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Abstract. In this paper a new plate finite element (FE) for the analysis of composite and 
sandwich plates is proposed. By making use of the node-variable plate theory assumptions, 
the new finite element allows for a simultaneous analysis of different subregions of the 
problem domain with different kinematics and accuracy, in a global/local sense. In particular 
higher-order theories with an Equivalent-Single-Layer (ESL) approach are simultaneously 
used with advanced Layer-Wise (LW) models. As a consequence, the computational costs can 
be reduced drastically by assuming refined theories only in those zones/nodes of the 
structural domain where the resulting strain and stress states present a complex distribution. 
On the contrary, computationally cheaper, low-order kinematic assumptions can be used in 
the remaining parts of the plate where a localized detailed analysis is not necessary. The 
primary advantage of the present variable-kinematics element and related global/local 
approach is that no ad-hoc techniques and mathematical artifices are required to mix the 
fields coming from two different and kinematically incompatible adjacent elements, because 
the plate structural theory varies within the finite element itself. In other words, the structural 
theory of the plate element is a property of the FE node in this present approach, and the 
continuity between two adjacent elements is ensured by adopting the same kinematics at the 
interface nodes. According to the Unified Formulation by Carrera, the through-the-thickness 
unknowns are described by Taylor polynomial expansions with ESL approach and by 
Legendre polynomials with LW approach. Furthermore, the Mixed Interpolated Tensorial 
Components (MITC) method is employed to contrast the shear locking phenomenon. Several 
numerical investigations are carried out to validate and demonstrate the accuracy and 
efficiency of the present plate element, including comparison with various closed-form and 
FE solutions from the literature. 
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1. INTRODUCTION 

The development of new materials for advanced engineering applications leads to a 

complex analysis of layered structures in practice. This is mainly due to the complex 

anisotropy that characterizes this kind of structures and that leads to intricate mechanical 

phenomena. In some cases, structures may contain regions where three-dimensional (3D) 

stress fields occur. To accurately capture these localized 3D stress states, solid models or 

higher-order theories are necessary. The Finite Element Method (FEM) has a predominant 

role among the computational techniques implemented for the analysis of layered structures. 

The majority of FEM theories available in the literature are formulated by axiomatic-type 

theories. The conventional FEM plate model is the classical Kirchhoff-Love theory, and 

some examples are given in [1, 2], whose extension to laminates is known as the Classical 

Lamination Theory (CLT) [3]. Another classical plate element is based on the First-order 

Shear Deformation Theory (FSDT), which rely on the works by Reissner [4] and Mindlin 

[5]. To overcome the limitations of classical theories, a large variety of plate finite element 

implementations of higher-order theories (HOT) have been proposed in the last years. HOT-

based C
0 finite elements (C

0 means that the continuity is required only for the unknown 

variables and not for their derivatives) were discussed by Kant et al. [6] and Kant and 

Kommineni [7]. Many other papers are available in which HOTs have been implemented for 

plates, and more details can be found in the books by Reddy [8] and Palazotto and Dennis 

[9]. The HOT type theories presented are ESL models; the variables are independent of the 

number of layers. Differently the LW models permit to consider different sets of variables 

per each layer. Finite element implementations of Layer-Wise (LW) theories in the 

framework of axiomatic-type theories have been proposed by many authors, among which 

Noor and Burton [10], Reddy [11], Mawenya and Davies [12], Rammerstorfer et al. [13]. 

However, the high computational costs represent the drawback of refined plate theories 

or three-dimensional analyses. In recent years considerable improvements have been 

obtained towards the implementation of innovative solutions for improving the analysis 

efficiency for a global/local scenario. In this manner, the limited computational resources 

can be distributed in an optimal manner to study in detail only those parts of the structure 

that require an accurate analysis. In general, two main approaches are available to deal with 

a global/local analysis: refining the mesh or the FE shape functions in correspondence with 

the critical domain; formulating multi-model methods, in which different subregions of the 

structure are analyzed with different mathematical models. The coupling of a coarse mesh 

and a refined one can be addressed as single-theory or single-model methods, and many 

techniques are present in literature [14, 15, 16]. In general, multi-theory methods can be 

divided into sequential or multistep methods, and simultaneous methods. In a sequential 

multi-model, the global region is analyzed with an adequate model with a cheap computational 

cost to determine the displacement or force boundary conditions for a subsequent analysis at 

the local level. The local region can be modeled with a more refined theory, or it can be 

modeled with 3-D finite elements, see [17, 18, 19, 20]. The simultaneous multi-model 

methods are characterized by the analysis of the entire structural domain, where different 

subregions are modeled with different mathematical models and/or distinctly different 

levels of domain discretization, in a unique step. One of the simplest types of simultaneous 

multi-model methods for composite laminates analysis is the concept of selective ply 

grouping or sublaminates [21, 22, 23]. In the literature, the local region (i.e., the region 
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where an accurate stress analysis is desired) is generally modeled by using 3-D finite 

elements in the domain of a selective ply grouping method. Recently, the authors have 

developed multi-model elements with variable through-the-thickness approximation by 

using 2-D finite elements for both local and global regions [24, 25, 26]. In this approach, 

the continuity of the primary variables between local and global regions was straightforwardly 

satisfied by employing Legendre polynomials. Another well-known method to couple 

incompatible kinematics in multi-model methods is the use of Lagrange multipliers, which 

serve as additional equations to enforce compatibility between adjacent subregions. In the 

three-field formulation by Brezzi and Marini [27], an additional grid at the interface is 

introduced. The unknowns are represented independently in each sub-domain and at the 

interface, where the matching is provided by suitable Lagrange multipliers. This method was 

recently adapted by Carrera et al. [28, 29, 30] to couple beam elements of different orders and, 

thus, to develop variable kinematic beam theories. Ben Dhia et al. [31, 32, 33, 34] proposed the 

Arlequin method to couple different numerical models by means of a minimization procedure. 

