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Abstract. Co-rotational finite element (FE) formulations can be seen as a very efficient 

approach to resolving geometrically nonlinear problems in the field of structural 

mechanics. A number of co-rotational FE formulations have been well documented for 

shell and beam structures in the available literature. The purpose of this paper is to 

present a co-rotational FEM formulation for fast and highly efficient computation of 

large three-dimensional elastic deformations. On the one hand, the approach aims at a 

simple way of separating the element rigid-body rotation and the elastic deformational 

part by means of the polar decomposition of deformation gradient. On the other hand, 

a consistent linearization is introduced to derive the internal force vector and the 

tangent stiffness matrix based on the total Lagrangian formulation. It results in a non-

linear projector matrix. In this way, it ensures the force equilibrium of each element 

and enables a relatively straightforward upgrade of the finite elements for linear 

analysis to the finite elements for geometrically non-linear analysis. In this work, a 

simple 4-node tetrahedral element is used. To demonstrate the efficiency and accuracy 

of the proposed formulation, nonlinear results from ABAQUS are used as a reference.  
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1. INTRODUCTION 

Beside the updated (UL) and total (TL) Lagrangian formulation, the co-rotational 

(CR) finite element (FE) formulations represent an efficient approach to handle large 

non-linear deformations of flexible structures. As it allows a relatively straightforward 

upgrade of the finite elements for linear analysis to the finite elements for geometrically 
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non-linear analysis, the co-rotational approach has attracted significant interest over the 

past years [1]. The main idea of the approach is to decompose the total motion of each 

finite element into a rigid-body rotation and a moderate deformational part, which can be 

measured within a local element coordinate frame. The local frame can be defined at an 

arbitrary point of the element. It is attached to the element and performs the same rigid-

body rotation and translation as the element itself. Material deformational response is 

determined with respect to this local frame, while geometric non-linearities are accounted 

for by means of the large rigid-body rotation. For sufficiently small local strains, the 

constant strain-displacement matrix can be applied [2]. 

In the past decade, many co-rotational frameworks for the geometrically non-linear 

analysis of flexible structures were developed. Even some classic, Lagrangian formulation 

based developments used certain aspects of the co-rotational formulation such as the 

element attached co-rotational frame to determine the true strains and stresses [3]. A 

rather thorough and systematic description of the small-strain co-rotational finite shell 

and beam elements is available in the literature [1, 4, 5]. In those developments, a local 

frame was defined at an arbitrary node of the element. The orientation change of the local 

frame was used to represent the element rigid-body rotation. On this basis, the rotation-

free nodal displacements are determined by filtering out the rigid body rotation from the 

global displacements. Furthermore, the internal element forces were derived using a 

consistent linearization of the internal element energy with respect to the global element 

displacements. Marinkovic and Zehn [2] presented a simplified co-rotational FE 

formulation using the linear tetrahedral element for highly efficient computation of 

geometrically nonlinear deformations in the field of multibody systems (MBS) and real-

time simulations. This development was based on a single co-rotational frame per finite 

element and a linear element stiffness matrix with respect to the co-rotational frame. In 

the work of Crisfield and Moita [6, 7], a co-rotational hexahedral element has been 

developed that enabled computation of deformations involving large strains. For this 

purpose, incompatible displacement modes were used to enhance the accuracy of 

computing the local element displacements. In addition, the element force vector and 

stiffness matrix were estimated using the assumption that the spin at the element centroid 

was zero. Espath et al. [8] used the co-rotational approach in combination with the 

NURBS-based isogeometric FEM to solve geometrically nonlinear dynamic problems.   

In this work, a co-rotational formulation for the non-linear static FE analysis is given 

using the tetrahedral element with the volume coordinates as linear shape functions. The 

rigid-body rotation is estimated by the polar decomposition of the deformation gradient, 

which is determined based on the initial and deformed element configurations. In 

addition, the internal element forces and element stiffness matrix are computed using 

directly the consistent variations of the internal element energy with respect to the global 

displacements. A resulting projector matrix is used to improve the results. 

