
FACTA UNIVERSITATIS  

Series: Mechanical Engineering Vol. 14, No 3, 2016, pp. 251 - 268 

DOI: 10.22190/FUME1603251H 

Original scientific paper 

 METHOD OF DIMENSIONALITY REDUCTION IN CONTACT 

MECHANICS AND FRICTION: A USER'S HANDBOOK.              

II. POWER-LAW GRADED MATERIALS  

UDC 539.3 

Markus Hess, Valentin L. Popov   

Department of System Dynamics and the Physics of Friction, TU Berlin, Germany 

Abstract. Until recently, the only way of solving contact problems was to apply three-

dimensional contact theories. However, this presupposes higher mathematical and nu-

merical knowledge, which usually only research groups possess. This has changed 

drastically with the development of the method of dimensionality reduction (MDR), 

which allows every practically oriented engineer an access to the solution of contact 

problems. The simple and contact-type dependent rules are summarized in the first part 

of the user manual; they require contacts between elastically homogeneous materials. 

The present paper forms the second part of the user handbook and is dedicated to the 

solution of contact problems between power-law graded materials. All the MDR-rules 

are listed with which normal, tangential and adhesive contacts between such high-

performance materials can be calculated in a simple manner. 

Key Words: Normal Contact, Tangential Contact, Adhesion, Power-law Graded Ma-

terials, Partial Slip, Method of Dimensionality Reduction 

1. INTRODUCTION 

The classical dimensionality reduction method is designed to solve contact problems 

between elastically homogeneous materials. Although it does not appear at first sight, the 

MDR unites all three-dimensional contact theories and transforms them in such a way that 

only simple rules remain which have to be applied to equivalent, one-dimensional contact 

problems [1]. These rules are summarized in the first part of the user handbook [2], as-

suming axisymmetric profiles and compact contact areas. However, Argatov et al. [3] 

showed that the MDR is also valid for arbitrarily shaped and non-compact contact areas. 

                                                           
Received October 24, 2016 / Accepted November 29, 2016 

Corresponding author: Markus Hess  

Institute of Mechanics, Berlin Institute of Technology, Strasse des 17. Juni 135, 10623 Berlin, Germany  

E-mail: markus.hess@tu-berlin.de 



252 M. HESS, V. POPOV 

The enormous technological progress in recent times is closely linked to the develop-

ment of high-performance materials. In order to meet the increased demands, functionally 

graded materials (FGM) are used, which include the elastically power-law graded materi-

als. They are characterized by a modulus of elasticity which increases perpendicularly to 

the half-space surface according to the power law: 
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where c0 denotes the characteristic depth in which elastic modulus E0 prevails inde-

pendently of the exponent of the elastic inhomogeneity (see Fig. 1).  

 

Fig. 1 Axisymmetric contact between a rigid indenter  

and an elastically power-law graded half-space  

Contact mechanics of such materials were mainly developed by Booker et al. [4, 5] 

and Giannakopoulos and Suresh [6] for normal contacts without adhesion and Chen et al. 

[7] and Jin et al. [8] for adhesive contacts. Due to the interest in investigating the behavior 

of elastically inhomogeneous, biological structures as well as the adhesive material behav-

ior in micro- and nanosystem technology the latter is still a subject of current research. An 

analytical solution of the tangential contact has not yet been published, but Hess [9] pre-

sented the solution at a recent workshop. The basic ideas were also mentioned in a further 

conference paper [10]. The key to the solution of the tangential contact lies once more in 

the superposition principle of Ciavarella [11] and Jäger [12]. Analogously to contact me-

chanics of homogeneous materials, all the above-mentioned contact theories for the calcu-

lation of contacts between power-law graded materials can again be suitably transformed 

by means of MDR, so that equivalent one-dimensional models are created which satisfy 

simple rules. The general foundations for the mapping of contacts between heterogeneous 

materials were given by Popov [13]. The derivation of all MDR-rules for the exact mapping 

of non-adhesive and adhesive normal contacts between power-law graded materials goes 

back to Hess [14, 15]. In this paper, all the rules are listed and their easy handling for the 

solution of normal, tangential and adhesive contacts is explained by means of examples. 
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2. TWO INTRODUCTORY STEPS OF THE MDR 

The basic procedure for solving contact problems by MDR is independent of whether we 

consider homogeneous or inhomogeneous materials. Only the rules look a bit different. 