This method was adopted by Hu et al. [35, 36] for the linear and non-linear analysis of 

sandwich beams modeled via one-dimensional and two-dimensional finite elements, and by 

Biscani et al. [37] for the analysis of beams and by Biscani et al. [38] for the analysis of 

plates. Reddy and Robbins [39] and Reddy [40] presented a multiple-model method on the 

basis of a variable kinematic theory and on mesh superposition in the sense of Fish [41] and 

Fish and Markolefas [42]. Coupling was obtained by linking the FSDT variables, which are 

present in all the considered models, without using Lagrangian multipliers. The coupling of 

different kinematics model in the framework of composite beam structure, using the 

extended variational formulation (XVF), is presented in [43], sinus model and classical 

kinematics are coupled into non-overlapping domains. In the present work, a new 

simultaneous multiple-model method for 2D elements with node-dependent kinematics is 

developed. This node-variable capability enables one to vary the kinematic assumptions 

within the same finite plate element. The expansion order of the plate element is, in fact, a 

property of the FE node in the present approach. Therefore, between the finite elements, the 

continuity is ensured by adopting the same expansion order in the nodes at the element 

interface. This node-dependent finite element has been used by the authors in [44] using 

classical and HOT-type theories; Taylor polynomials were used with an ESL approach. The 

novelty of the present work lies in the combination of HOT-type and advanced LW theories 

in the same finite element. In this manner, global/local models can be formulated without 

using any mathematical artifice. As a consequence, computational costs can be reduced 

assuming refined models only in those zones with a quasi-three-dimensional stress field, 

whereas computationally cheap, low-order kinematic assumptions are used in the remaining 

parts of the plate structure. In this paper, the governing equations of the node-variable 

kinematic plate element for the linear static analysis of composite structures are derived from 

the Principle of Virtual Displacement (PVD). Subsequently, FEM is adopted and the Mixed 

Interpolation of Tensorial Components (MITC) method [45, 46, 47, 48] is used to contrast 

the shear locking. The developed methodology is, therefore, assessed and used for the 

analysis of multilayered cantilevered plates with concentrated loads, cross-ply plates with 

simply-supported edges and subjected to a localized pressure load, and asymmetric 

laminated sandwich plates simply-supported and subjected to a localized pressure load. The 

results are compared with various theories and, whenever possible, with exact solutions 

available from the literature. 
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2. REFINED AND HIERARCHICAL THEORIES FOR PLATES 

In this paper, different kinematic assumptions in different subregions of the problem 

domain are made by a new finite element which allows a simultaneous multi-model analysis, 

without ad-hoc techniques and mathematical artifices that are usually required to mix the 

fields coming from two different kinematic models. The present plate structural theory 

varies within the finite element itself. 

To highlight the capabilities of the present formulation, a four-node plate element with 

node-dependent kinematics is shown in Fig. 1. The element proposed in this example makes 

use of a Layer-Wise theory of the first order at node 1. On the other hand, a second-order 

refined theory is employed at node 2. At node 3, a third order expansion is adopted. Finally, 

a Layer-Wise theory of the second order is assumed at node 4. As will be clear further in the 

paper, the choice of the nodal plate theory is arbitrary and node-variable kinematic plate 

elements will be used to implement multi-model methods for a global-local analysis. Before 

discussing the present formulation, a brief overview of the refined and advanced plate 

theories is given below or the sake of completeness. Plates are bi-dimensional structures in 

which one dimension (in general the thickness in the z direction) is negligible with respect to 

the other two dimensions. The geometry and the reference system that are adopted 

throughout the present work are shown in Fig. 1. 

 

Fig. 1 Example of sandwich structure described by plate element  

with node-dependent kinematics 

2.1. Higher-Order Theories 

In order to overcome the limitations of classical theories, a large variety of plate 

higher-order theories (HOT) have been proposed in the past and recent literature. As a 

general guideline, it is clear that the richer the kinematics of the theory, the more accurate 

the 2D model becomes. HOT-type theories can be expressed by making use of Taylor-like 
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expansions of the generalized unknowns along the thickness to formulate Equivalent-Single-

Layer (ESL) models. In the case of generic expansions of N terms, HOT displacement field can 

be expressed as in Eq. (1). For example, if a parabolic expansion order is taken into account, 

a graphical representation of a deflection can be depicted as in Fig. 2a. Moreover, Fig. 2b 

pictorially shows the capabilities of a generic HOT model, which can address complex 

kinematics in the thickness direction. 
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a) HOT-theory with parabolic expansion order N = 2       b) HOT-theory with generic expansion order 