The paper is organized as follows. After the introduction, in the second section, the 

co-rotational kinematics and the method to handle the rigid-body rotation for the 

tetrahedral element are presented. The derivation of the internal force vector and the 

tangent stiffness matrix are given in the third section. The fourth section gives the 

numerical procedure of the co-rotational FEM as a flow chart followed by a couple of 

numerical examples to verify the accuracy and to assess the method efficiency. Finally, 

based on the obtained results, conclusions are drawn. 
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2. NON-LINEAR CO-ROTATIONAL ELEMENT KINEMATICS 

In this section, important kinematical relations for the calculation of the purely 

deformational part are given. In addition, a method to calculate the rigid-body rotation by 

means of the Newton-Raphson iteration is described in detail. 

2.1. Rotation-free element displacements 

Two coordinate systems are applied to fully describe the motion of an element. A 

fixed global coordinate system (Xg, Yg, Zg) measures the global nodal positions, whereas 

a local co-rotational system (Xl, Yl, Zl) is defined at a node and rigidly translated and 

rotated with the element. While it moves with the element, it remains an orthogonal 

frame. The motion of an element from the initial (undeformed) to the current (deformed) 

configuration is depicted in Fig. 1. Origin 0 of the local element system is here defined at 

one of the nodes. In the initial configuration, the element has an orientation matrix T0 

that remains constant during the analysis. The current deformed configuration can be 

transformed back to the initial one by matrix (T0 
t+Δt

R
(i))T, where t+Δt

R
(i) is the rigid-body 

rotation matrix determined in each iteration i within the increment at time t+Δt. 

 

Fig. 1 The co-rotational description of the tetrahedral element kinematics 

By comparing the back rotated with the initial element configuration, the pure 

deformational displacements of node j are computed as shown in [9]: 

                       t Δt (i) t Δt (i) T t Δt (i) t Δt (i) T

j 0 j 0 0 j 0( ) ( ) ( )      u T R x x T X X , (1) 

where t+Δt
xj

(i) and t+Δt
x0

(j) are the actual global nodal position of node j and the origin of 

the co-rotational system (CRS), respectively. Similarly, Xj and X0 represent their 

counterparts in the initial element configuration. 

2.2. Rigid-body rotation 

In general, rigid-body rotation R at a point of a deformable 3D-continuum can be 

calculated by the polar decomposition of deformation gradient, F, which is given as:  

  RUF  . (2)  
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where U is the right stretch matrix that describes the non-linear deformation of an 

infinitesimal small volume around the considered point. For 3D solid finite elements, the 

deformation gradient is typically determined at the integration points of the element. 

However, since a linear 3D tetrahedral element is used in this paper, whose shape functions 

derivatives are constant over the volume of the element, there is a unique rotational matrix 

that describes the rigid-body rotation between two element configurations.  

There are various approaches to compute the deformation gradient [1, 6]. In this 

work, the Newton-Raphson method, as described by Rankin [5], is applied. In the first 

step, the deformation gradient is estimated at the center of each element, which generally 

requires a choice of alternative shape functions at the center of the element. The 

deformation gradient matrix of an element in iteration i within the increment at time t+∆t 

is given as: 

 


 
k

1j

T(i)

j

tt

j

0T(i)tt
xvF , (3) 

where the summation runs over all element nodes, while constant interpolation function 

derivative 0vj of a node j is calculated as: 

 

T

jjj10

j

0
ggg





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
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




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
 

Jv ,  (4)                                         

and it depends only on shape functions gj and the initial element geometry [10] and 

finally, (i)

j

tt
x

 is the local nodal coordinate vector that can be given as: 

 t Δt (i) T t Δt (i)

j 0 j 0 j( )   x T X X u  (5) 

In Eq. (4) 0
J is the constant Jacobian matrix of the dimension 3×3, which transforms an 

infinitesimal small volume element from the natural (ξ, η, ) to co-rotational Cartesian 

frame (Xl, Yl, Zl) in the undeformed configuration [11]. 