Again, we would like to assume axisymmetric contacts. Furthermore, the exponent of elastic 

inhomogeneity k and characteristic depth c0 of the contacting bodies should be the same. The 

two solids should thus be able to distinguish themselves only in the Poisson's ratios ν1, ν2 and 

/ or in the moduli of elasticity E01, E02 prevailing in the characteristic depth. 

2.1. The first step: Mapping of material properties 

The power-law graded properties of the contacting bodies are taken into account with-

in the MDR by linear elastic springs of suitable stiffness. In addition to a normal stiffness, 

each spring also has an independent tangential stiffness. The spring stiffnesses related to 

the distance of springs Δx are called foundation moduli cN, respectively cT. These have to 

be chosen as follows: 
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Coefficients hN and hT in the foundation moduli according to Eqs. (2) and (3) are compli-

cated but well-defined functions depending on Poisson's ratio ν and exponent k of the 

elastic inhomogeneity. They are given in the appendix. The decisive factor at the founda-

tion moduli is that they depend on coordinate x (see Fig. 2). Both stiffnesses increase with 

the lateral distance from the center point of the contact to exactly the same power law 

according to which, in the original problem, the elastic modulus increases perpendicularly 

to the half-space surface. In the special case of  homogeneous half-space k  0, the fol-

lowing holds: 

 
2

(0, ) 1 and (0, )
(1 )(2 )

N i T i

i i

h h   
 

 . (4) 

Then coefficients cN and cT are constant and equal to effective elastic moduli E
* 
and G

*
 [2].  

 

Fig. 2 Series of infinitesimaly adjacent, linear spring elements whose normal and  

tangential stiffness increase with the lateral distance from the midpoint of contact  
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2.2. The second step: Transformation of profile 

The second preliminary step involves the transformation of given three-dimensional 

contact profile f(r) into an equivalent plane profile g(x). The transformation and reverse 

transformation for the profile functions are [14]: 
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For better understanding, Fig. 3 visualizes the transformation of the profile. It should 

be noted that the equivalent plane profile is sometimes called equivalent 1D profile since 

it belongs to the equivalent 1D system. 

 

Fig. 3 Tranformation of the 3D-profile into an equivalent plane profile  

2.3. Example for the MDR transformation 

As an example we consider the transformation of a profile whose shape is described 

by the power function: 

 f(r)  An r
n
   with   nℝ⁺, An  const  . (7) 

Application of Eq. (5) to the profile according to Eq. (7) leads to the following equivalent 

profile: 
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where B(x,y) is the complete beta function. Eq. (8) clearly indicates that the equivalent 

profile results from a simple, vertical scaling of the original profile. The scaling factor 

(n,k) is dependent on the exponent of the power function and the exponent of the elastic 

inhomogeneity. The scaling factor increases with increasing exponent of the power-law 

profile (see Fig. 4).  
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Fig. 4 Dependence of scaling factor  on power-law exponent n for different  

exponents k of the power-law graded material (adopted from [14]) 

In the homogeneous case, the known values (1,0)/2 for the conical and (2,0)2 for 

the parabolic indenter are obtained. The equivalent one-dimensional profiles of the basic 

contact profiles are listed in Table 1. 