Fig. 2 Geometrical representation of the Higher-Order Theories 

For the sake of completeness, the classical models, Classical Lamination Theory (CLT) 

[1, 2, 3] and First-order Shear Deformation Theory (FSDT) [4, 5] kinematics, are particular 

cases of the full linear expansion, obtained from 1 imposing N = 1. For more details see 

[49]. Therefore, it is well known in literature that linear models are affected by the problem 

of the Poisson Locking (PL) phenomenon. The remedy for the Poisson locking, apart from 

using higher-order theories, is to modify the Elastic Coefficients of the material. The PL 

phenomenon originates from constitutive laws which state the intrinsic coupling between in- 

and out-of-plane strain components. Classical plate theories correct the locking phenomena 

by imposing that the out-of-plane normal stress is zero. This hypothesis yields reduced 

material stiff- ness coefficients which have to be accounted in the Hooke’s law. Therefore, in 

literature, the correction of the material coefficients does not have a consistent theoretical 

proof. This means that the adoption of reduced material coefficients does not necessarily 

lead to the exact 3D solution, as shown in [50]. For the sake of clarity and simplicity of the 

present method explanation, the results presented in this work, with the full linear expansion 

kinematics, are not corrected for the PL phenomena. 

2.2. The Unified Formulation framework 

According to Unified Formulation by Carrera [49, 51, 52, 53], refined models can be 

formulated in a straightforward manner by assuming an expansion of each of the primary 

variables by arbitrary functions in the thickness direction. Thus, each variable can be treated 

independently of the others, according to the required accuracy. This procedure becomes 

extremely useful when multi-field problems are investigated such as thermoelastic and 

piezoelectric applications [54, 55, 56, 57]. In a displacement-based formulation, in fact, the 

three-dimensional displacement field is the combination of through-the-thickness functions 

weighted by the generalized unknown variables: 
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Similarly, in a compact form one has: 

 ( , , ) ( ) ( , ) 0, 1,...,s sx y z F z x y s N u u  (3) 

where u(x, y, z) is the three-dimensional displacement vector, u(x, y, z) = [u, v, w]; Fs are 

the thickness functions depending only on z; uS is the generalized displacement vector of 

the variables; s is a sum index; and N is the number of terms of the theory expansion. 

Depending on the choice of thickness functions Fs, and the number of terms in the plate 

kinematics N, various theories can be implemented. 

2.3. Advanced Theories  

The ESL models formulated with Taylor-like thickness functions, however, may not be 

sufficiently accurate to describe adequately the multilayered structures in which, due to 

their intrinsic anisotropy, the first derivative of the displacement variables in the z-

direction is discontinuous. Nevertheless, it is possible to reproduce the zig-zag effects in the 

ESL models by modifying opportunely Fs functions, for example by adding the Murakami 

functions [58, 59]. On the other hand, plate models with Layer-Wise (LW) capabilities can 

be implemented by describing the displacement components at the layer level, possibly by 

using a combination of Lagrange and Legendre-like polynomial as Fs thickness functions 

[60, 61]. In the case of Layer-Wise (LW) models, the displacement is defined at k-layer 

level: 
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in which Pj  = Pj (ζk
) is the Legendre polynomial of j-order defined in the ζ

k
-domain:    

−1 ≤ ζ
k  ≤ 1; P0  = 1, P1  = ζ

k
, P2  = (3ζk

2
 − 1)/2, P3  = (5 ζk

3 − 3 ζk)/2, P4  = (35 ζk
4 − 30ζk

2 + 3)/8. 

The top (t) and bottom (b) values of the displacements are used as unknown variables and 

one can impose the following compatibility conditions: 

 111  

l

k

b

k

t N,kuu  (6) 

For example, if a parabolic expansion order is taken into account, a graphical representation 

of a deflection can be depicted as in Fig. 3. 
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Fig. 3 Geometrical representation of a parabolic layer-wise model  

deflection on a two layered plate 

3. FINITE ELEMENT APPROXIMATION 

3.1. Constitutive and geometrical relations for plates 

The definition of the 3D constitutive equations permits to express the stresses by 

means of the strains. The generalized Hooke’s law is considered, by employing a linear 

constitutive model for infinitesimal deformations. In a composite material, these equations 

are obtained in material coordinates (1, 2, 3) for each orthotropic layer k and then rotated 

in the general reference system (x, y, z). Therefore, the stress-strain relations after the 

rotation, calculated for each layer k, are: 

 kkk
εCσ   (7) 

where the stress and strain vectors have six components: 
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and C is the material elastic coefficients matrix defined as follows: 
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For the sake of brevity, the expressions that relate material coefficients Cij to Young’s 

moduli E1, E2, E3, shear moduli G12, G13, G23 and Poisson ratios 12, 13, 23, 21, 31, 32 
are not given here. They can be found in many reference texts, such as [11]. 

