with traditional IMs. In 

the absence of a cost-based IM for continuous states in available literature, two cost binary 

IMs were used: Cost-based component importance (CBCI) and Cost-effective importance 

measure (CEIM). Although both IM are primarily developed for measuring the impact of 

the components’ reliability on the overall system reliability, the terminology below will be 

generalized to the state, i.e., the level of performance of components and systems. The 

notation in the equations will be adjusted according to this generalization. 

Importance measure CBCI was introduced in [42] and it is formulated as the Birnbaum 

IM extended by costs of components’ improvements. CBCI of component j is defined as: 

 
jCBCI

j

j

C
I

pl


 


 (4) 

where ∂Cj and ∂plj represent the increase of the system cost and the system state caused by 

state improvement of jth component. The components with lower values of CBCI

jI  are 

considered more important since they provide greater system state improvement with lower 

increase of costs. 

Importance measure CEIM is defined as [43]: 

 
,

GI

jCEIM

j

f j

I
I

C
  (5) 

where IGI and Cf,j represent the general importance (GI) and cost factor for component j, 

respectively. GI of component j is obtained as: 

 
jGI

j

pl
I

pl


  (6) 

where 
jpl  is the change in system state caused by the change in jth component state. 

The cost factor for jth component is calculated as: 

 ,

( )

( )

j
j K

f j

j

E C

C
E C





 (7) 

where E(Cj) is the expected cost of state improvement for j-th component. 

Components with higher value of 
CEIM

jI  will be considered the most important 

components, since they provide higher state at lower costs. 

For each instance of BFTs from Table 1, values of CBCI

jI  and CEIM

jI  were calculated. 

Then, the components were ranked by obtained values of IM. For each instance the first m 

components that hit all MCS of a given BFT were selected. The total cost of the selected 

components represents the budget required to achieve the state of the system equal to 1. 

The ratio of total cost and the given budget for an instance gives the system state which 

can be achieved by investing in the selected components. These values are given in Table 
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4. The column Min gives the optimal solution of minimal hitting set problem where cost cj 

is equal to 1 for all components j  K. The columns CC show the average number of 

components obtained by solving MCCC and m selected component based on CBCI

jI  and 

CEIM

jI , respectively. The columns SLP contain corresponding systems’ performance levels. 

Table 4 Results of MCCC and cost-based IMs 

  MCCC CBCI CEIM 

BFT Min CC SPL CC SPL CC SPL 

baobab1 11 11.6 0.8097 37.5 0.2746 40 0.1433 

baobab2 14 14 0.5728 25.2 0.3582 24.6 0.2381 

baobab3 17 18.7 0.5656 61.6 0.1934 60.7 0.1278 

chineese 5 5.6 0.6218 16 0.2829 12.7 0.1907 

das9201 9 9 0.6380 105.7 0.0724 37.4 0.1344 

das9202 8 8 0.7250 31.7 0.2071 24.4 0.1568 

das9208 17 17.2 0.6489 91 0.1374 59.9 0.1549 

edf9205 40 40 0.8251 160.1 0.2210 136.1 0.2379 

ftr10 79 83.7 0.7419 150.8 0.4184 142.5 0.4220 

isp9603 17 17 0.6559 71.3 0.1737 54 0.1666 

isp9605 8 8 0.7845 22.1 0.3406 18.5 0.2656 

isp9606 34 34.6 0.5890 84 0.2391 77.3 0.2224 

jbd9601 268 273.2 0.8183 529.5 0.4087 523.8 0.4057 

Average 40.5 41.6 0.6920 106.7 0.2560 93.2 0.2205 

From the results in Table 4 we can see that the MCCC model outperforms CBCI

jI  and 

CEIM

jI  for all BFTs. Based on the results of MCCC, the number of components that hit all 

MCS is the same as in the minimal hitting set case for 6 of 13 BFT. The numbers of critical 

components obtained based on CBCI

jI  and CEIM

jI  are much larger, which means that they 

require much higher costs of selected components. Consequently, system performance 

levels that can be achieved using available budgets are significantly lower than levels 

obtained by MCCC model. 

5. CONCLUSIONS 

The goal of this paper was to propose a new approach for determination of the critical 

components, i.e., the components whose performance level has the biggest effect on the 

performance level of the mechanical system. Criticality of the components is usually 

defined by means of importance measures, but most of them are not directly applicable to 

the determination of the group of the critical components. To overcome this lack of IM, we 
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have proposed an optimization approach that enables simultaneous determination of all of 

the most critical components. The approach was applied on continuous-state components 

of continuous-state system. The problem was defined as a problem of allocation of the 

available budget to the components whose increasing of performance levels maximizes the 

system performance level. Originally formulated as the global optimization problem, it was 

reformulated as the weighted minimal hitting set problem. The experiments that were 

conducted on a group of BFTs showed that the proposed approach outperforms those based 

on the chosen cost related IMs. 

Besides determination of the critical components, the proposed approach enables 

calculation of the system states that can be reached with different values of available 

budget. Since the formulated problem is NP-hard, further research will be directed towards 

testing on large instances and developing suitable heuristics. 
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