Table 1 Basic three-dimensional profiles and their equivalent one-dimensional profiles 

 Flat-ended Parabolic Conical Power-law 
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3. CALCULATION RULES OF MDR FOR SOLVING NORMAL CONTACTS  

BETWEEN POWER-LAW GRADED MATERIALS WITHOUT ADHESION 

The MDR procedure for solving contact problems between power-law graded materi-

als is the same as in the classical MDR for homogeneous materials.  
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Fig. 5 Equivalent 1D contact problem of the 3D contact problem  

between two power-law graded half-spaces  

The one-dimensional profile according to Eq. (5) is pressed into an elastic foundation of normal 

modulus given by Eq. (2) (see Fig. 5). The normal surface displacement at point x within the 

contact area results from the difference between indentation depth d and profile form g: 

 ,1D ( ) : ( )zu x d g x   . (10) 

At the edge of non-adhesive contact |x|a the surface displacement must be zero: 

 ,1 ( ) 0 ( )z Du a d g a   .  (11) 

This equation determines the relationship between indentation depth d and contact radius a. 

The sum of all spring forces must correspond to the normal force in equilibrium: 
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Eqs. (11) and (12) provide the penetration depth and the normal force as a function of the 

contact radius. The pressure distribution in the original three-dimensional system can be 

determined with the help of the one-dimensional displacement using the integral transfor-

mation: 
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The foundation modulus at position c0 takes into account the elastic parameters of the 

elastically inhomogeneous materials in contact. From Eq. (2) follows: 
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The normal surface displacement outside of the contact area is given by the transformation: 
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3.1. Examples for normal contacts without adhesion 

3.1.1. Parabolic contact 

As the first example we consider a rigid, parabolic indenter, which is pressed into a 

power-law graded half-space. The shape function of the parabolic contact is defined by: 
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Using the transformation formula (5) yields the shape function of the equivalent one-

dimensional profile (see also Table 1): 
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Thereby the displacement of the Winkler foundation is known, so that the indentation 

depth immediately emerges from Eq. (11): 

 
2

,1 ( ) 0 ( ) ( )
( 1)

z D

a
u a d a g a

k R
   


 . (18) 

According to Eq. (12), the normal force results from the sum of the spring forces, taking 

into account the increasing foundation modulus from the center of the contact line accord-

ing to Eq. (2): 
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To calculate the pressure distribution in the contact area, we need the first derivative of 

the 1D displacement:  
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and the adjusted elastic parameter (one body was assumed to be rigid): 
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From Eq. (13) by taking Eqs. (20) and (21) into account, the pressure distribution is: 
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The application of Eq. (15) provides the normal displacement of the surface outside of the 

contact area: 
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with the incomplete beta function:  
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It is easy to verify that from Eqs. (18), (19) as well as Eqs. (22), (23) in the particular case 

k  0 the solutions of the Hertzian contact exactly follow. 

3.1.2. Conical contact 

For the conical contact, the profile functions of the original and the equivalent system 

are listed in Table 1. They are: 
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Table 2 summarizes the solutions of the conical contact, which results from the MDR 

rules Eqs. (10)-(13) and (15). Again, one body was assumed to be rigid. 

Table 2 Solutions to the normal contact between a rigid conical indenter and a power-

law graded half-space 
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Since the beta function in the pressure distribution contains some negative arguments, we 

extend the definition according to Eq. (24), in which we make use of its representation by 

hypergeometric series: 
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4. ADHESIVE NORMAL CONTACT BETWEEN POWER-LAW GRADED MATERIALS 

For the solution of the normal contact with adhesion between two power-law graded 

materials by means of MDR, there is only a small change to the non-adhesive normal con-

tact: the rule according to Eq. (11) for calculating the indentation depth as a function of 

the contact radius must simply be replaced by rule [14]: 
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Clearly, this means that the equilibrium state of the contact with adhesion is found when 

the elongations of the springs at the edge of contact reach defined value Δℓmax(a)  (see 

Fig. 6). 