A 3D finite rotation matrix about a rotation axis r in space can be expressed as the 

exponential of a 3×3 skew-symmetric matrix S [12]: 

 

2

2

2
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sin 1 2

exp
2

2
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 
 

R S I S S  (6) 

where skew-symmetric matrix S is defined by: 

 






















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0χ

0ψ

χψ0

θspin S  (7) 

and where so-called rotational pseudo-vector rθ  , which represents a finite rotation θ 

along axis r, is defined by rotations ,  and  around the axes of the Cartesian system, 

ex, ey and ez, respectively, so that: 
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 zyx eeeθ   (8) 

Variation of Eq. (6) yields: 

 spin( )  R θ R  (9) 

Using the polar decomposition, Eq. (2), and the orthogonality property of the rotation 

matrix, the variation of the right stretch matrix is obtained in the same way:  

 spin( )  U θ U  (10) 

and the following relationship can be derived [5]: 

 2 (axial ) ( trace )    U I U U θ  (11) 

This equation is a basis to develop an iterative process in order to perform the polar 

decomposition. Generally, the axial operator in Eq. (11) is the inverse of the spin 

operator and it yields an axial vector a from the skew-symmetric part of a quadratic 

matrix A by: 

  







 T

2

1
axial)spin (axial AAaa  (12) 

Eq. (11) describes a way to calculate the change of pseudo vector δθ with a given 

right stretch matrix U. Hence, the change of rotation matrix R and the actual right stretch 

matrix in the next iteration step can be obtained using Eqs. (6) and (10). This iterative 

process is terminated when U becomes symmetric:  

 0U  axial  (13) 

The method is performed through the following steps. In the first step, deformation 

gradient F is computed using Eq. (3) and the right stretch matrix is initialized by:  

 FU (0)  (14) 

The iterative process is performed as follows: 

 
(n) (n) (n) (n 1)2(axial ) ( trace )    U I U U θ  

 
(n 1) (n 1)exp(spin( ))   R θ  (15) 

 (n)1)(n1)(n
URU

    

The iteration is terminated, if the magnitude of vector axialU(n) is smaller than a predefined 

tolerance t:  

 taxial (n) U  (16) 
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3. INTERNAL ELEMENT FORCES AND TANGENT STIFFNESS MATRIX 

To guarantee the quadratic convergence of the Newton-Raphson method, the internal 

force vector of each element can be formulated using variation of the internal element 

energy. On this basis, the tangent element stiffness matrix is estimated by a consistent 

linearization of the element force with respect to the global nodal displacements.    

3.1. Internal element force vector 

The incremental/iterative Newton-Raphson solution (NRS) for non-linear static 

structural mechanical problems requires a known solution at time t and estimates the next 

configuration at time t+Δt using an iterative process. The equations for an assembled 

finite element structure in the iteration step i can be written as: 

(i)

Gint,

Δtt

ext

tt1)(i

G

Δtt(i)

G

Δtt
FFuK

   

 1)(i

G

Δtt(i)

G

Δtt1)(i

G

Δtt   uuu , (17) 

where t+Δt
KG

(i) is the assembled global stiffness matrix, t+Δt
uG

(i) and t+Δt∆uG
(i+1) represent 

the global and incremental nodal displacements while t+Δt
Fext and

(i)

Gint,

Δtt
F


are the global 

external and internal force vectors, respectively. In general, the internal force vector can 

be computed by the variation of the internal element energy with respect to global 

element displacement vector t+Δt
ue

(i) as: 
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inte,
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Δtt
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u
F






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
 , (18) 

where t+Δt
ue

(i) is represented as the global element displacement vector in the form:  

 
T T Tt t (i) t t (i) t t (i) t t (i) T

e 1 2 k[ ... ]   u u u u . (19) 

It should be noted here that internal element energy (i)

inte,

tt W is unaffected by the 

rigid-body motion. In the TL formulation, the 2nd Piola-Kirchhoff stress and the Green-

Lagrange strain are used to compute the internal element energy. Because they are 

invariant with respect to the rigid-body rotation, it can be written [10]: 