The geometrical relations enable one to express strain vector s in terms of  displacement 

vector u for each layer k: 
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k
uDε   (10) 

where Dg is the geometrical vector containing the differential operators defined as follows: 
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3.2. Node-dependant kinematics for plate finite elements 

By utilizing an FEM approximation, the generalized displacements of Eq. (3) can be 

expressed as a linear combination of the shape functions to have: 

 s sj( , ) ( , ) 1, ...,jx y N x y j u u (nodes per element) (12) 

where usj is the vector of the generalized nodal unknowns, Nj can be the usual Lagrange 

shape functions and j denotes a summation on the element nodes. Since the principle of 

virtual displacements in used in this paper to obtain the elemental FE matrices, it is useful 

to introduce the finite element approximation of the virtual variation of generalized 

displacement vector u , 

 i( , ) ( , ) 1, ...,ix y N x y j   u u (nodes per element) (13) 

In Eq. (13),  denotes the virtual variation, whereas indexes  and i are used instead of s 

and j, respectively, for the sake of convenience. 

In this work, and according to Eqs. (3), (12) and (13), thickness functions FS and F , 

which determine the plate theory order, are independent variables and may change for 

each node within the plate element. Namely, the three-dimensional displacement field and 

the related virtual variation can be expressed to address FE node-dependent plate 

kinematics as follows: 

 
( , , ) ( ) ( , ) 0, 1, ..., 1, ..., (nodes per element)

( , , ) ( ) ( , ) 0, 1, ..., 1, ..., (nodes per element)

j j

s j sj

j j

j sj

x y z F z N x y s N j

x y z F z N x y N i  

  
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u u

u u
(14) 

where subscripts , s, i, and j denote summation. Superscripts i and j denote node 

dependency, such that for example F
i is the thickness expanding function and N

i is the 

number of expansion terms at node i, respectively. As example, the displacement field of the 

node-variable kinematic plate element as discussed in Fig. 1 is described in detail hereafter. 

The global displacement field of the element is approximated as follows: 

 Node 1 Plate Theory = LW   with N
1
= 1 Eq. (4) 

 Node 2 Plate Theory = HOT with N
2
= 2 Eq. (1) 

 Node 3 Plate Theory = HOT with N
3
= 3 Eq. (1) 

 Node 4 Plate Theory = LW   with N
4
= 2 Eq. (4) 
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According to Eq. (14), it is easy to verify that the displacements at a generic point 

belonging to the plate element can be expressed as given in Eq. (15). In this equation, 

only the displacement component along x-axis is given for simplicity reasons: 

1 1 2 2 2

3 3 3 3 4 4 4
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(15) 

It is intended that, due to node-variable expansion theory order, the assembling 

procedure of each finite element increases in complexity with respect to classical mono-

theory finite elements. In order to simplify the description of the assembling procedure, the 

governing equations are developed in form of fundamental nucleus, as described below. 

3.3. Governing equations and fundamental nucleus 

The governing equations for the static response analysis of the multi-layer plate 

structure can be obtained by using the principle of virtual displacements, which states: 

 e

A

T Ldzd 


 σε  (16) 

where the term on the left-hand side represents the virtual variation of the strain energy;  

and A are the integration domains in the plane and the thickness direction, respectively;  

and  are the vector of the strain and stress components; and Le is the virtual variation of 

the external loadings. By substituting the constitutive equations for composite elastic 

materials (Eq. (7)), the linear geometrical relations (Eq. 10) as well as Eq. (14) into Eq. 

(16), the linear algebraic system in the form of governing equations is obtained in the 

following matrix expression: 

 
i

s

sij

ji
u: 

 PKu   (17) 

where K
sij 

and P
i 

are the element stiffness and load FE arrays written in the form of 

fundamental nuclei. The explicit expressions of the fundamental nuclei for node-dependent 

variable kinematic plate elements are given in [44]. It must be added that, in this study, an 

MITC technique is used to overcome the shear locking phenomenon, see [57]. The 

fundamental nucleus is the basic building block for the construction of the element stiffness 

matrix. In fact, given these nine components, element stiffness matrices of arbitrary plate 

models can be obtained in an automatic manner by expanding the fundamental nucleus versus 

indexes , s, i, and j. In the present FE approach, the node-dependent variable kinematic model, 

it is clear that both rectangular and square arrays are handled and opportunely assembled for 

obtaining the final elemental matrices. In the development of ESL and LW theories, the 

fundamental nucleus of the stiffness matrix is evaluated at the layer level and then assembled as 

shown in Fig. 4. This figure, in particular, illustrates the expansion of the fundamental nucleus 

in the case of a 9-node Lagrange finite element with node-by-node variable kinematics, as in 

this paper. However, for more details about the explicit formulation of the Unified Formulation 

fundamental nuclei, interested readers are to refer to the recent book by Carrera et al. [49]. 
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Fig. 4 Assembling scheme of a 9-node finite element with node-dependent kinematics. 

Highlights of the influence of the LW contribution of other layers in the FE stiffness 

4. NUMERICAL RESULTS 

In the numerical section some problems have been considered to assess the capabilities 

of the proposed node-variable kinematic plate elements and related global/local analysis. 