 

Fig. 6 Illustration of the MDR rule for an adhesive contact  

between power-law graded materials 

In addition, the MDR solution provides a simple way to calculate the critical contact 

radii, and thus the (maximum) pull-off force as well as the minimum indentation depth 

The critical contact radii must fulfill the following condition:  
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Thus, the slope of the equivalent profile at the contact edge is decisive for reaching the 

critical states. The different definition of coefficient  C k  is linked to whether a fixed-

load or fixed-grips condition is present. With conditions (27), (28) and the general rules 

of the MDR procedure (10), (12), (13) and (15), every standard contact problem with 

adhesion can be easily solved. A few examples are presented below. 

4.1. Examples for adhesive normal contacts 

4.1.1. Parabolic contact 

We refrain from re-calculating the equivalent profile for the parabolic contact at this 

point and adopt the result of Eq. (17):  
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Considering the definition of the displacement of the Winkler foundation from Eq. (10), the 

indentation depth as a function of the contact radius for the adhesive contact follows from 

the separation criterion (27):  
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where we abbreviated E
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). According to Eq. (12), the normal force must again 

correspond to the sum of all spring forces. It differs from the normal force in the case of 

the non-adhesive contact only by a part which results from an additional rigid-body trans-

lation Δℓmax(a) of all springs:  
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For the calculation of the critical contact radii from condition (28) (limit stability), on-

ly the slope of the equivalent profile at the contact edge is required. From Eq. (29) it fol-
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Inserting the critical contact radii according to Eq. (32) into Eqs. (30) and (31) provides 

the critical indentation depths and normal forces: 
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It is needless to say that Eqs. (30)-(34) developed by MDR agree exactly with solutions 

from three-dimensional theory by Chen et al. [7]. They drew attention to the fact that, 

according to Eq. (34), the maximum pull-off force is independent of the elastic parame-

ters and independent of the characteristic depth as in the homogeneous case. For the cal-

culation of the pressure distribution according to Eq. (13), we need the one-dimensional 

displacement respectively its derivative, which we specify here again to clarify the treat-

ment of the finite jump at the contact edge (see Fig. 6):  
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In Eqs. (35) and (36) H(…) denote the Heaviside function and (…) the delta distribu-

tion. After insertion of Eq. (36) in Eq. (13) and taking into account the filter property of 

the delta distribution, the pressure distribution results in: 

1 1
2 2* 1 * 12 2

2

0 0

2 ( , ) 2 ( , )
( , ) 1 1

( 1)

k k

k k

N N

k k

h k E a h k E ar r
p r a

a ac k R c

 

         
         

           

.  (37) 

4.1.2. Power-law contact profile  

The equivalent profile of an indenter whose shape is a power function according to 

Eq. (7) has already been calculated in Eq. (8): 

 ( ) ( ) ( , ) | |n n
n nf r A r g x n k A x      , nℝ⁺ (38) 

wherein (n,k)  has been defined in Eq. (9). The solutions of the adhesive contact between 

a power-law graded half-space and a rigid indenter whose profile is given by Eq. (38) 

using MDR are summarized in Table 3. 
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Table 3 Solutions to the adhesive contact between a rigid indenter whose shape  

is a power function and a power-law graded half-space 

 Adhesive contact of power-law profile 
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5. TANGENTIAL CONTACT BETWEEN TWO POWER-LAW GRADED HALF-SPACES 

We now consider a partial-slip problem between two power-law graded half-spaces 

with the same exponent k of elastic inhomogeneity, but different elastic parameters E0 and 

ν. The solids are initially pressed against each other with a normal force FN and subse-

quently loaded with a tangential force Fx in the x-direction (see Fig. 7). The axisymmetric 

gap function is given by f (r). Let us assume that normal and tangential contacts are un-

coupled, which is strictly permitted only if either [9]: 

 both materials are equal: ν1  ν2  ν  E01  E02 : E0,  

 one material is rigid and the other one has a Poisson's ratio equal to the  Holl-ratio 