 
0

e

T
t t (i) t t (i) t t (i) 0

e,int e

V

W ( ) ( ) d V     E S , (20) 

where 
(i)tt

S


is the 2nd Piola-Kirchhoff stress matrix expressed in the actual CR frame 

and d0Ve is an infinitesimal small volume in the initial element configuration. In addition, 
(i)tt

E
 denotes the Green-Lagrange strain with respect to the actual CR frame as: 

 
t t (i) t t (i) t t (i) t t (i)

L NL e{ }      E B B u , (21) 

where (i)

NL

tt
B

 is the non-linear strain-displacement matrix and is used to describe large 

strain problems [11]. Matrix (i)

L

tt
B

 can be decomposed in two parts: 
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 (i)

L1

tt

L0

(i)

L

tt
BBB

  , (22) 

where L0B only depends on the derivatives of the interpolation functions with respect to 

the natural coordinates in the initial CR system and, hence, is constant. On the other 

hand, (i)

L1

tt
B

 is estimated using the local nodal displacements from the previous iteration 

step [11]. In this paper, only small elastic strains are considered and hence, (i)

L1

tt
B

  

and (i)

NL

tt
B

 can be neglected.  

     In case of small strains, the 2nd Piola-Kirchhoff stress components are equal to the 

Cauchy stress components expressed in the CR element frame: (i)tt(i)tt
σS

  [11]. Hence, 

the global internal element forces, Eq. (18), can be rewritten as: 

 e

0(i)tt

V

T

L0T(i)
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


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The derivative in front of the integral in Eq. (23) describes the change of the approximate 

rotation-free element displacement vector with respect to the global nodal displacements 

and is introduced as a non-linear projector matrix into the global system. Detailed 

discussions about the roles and derivation of the projector matrix can be found in [1, 4, 

13]. Finally, the projector matrix, expressed in the co-rotational frame, is given as: 

 
T(i)tt(i)

S

tt(i)tt



  PPIP , (24) 

where I is the 3k×3k identity matrix and (i)

S

tt
P

 is the lever-arm matrix of the 

dimension 3k×3: 

 
t t (i) t Δt (i) t Δt (i) t Δt (i) T

S 1 2 k[spin( ) spin( )... spin( )]   P x x x  (25) 

and (i)tt




P represents the non-linear rotation-projector matrix of the dimension 3×3k, 

which allows to find the best-fit co-rotational element configuration as [1]: 
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It can be rewritten as: 

 S

0-1(i)ttT(i)tt
GUP 





   (27) 

with the 3×3 matrix: 

  
k

t t (i) 0 T t Δt (i) t Δt (i) 0 T

j j j j

j 1

{ ( ) ( )}  


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 U I v x x v  (28) 

and the constant 3×3k matrix: 

 
0 0 0 0

S 1 2 k[spin( ) spin( )... spin( )]G v v v . (29) 
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In the case of linear elastic materials, the co-rotational Cauchy stress is computed 

using the material constitutive law: 

 
(i)tt(i)tt
εHσ

  , (30) 

with constant Hooke’s matrix H and linear local strain matrix
(i)tt
ε


, which is obtained 

using the rotation-free displacements [7]: 
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e
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L0

(i)tt
uBε

  . (31) 

Finally, the internal element forces for a linear tetrahedral element can be written in 

the closed form: 
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e

tt

e

T(i)tt(i)Δtt

0
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inte,
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uKPRTF

  . (32) 

The operator A is a 3k×3k diagonal matrix of submatrices A, and eK denoting the 

element stiffness matrix with: 

 eL0

T

L0e VBHBK   (33) 

where Ve is the volume of a tetrahedral element. Matrix eK  is constant and, therefore, 

calculated once and saved. In this way, the computational effort is reduced. 