These cases of analysis comprise composite laminated and sandwich plate structures with 

different boundary conditions and loadings. Whenever possible, the proposed multi-theory 

models are compared to single-theory refined elements. The acronyms for the ESL models 

are indicated with the first letter E, the second letter indicates the polynomial kind, T stands 

for Taylor polynomials and L for Legendre polynomials. The LW models are indicated with 

the letters LW. The third letter indicates the number of the theory approximation order. If the 

analytical Navier solution type is employed, subscript a is added. Moreover, analytical 

solution with higher-order single models, and multi-model theories present in literature are 

given for some cases. For the sake of clarity, present multi-model theories are opportunely 

described for each numerical case considered. 
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4.1. Eight-layer cantilever plate 

The first structure case taken into account is a simple example that easily permits to 

describe, through the results, the main capabilities of the present node-dependent plate 

element. A cantilever eight-layer plate is analyzed as shown in Fig. 5. The structure is loaded 

at the free end with a concentrated load equal to Pz = −0.2 N. The geometrical dimensions 

are: a = 90 mm, b = 1 mm, h = 10 mm. The mechanical properties of the material labeled 

with the number 1 are: EL = 30 GPa, ET = 1 GPa, GLT = GTT = 0.5 GPa, LT = TT = 0.25. On 

the other hand, the mechanical properties of the material labeled with the number 2 are: EL = 

5 GPa, ET = 1 GPa, GLT = GTT = 0.5 GPa, LT = TT = 0.25. As it is clear from Fig. 5, the 

material stacking sequence is [1/2/1/2]S. 

 

Fig. 5 Eight-layered plate with concentrated loading.  

Reference system and material lamination scheme 

First, a convergence study on single-theory plate models was performed. For both 
LW4 and ET4 models, as shown in Table 1, a mesh grid of 12×2 elements is enough to 
ensure convergent results, for transverse mechanical displacement w, in-plane stress xx 
and transverse normal stress xz. Various node-variable kinematic plate models have been 
used to perform the global/local analysis of the proposed plate structure, and they are 
depicted in Fig. 6. These models are compared in Table 2 with lower- to higher-order 
single-theory models as well as with various solutions from the literature, including an 
analytical solution based on the 2D elasticity as presented in Lekhnitskii [62]. 

It can be observed for transverse displacements w that mono-theory LW models show 
a good accuracy solution independently of the polynomial order, differently for single-
model ESL with Taylor polynomial yielding good results only with higher-order 
expansion ET3 and ET4. Moreover multi-theory ESL models Case A, Case B and Case C 
show an intermediate solution accuracy for all the three considered cases without relevant 
differences. For the multi-theory ESL-LW models Case D, Case E and Case F the solution 
is very accurate, due to the partial LW approximation, and exactly the same solution is 
obtained for the three considered cases. 

Regarding in-plane stress xx the accuracy solution is not sensitive for all the considered 
single and multi model theories, except for the Case A configuration where the transition 
elements are acting at the evaluation position. 

For transverse shear stress xz similar comments respect to the transverse displacement 
can be drawn. Single theory LW models show a good accuracy solution independently of 
the polynomial order, otherwise higher-order mono-model ESL theories with Taylor 
polynomial, ET3 and ET4, are required to obtain sufficient solution accuracy. Nevertheless, 
accurate solutions in localized regions/points can be obtained by using the multi-theory ESL 
model Case B, and with multi-theory ESL-LW models Case D and Case E. 
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Fig. 6 Eight-layered plate. Mesh scheme of the adopted  

multi-theory models with node-dependent kinematics 

Table 1 Convergence study of single-theory models of the eight-layer cantilever plate. 

Transverse displacement w = −10
2
×w(a, b/2, 0), in-plane principal stress  

xx = 10
3
×xx (a/2, b/2, +h/2), transverse shear stress xz = −10

2 × xz (a/2, b/2, 0) 

 Mesh 2 × 2 4 × 2 6 × 2 8 × 2 10 × 2 12 × 2 

LW4 w 3.031 3.032 3.031 3.030 3.030 3.030 

 xx 651 690 716 725 728 730 

 xz 2.991 2.797 2.792 2.791 2.790 2.789 

ET4 w 3.029 3.029 3.029 3.028 3.028 3.028 

 xx 684 723 729 730 731 731 

 xz 3.054 2.829 2.820 2.821 2.822 2.822 

Some results in terms of transverse displacement w and transverse shear stress σxz along the 

thickness are represented in Figs. 7a and 7b, 8a and 8b, respectively. Some more comments can 

be made: 

 As shown in Fig. 7a, the through-the-thickness distribution of transverse displacement 

w, evaluated at the free tip of the plate, is correctly predicted by a third-order ESL 

model ET3. The same accuracy cannot be reached by the proposed ESL models with 

node-variable kinematics. Differently, as depicted in Fig. 7b, both LW single theory and 