[16]: E0i    νj  1/(2+k)  with  i  j or  

 both materials have a Poisson's ratio which corresponds to the Holl-ratio:  

ν1  ν2  1/(2+k). 
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Fig. 7 Tangential contact between two power-law graded half-spaces 

It is well-known that the contact region consists of an inner stick and outer slip region. In the 

stick domain all points undergo the same tangential displacement x. The (undirectional 

assumed) tangential stresses are determined by Coulomb’s law of friction: 

 stick( ) ( ) for ( , )r p r x y A     , (39) 

 stick( ) ( ) for ( , ) \r p r x y A A     . (40) 

We denote the radius of the stick domain by c.  

The equivalent model for the tangential contact is shown in Fig. 8. As already mentioned, 

each spring has normal and tangential stiffness according to Eqs. (2) and (3). We note once 

again that these stiffnesses depend on the lateral coordinate according to a power law.  

  

Fig. 8 Equivalent model for the partial-slip problem between two power-law graded  

half-spaces; each spring has normal and tangential stiffness, which are independent 

of each other  

Due to the uncoupled normal and tangential contact, we assume the solution of the normal 

contact problem according to Section 3 as already known. The MDR-rules for the solu-

tion of the tangential contact require Amonton's law for each spring. The tangential line 

load is thus defined as follows: 
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,1

( )

( ) for | | (stick)

( ) ( ) ( ) for | | (slip)

T x

x N z D

xzq

c x x c

q x c x u x c x a



 


   



 . (41) 

It takes into account both the rigid-body translation of the stick area and the Coulomb 

friction in the sliding area. The calculation of the stick radius is based on the continuity of 

the tangential line load at the transition between stick and slip domain: 

 ,1

( )
lim ( ) lim ( ) ( ) ( )

( )

N
x x x x z D

x c x c
T

c c
q x q x q c u c

c c  
      .  (42) 

Analogously to the normal contact problem, the tangential force results from the sum of 

the tangential spring forces. If, instead of the spring forces, the line load from Eq. (41) is 

used, the calculation formula is:  

 ,1

0

( ) ( ) 2 ( ) 2 ( ) ( )

a c a

x x T x N z D

a c

F a q x dx c x dx c x u x dx


        . (43) 

It is also possible to deduce the pressure distribution of the original contact problem from 

the equivalent model. For this purpose, the knowledge of the tangential line load is sufficient 

since: 

 
1

2 2
1

2

( )1 d
( ) : ( ) d

d ( )

k

x
zx

r

k

x q x
r r x

r r x r

 


    

 
  . (44) 

It should be noted that the tangential line load according to Eq. (41) can also be expressed 

as a difference of the vertical line loads: 

  ( ) ( , ) H( | | ) ( , ) H( | | )x z zq x q x a a x q x c c x        . (45) 

where qz (x,a) is the normal line load actually acting in the equivalent model, and  

qz (x,c) is one that belongs to a smaller contact radius, stick radius c. 

5.1. Example: Parabolic tangential contact between power-law graded half-spaces  

In the following the same power-law graded materials are assumed which allow un-

coupling of normal and tangential contact. The normal contact problem has already been 

described by means of the MDR in the examples of Section 3. The only difference is that 

one solid is assumed to be rigid. In order to be able to adopt the solution, we only have to 

adjust the stiffness, which is half as large, since both bodies are elastic. Regardless of it, 

the stiffness is shown here again: 

 0

2

0

( , ) | |
( )

2(1 )

k

N
N

h k E x
c x

c

 
  

  
 , (46) 

 0

0

1 | |
( ) ( , )

2

k

T T

x
c x h k E

c

 
   

 
 . (47) 
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The one-dimensional normal displacement of the Winkler foundation has already been 

determined (see Eqs. (20), (18)) so that the tangential line load can be specified: 

 2 2

( ) for | | (stick)