3.2. Tangent element stiffness matrix 

The tangent element stiffness matrix, expressed in the global coordinate system, can 

be calculated by the variation of the global internal element forces with respect to the 

global element displacements [1]: 
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Applying the product rule to Eq. (32), one obtains: 
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More details on Eq. (35) are available in [1, 4, 5]. The variations in Eq. (35) are: 

 (i)

e
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T
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0
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e
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  , (36) 
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Substituting Eqs. (36), (37) and (38) into Eq. (35), the resulting global tangent 

stiffness matrix is generally asymmetric and given as: 

 
T

(i)Δtt

0

(i)

Te,

tt(i)Δtt

0

(i)
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RTKRTK
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where (i)

Te,

tt
K

 is the local tangent element stiffness that can be expressed as: 
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where t Δt (i)

e,int[spin ]
F represents a 3k×3 matrix that contains k spin-matrices of the local 

nodal force vectors: 
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with local element forces (i)
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Δtt
F

  computed as follows: 
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e
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  . (42) 

Simo [14] has shown that the symmetric part of the global tangent element stiffness 

matrix is sufficient for a quadratic rate of convergence of the Newton-Raphson method, 

hence: 
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where the symmetric part of the local tangent element stiffness is given as: 
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A detailed discussion about the tangent stiffness matrix in Eq. (44) can be found in [1]. 

4. CO-ROTATIONAL COMPUTATIONAL PROCEDURE AND NUMERICAL EXAMPLES 

The proposed co-rotational framework for the calculation of small elastic strains but 

large rotation structural problems is summarized in Fig. 2 and has been implemented in 

the commercial FE software package ABAQUS using the user-defined-element subroutine 

UEL [15]. All constant variables are computed once and saved in the initialization step. 

The equilibrium of the structure in each increment is computed by an iterative process. 

The non-linear projector matrix and the element rigid-body rotation are estimated using 

the global nodal positions in each iteration step. Furthermore, the global tangent element 

stiffness matrix and the global internal element forces are computed in order to assemble 

the global system of equations for the whole structure. The solution in the current load 

increment is obtained when the convergence condition is satisfied.  
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Fig. 2 The presented co-rotational FEM with the projector matrix 

This paper is focused on the geometrically non-linear static analysis with linear 

elastic material. All the numerical examples are computed in ABAQUS. The results 

obtained by the presented CR formulation are compared to the ABAQUS results to verify 

the accuracy and assess the efficiency of the presented approach.  
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4.1. A clamped solid block 

In the first example, the static geometrically non-linear analysis of a clamped solid 

block exposed to a single force is represented. The solid block, Fig. 3, is made of steel 

(E=210000 N/mm2 and ν = 0.3) with the dimensions 400×200×50 mm. The single force F 

acts at point P in the global z-direction and has the magnitude of 1.5×107 N. The FE 

mesh contains 1420 linear tetrahedral elements C3D4. The resulting deformation is 

bending-dominated but also accompanied by torsion. 

 

Fig. 3 Geometry and boundary conditions of the solid block (left),  

FE mesh with 1420 C3D4elements (right) 

 In Fig. 4, the development of global displacements of point P with the increasing 

force is presented. A very good agreement of the obtained results by the presented CR 

formulation and those from ABAQUS is observable. In addition, the displacements in x-, 

y- and z-direction of point P are given in Tab. 1. The column entitled “Error” gives the 

relative difference with respect to the ABAQUS solution. It should be emphasized that 

this example involves the maximum principal logarithmic strains of 20%.  

 

Fig. 4 Displacements in three directions of the solid block for the load case 1.5×107 N 

(left), deformation state with deformation scale factor 1 (right) 
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To assess the efficiency of this formulation, the number of iteration steps used by 

ABAQUS as well as by the CR formulation is also listed in Tab. 1. The geometrically non-

linear analysis was performed in ABAQUS once setting the automatic load increment size 

(initial increment size: 0.2, minimum size: 10-5, maximum size 1) and then again with the 

fixed load increment size of 0.4. ABAQUS needed 38 iterations with the automatic increment 

size but did not converge with the fixed increment size used. In contrast, the CR formulation 

has converged after 24 iterations in the case of automatic increment size and after only 12 

iterations with the fixed increment size. The result is reduction of computational time of 

about 68%. It can be noted that the presented approach also allows for relatively large 

increments.  