ESL-LW theory accuracy are not sensitive of the chosen model, except for the single 

linear model LW 1. 
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Table 2 Eight-layer cantilever plate.  Transverse displacement w = −10
2
 × w(a, b/2, 0), 

in-plane normal stress xx = 10
3
 × xx (a/2, b/2, +h/2), transverse shear stress  

xz = −10
2
 × xz (a/2, b/2, 0) by various single- and multi-theory  models 

       w          xx           xz    DOFs 

                 Reference solutions 
 

Nguyen and Surana [63] 3.031 720 

Davalos et al.  [64] 3.029 700 

Xiaoshan [65] 3.060 750 

Vo  and Thai [66] 3.024  

Lekhnitskii [62]  730       2.789 

       Present single- and multi-theory models 
 

LW4 3.030 730 2.789 12375 

LW3 3.030 731 2.788 9375 

LW2 3.030 731 2.795 6375 

LW1 3.022 731 2.775 3375 

ET4 3.028 731 2.822 1875 

ET3 3.027 731 2.822 1500 

ET2 2.980 731 2.005 1125 

ET1 2.981 729 2.000 750 

Case A 3.004 808 2.375 1320 

Case B 3.010 737 2.781 1365 

Case C 3.002 731 2.030 1305 

Case D 3.028 732 2.799 4035 

Case E 3.028 729 2.799 4425 

Case F 3.028 731 2.818 3645 

 Figure 8a shows that transverse shear stress xz, evaluated at the mid-span of the 

plate, is very sensitive to the position of the transition variable-kinematic elements. 

Case B model has the same accuracy as mono-model ET3 and ET4. On the contrary, 

the Case C configuration has poor accuracy like mono-models ET1 and ET2. Finally, 

Case A model presents an intermediate compromise between the other two multi-

theory cases. All the ESL models are not able to reproduce the accurate behavior of 

the reference 2D elasticity solution Lekhnitskii, presented in [62]. On the contrary, as 

depicted in Fig. 8b, the LW single models are able to reach an accurate solution as 

the reference solution Lekhnitskii, except for the linear model LW1. Multi-theory 

ESL-LW (ET3-LW2) models have a good approximation of the solution where the 

verification point is described by LW theories, Case D and Case E models, therefore 

Case F show the same accuracy solution of model ET3. 

By the evaluation of the various node-variable kinematic models, it is clear that an 

accurate representation of the stresses in localized zones is possible with DOFs reduction if 

an accurate distribution of the higher-order kinematic capabilities is performed in those 

localized zones. Differently, the displacements values are dependent on the global 



14 S. VALVANO, E. CARRERA 

approximation over the whole structure. The DOFs reduction can be moderate or stronger, 

depending on the structure and the load case configuration. 

  
a) ESL single and multi model with Taylor Polynomials b) LW single model, and multi-theories with ESL 

model by Taylor Polynomials combined with LW 

model by Legendre Polynomials 

Fig. 7 Eight-layer composite plate.  Transverse displacement w(x, y) = −10
2
×w(a, b/2). 

   
 

a) ESL single and multi model with Taylor Polynomials b) LW single model, and multi-theories with ESL 

model by Taylor Polynomials combined with LW 

model by Legendre Polynomials 

Fig. 8 Eight-layer composite plate. Transverse displacement xz(x,y) = −10
2
×xz (a/2, b/2) 
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4.2. Composite plates simply-supported 

A simply-supported composite plate is analyzed. The geometrical dimensions are: a = b = 

0.1 m, the side-thickness ratio is a/h = 10. A symmetric [0°/90°/0°] stacking sequences is 

considered. The material employed is orthotropic with the following properties: EL=132.5 GPa, 

ET =10.8 GPa, GLT = 5.7 GPa, GTT =3.4 GPa, LT = 0.24, TT = 0.49. The plate is simply-

supported and a localized uniform transverse pressure, Pz = −1 MPa, is applied at top face on a 

square region of side length equal to a/5 × b/5 and centered at the point (a/2, b/2), see Fig. 9. In 

order to take into account other solutions present in literature [38] a non-uniform mesh grid of 

20×20 elements ensures the convergence of the solution, taken from [44], and it permits a fair 

comparison of the results. The non-uniform adopted mesh and the various node-variable 

kinematic models, with global/local capabilities used to perform the analysis of the proposed 

plate structure, are depicted in Fig. 9, where the mesh grid of a quarter of the plate is analyzed. 

Due to the symmetry of both the geometry and the load, a quarter of the plate is analyzed and 

the following symmetry and boundary conditions (simply-supported) are  applied: 

 

        Boundary             Symmetry

( ,0) 0 ( ,0) 0 ( / 2, ) 0

(0, ) 0 (0, ) 0 ( , / 2) 0

s s s

s s s

u x w x u a y

v y w y v x b

  

  

 (18) 

The results are given in terms of transverse  displacement  w  and  in-plane  normal  

stresses  xx,  yy evaluated at (a/2, b/2, −h/2), transverse  shear  stress  xz  evaluated  at  

(5a/12, b/2, 0),  and  transverse normal stress zz  evaluated at (a/2, b/2,  +h/2). 