( )
( ) for | | (slip)

(1 )

T x

x

N

c x x c

q x a x
c x c x a

k R

 


 
   

 . (48) 

From the continuity requirement Eq. (42) at the points | x |c of the tangential line load it fol-

lows: 

 
2 2

2 2

( , )
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(1 ) ( , )(1 )

N
x

T

h k a c

h k k R a

 
    

    
 . (49) 

The maximum displacement before macroscopic sliding (full slip) begins is thus:  

 
2

,max 2

( , )

(1 ) ( , )(1 )

N
x

T

h k a

h k k R

 
 

  
.  (50) 

Integration of the tangential line load (48) over contact length 2a according to Eq. (43) yields: 

 

3
3 2
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1 1 1

k
k

x x

N x

F c

F a


   
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,  (51) 

where we have taken into account Eqs. (49) and (50) on the right. 

 

Fig. 9 Stick radius as a function of tangential force in normalized representation  

for different exponents of elastic inhomogeneity k   

Fig. 9 shows the dependence of the stick radius on the tangential force for different 

exponents k. The tangential force as a function of the tangential displacement for the spe-
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cial case ν1  ν2  1/(2+k) is depicted in Fig. 10. In this case, the prefactor in the maxi-

mum displacement deflates and from Eq. (50) it follows: 

 
2

,max

3

2
x

k a

R


    . (52) 

In Fig. 10 the tangential shift was normalized to the maximum tangential displacement 

in the homogeneous case. As can be seen from Eq. (52), the tangential shift increases with 

increasing k. When the state of full-slip is reached, a 30% larger displacement is obtained 

for k0.9 in comparison to the homogeneous case. 

 

Fig. 10 Normalized representation of the dependence between tangential force  

and tangential displacement for different exponents of elastic inhomogeneity  

and specification of ν1  ν2  1/(2+k) 

Finally, it should be noted that we have assumed the usual approximations which are 

already contained in the classic solution of Cattaneo [17] and Mindlin [18] and have been 

discussed in detail by Ciavarella [11]. With reference to the corresponding paper we 

therefore waive an explicit listing.  

6. CONCLUSIONS 

This paper presents all the essential rules of the MDR that allow the solution of con-

tact problems between power-law graded materials. We have carefully distinguished be-

tween normal, tangential and adhesive contacts and explained the simple application of 

the rules by means of examples. It does not need to be mentioned that despite its simplici-

ty the MDR reproduces exactly all the results of the complicated three-dimensional theo-

ry. We would like to emphasize that the analytical solution of the tangential contact be-

tween power-law graded materials is an absolute novelty, since a derivation from the 

three-dimensional theory was missing so far. It was only in the run-up to the present pub-
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lication that this gap could be closed [9]. Clearly, all MDR rules for solving contact prob-

lems between elastically homogenous materials are a special case of the rules presented here. 

The presented extension of the MDR is of interest to a number of current research areas 

since functionally-graded materials are gaining in importance. These include tribology, 

nanotechnology, biostructure mechanics and medicine. Completely analogous to the calcula-

tion of wear profiles between homogeneous materials [19, 20], the investigation of fretting 

between elastically inhomogeneous materials should no longer constitute a barrier. 

The same applies to the extension of the current numerically simulated impact problems 

between elastically homogeneous spheres [21, 22] onto elastically inhomogeneous ones. 

Based on the MDR-rules presented here, which are comprehensible to everyone, the devel-

opment of asymptotic solutions [23] for complicated contact configurations between power-

law graded materials is also likely to be much easier. 

We would like to point out that the theory presented here is limited to power-law 

graded materials. The extent to which the theory can be applied to other laws of elastic 

inhomogeneity remains a challenging, future task. 

APPENDIX 

The coefficients contained in the foundation moduli according to Eqs. (2), (3) are de-

fined as follows [9, 15]: 
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  (54) 

with 
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and 
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