Table 1 Results for the clamped solid block  

Cases Abaqus CR-FEM Error 

X direction  -30.78 -30.70 0,3% 

Y direction  -132.12 -132.81 0.5% 

Z direction 262.28 261.34 0.4% 

Automatic 38 Iter. 24 Iter.  

Direct Fails 12 Iter.  

Max. Log. Strains 20% 20%  

 

4.2. A three dimensional curved beam 

In the second example, a three dimensional curved beam with a single force F of 

5.5×105 N at point P is considered. The geometry and the boundary conditions are given in 

Fig. 5. The curved beam is made of steel (E = 21000 N/mm2 and ν = 0.3) with the arc length 

of 0.5×π×450 mm. The cross-section has dimensions of 40 mm × 40 mm. 

The curved beam is clamped on a one end and discretized by 3652 linear tetrahedral 

elements C3D4. Again, the deformational behavior can be seen as a combination of bending 

and torsion. To evaluate the results, the displacements of point P from the geometrically 

non-linear calculations in ABAQUS and from this CR formulation are given in Fig. 6. A 

very good agreement is obvious in this case as well. The detailed values are given in Tab. 2. 

 

Fig. 5 Geometry and boundary conditions of the curved beam for the load case 5.5×105 

N (left), mesh with 3652 C3D4 elements (right) 
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Fig. 6 Displacements [mm] in three directions of the curved beam with 3652 C3D4 

elements (left), deformation state with deformation scale factor 1 (right) 

The maximal error in the displacement components is in the y-direction and reads 1.9%. 

As for the efficiency, performing the computation with an automatic (initial increment size: 

0.2, minimum size: 10-5, maximum size 1) and fixed load increment size of 0.3, ABAQUS 

needed 31 iterations for the both cases. In contrast, the CR-formulation required 24 iterations 

for the automatic increment size and only 13 iterations for the fixed one. In addition, the 

computed maximum principal logarithmic strain was in this case 7%. The computational time 

was reduced by 58%.  

Table 2 Results for the curved clamped beam 

Cases Abaqus CR-FEM Error 

X direction 198.62    201.85  1.6% 

Y direction -142.98  -140.27  1.9% 

Z direction 470.03  470.75  0.2% 

Automatic 31 Iter. 24 Iter.  

Direct 31 Iter. 13 Iter.  

Max. Log. Strains 7% 7%  

5. CONCLUSIONS 

The paper presented a co-rotational FE formulation to simulate geometrically non-linear 

elastic behavior of 3D structures. A systematic derivation of the numerical procedure is 

given as well as a couple of examples.   

The basis of the proposed calculation framework is a co-rotational FE-formulation for 

3D geometrically non-linear deformations, where the large element rigid body rotation and 

small elastic displacements can be separately treated in an elegant manner. The element 

rigid-body rotation is efficiently computed using the polar decomposition of the deformation 

gradient, where the Newton-Raphson iterative method is applied. The rotation-free nodal 

displacements, given with respect to the local CR element coordinate system, are assumed 

to be small. The internal element force vector and the tangent element stiffness matrix are 
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estimated using a consistent linearization of the internal element energy with respect to the 

global element displacements. This results in a non-linear projector matrix, which generally 

improves the obtained results. Finally, the presented approach allows the linear tetrahedral 

element to be easily upgraded into the element for the geometrically non-linear analysis, 

requiring rather small modifications.  

A very good agreement between the results from ABAQUS and the proposed CR 

formulation validates the high accuracy of the presented approach. It was also demonstrated 

that the computational effort could be significantly reduced by using large load increments. 

This fact particularly gains importance if the method is used in combination with the 

advantages of modern hardware tools [16]. The problems in the field of structural 

mechanics with large rigid-body rotation and with relatively large strains can be efficiently 

solved using the projector matrix. With those properties, the presented formulation could be 

embedded into the software packages for multi-body system simulation to provide a greater 

versatility compared to existing solutions in describing flexible bodies undergoing large 

rigid-body rotation.    
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