For the three-layered plate structure with [0°/90°/0°], mono-theory models are 

compared with those from the present global/local approach in Table 3. The table shows 

that mono-theory ESL models with lower expansion order, ET1 and ET2, are not able to 

describe appropriately transverse displacements w and in-plane stresses xx and yy; 

otherwise LW mono-models represent these variables with a good accuracy solution for 

every expansion order. To accurately describe shear transverse stresses xz, ESL higher-

order theories are required, or LW mono-models theories. Transverse normal stress zz 
needs higher-order theories to be well described; both linear ESL and LW single-models 

are not sufficient. Table 3 also shows solutions for variable kinematic multi-model 

theories; the cases taken into account are named from Case A to Case H, and they are 

explained in Fig. 9. The cases named as Case A, Case B and Case E are equivalent to the 

models (ET1 −ET4)
A
, (ET3 − ET4)

B and (ET1 − LW4)
E taken from [38] and in which, 

via the Arlequin method and 4-node Lagrangian plate elements, a fourth-order plate 

theory is used in correspondence of the loading; first- and third-order kinematics is used 

outside the loading zone, respectively. 
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Fig. 9 Non-uniform adopted mesh on quarter of the plate, and graphical representation  

of the multi-theory models of the cross-ply plate structure 
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Table 3 Composite plate with [0°/90°/0°] lamination. Transverse displacement  

w = (−10
5
) × w(a/2, b/2, −h/2), in-plane normal stresses xx = xx(a/2, b/2, −h/2) 

and yy = yy (a/2, b/2, −h/2), transverse shear stress xz = (−10)×xz(5a/12, b/2, 0), 

and transverse normal stress zz = −zz (a/2, b/2, +h/2) by various single- and 

multi-theory models 
 

w xx yy xz zz DOFs 

Reference solutions [38] 

3D 1.674 11.94 2.019 6.524  

LW4a 1.675 11.94 2.020 6.523 39 

LW4 1.672 11.83 1.983 6.464 9984 

ET4a 1.660 11.95 2.005 5.865 15 

ET4 1.657 11.85 1.985 5.830 3840 

(ET1 − ET4)A 1.609 11.92 1.962 5.848 2448 
(ET3 − ET4)B 1.657 11.84 1.985 5.831 3936 
(ET1 − LW4)E 1.617 11.91 1.953 6.481 3984 

Present single- and multi-theory models 

LW4 1.6745 11.9547 2.0232 6.5557 1.0000 17199 
LW3 1.6745 11.9624 2.0302 6.5613 1.0108 13230 
LW2 1.6719 11.9141 2.0458 6.3903 1.0731 9261 
LW1 1.6369 11.3621 2.1465 6.5881 1.4679 5292 
ET4 1.6596 11.9556 2.0078 5.8473 0.9905 6615 
ET3 1.6590 11.9867 2.1164 6.0147 1.2443 5292 
ET2 1.5625 10.1942 1.7935 3.8521 1.0377 3969 
ET1 1.4954 10.2867 2.1002 3.7554 1.8261 2646 

Case A 1.6040 12.0084 1.9821 5.8510 0.9910 5247 
Case B 1.6596 11.9556 2.0077 5.8473 0.9905 6159 
Case C 1.5257 11.7328 1.9453 4.9414 0.9938 4167 
Case D 1.5770 11.8056 1.9510 4.9970 0.9909 4983 
Case E 1.6103 12.0107 1.9923 6.5254 1.0000 12183 
Case F 1.6670 11.9699 2.0263 6.5524 1.0108 10494 
Case G 1.5274 11.7105 1.9474 5.3212 1.0009 8223 
Case H 1.6613 11.9305 2.0198 6.3616 1.0118 8334 

Some results in terms of transverse displacement w, and transverse shear stress xz 
along the thickness are represented in Figs. 10a, 10b, 11a and 11b. The following remarks 

can be made: 

 Transverse displacement w behavior can change sensitively depending on the 

distribution of the kinematic enrichment within the structure plane. Figure 10a shows 

that Case B has the same accuracy as full higher-order ET 4 mono-model with a 8% 

DOFs reduction, and an accuracy close to multi-model Case H with a 26% DOFs 

reduction. It is noticeable that the choice of the ESL or LW model for the loaded 

zone is not decisive for the correct description of the transverse mechanical 

displacement, as shown for Case C and Case G. On the contrary a global more 

refined approximation get better accuracies, as in the case of the multi-models Case 

A and Case E. 
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 For the evaluation of transverse shear stress xz, higher-order models are necessary 

in the regions close to the considered evaluation point. In Fig. 10b mono-model 

LW4 is used as a reference solution. It is evident that ESL single-models, for every 

expansion order, are not able to correctly describe the transverse shear stress. The 

 
a) Single and multi models b) ESL and LW single model, and ESL multi-

model with Taylor Polynomials 

Fig. 10 Composite plate. Transverse displacement w(x, y) = −10
5 × w(a/2, b/2),  

and transverse shear stress xz (x, y) = −10 ×xz (5a/12, b/2) 

    
            a)              b)  

Fig. 11 Composite plate. Transverse shear stress xz (x, y) = −10 × xz (5a/12, b/2).  

Multi-theories with ESL model by Taylor Polynomials combined with LW  

model by Legendre Polynomials 
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ESL multi-model Case A has the same poor accuracy of the theory ET4. Linear 

model LW 1 is clearly not sufficient to describe the transverse shear stress, differently 

from the single value reported in Table 3 taken in z = 0. In Fig. 11a the multi-model 

Case E and Case G, where in the boundary regions a ET1 model is used and in the 

loaded zones a LW4 model is adopted, the accuracy on the transverse shear stress is 

not completely guaranteed by the LW model. In particular for the Case G the 

evaluation point is close to the transition element while this position is perturbation of 

the accuracy solution. On the contrary for the Case E the evaluation point is not more 

close to the transition element and the solution accuracy is like the full LW model. 

Finally in Fig. 11b the multi-model Case F and Case H are not suffering any 

perturbation problem, due to the third-order ESL model of the boundary regions. 

Results in terms of in-plane stress xx, transverse shear stress xz and transverse normal 

stress zz along the in-plane x-axis are represented in Figs. 12a, 12b and 13a, respectively. 

For in-plane stress xx, see Fig. 12a, the mono-models LW4 and ET4 show the same 

accuracy solution. Multi-models with ESL approach with Taylor polynomials, Case A and 

Case C, produce small oscillations in the transition zone. On the contrary, multi-theories 

with ESL model by Taylor Polynomials combined with LW model by Legendre 

Polynomials, Case E and Case G, show big fluctuations in the transition elements. 

Moreover, it has to be noticed that if the refined polynomials are limited to the loading 

zone, Case C and Case G, the solution accuracy in the loading zone is lower with respect 

to the reference LW4 solution. 

For transverse shear stress xz, see Fig. 12b, the ET4 mono-model has an accuracy 

close to the mono-model LW4 in the loaded zone; differently the ET4 model reaches a 

maximum value of the shear stress for 9% lower than the reference LW4 solution. For 

multi-model theories the same comments made for the in-plane stress can be applied for 

the behavior description of the transverse shear stress. 

For transverse normal stress zz, see Fig. 13a, mono-models LW4 and ET4 show the 

same accuracy solution. For multi-model theories the same comments made for the in-

plane stress can be applied for the behavior description of the transverse normal stress. It 

has to be noticed that the oscillations of the transition elements are smaller than those 

of the in-plane stress and the transverse shear stress. 

Finally, a three-dimensional distribution of transverse shear stress xz is given on a 

quarter of the plate to underline the global/local capabilities of the present finite element 

on the whole domain of the analyzed plate structure. The reference single-model solution 

LW4 is depicted in Fig. 14a. For a fair comparison of the results, the extremes of the color 

bar values of the LW4 model are used to limit the color bar of the other solutions. The 

single-model ET4 is not able to correctly describe the transverse shear stress behavior – it 

is clear from Fig. 14b that the interlaminar continuity of the transverse shear stress is not 

satisfied. In Fig. 15a the multi-model named Case E, (ET1-LW4) is represented. It is 

evident that the transverse shear stress is well represented in the LW4 zone only. The 

multi-model Case H, (ET3-LW3) is represented in Fig. 15b, the small LW3 zone is able to 

correctly describe the transverse shear stress; on the contrary, the ET3 zone has a 

comparable behavior as the single-model ET4. 
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      a) xx                    b) xz 

Fig. 12 Composite plate. In-plane stress xx (y, z) = xx (b/2, −h/2), and transverse shear 

stress xz (y, z) = −10 × xz (b/2, 0) along the in-plane direction x, the x-axis is expressed 

in [mm]. Single and Multi-theory models 

 

 
              a) zz 

Fig. 13 Composite plate. Transverse normal stress zz (y, z) = −zz (b/2, +h/2) along the in-

plane direction x, the x-axis is expressed in [mm]. Single and Multi-theory models 
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      a) LW4         b) ET4 

Fig. 14 Composite plate, three-dimensional view of a quarter of the plate.  

Transverse shear stress xz for single models 

    
      a) Case E         b) Case H 

Fig. 15 Composite plate, three-dimensional view of a quarter of the plate.  

Transverse shear stress xz for multi-models 

4.3. Sandwich rectangular plates simply-supported 

A simply-supported asymmetrically laminated rectangular sandwich plate is analyzed. 

The geometrical dimensions are: a = 100 mm, b = 200 mm, the total thickness is h = 12 mm, 

the top skin thickness is htop = 0.1 mm, the bottom skin is thick hbottom = 0.5 mm, and the core 

thickness is hcore = 11.4 mm. The two skins have the same material properties:          E1 = 70 

GPa, E2 = 71 GPa, E3 = 69 GPa, G12 = G13 = G23 = 26 GPa, 12 = 13 = 23 = 0.3, moreover, 

the metallic foam core has the following material properties: E1 = E2 = 3 MPa, E3 = 2.8 

MPa, G12 = G13 = G23 = 1 MPa, 12 = 13 = 23 = 0.25. The plate is simply-supported and 

localized uniform transverse pressure, PZ = −1 MPa, is applied at top face on a square 

region of side length equal to (a = 5 mm)×(b = 20 mm) and centered at the point (a/2, b/2), 

see Fig. 16. 
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Fig. 16 Reference system of the sandwich plate. Three-dimensional  

deflection representation of a quarter of the plate 

 

         Boundary            Symmetry

( ,0) 0 ( ,0) 0 ( / 2, ) 0

(0, ) 0 (0, ) 0 ( , / 2) 0

s s s

s s s

u x w x u a y

v y w y v x b

  

  

 (19) 

The present single- and multi-model solutions are compared with other solutions 

present in literature, three-dimensional analytical and three-dimensional FEM NASTRAN 

[67], ESL and LW analytical higher-order by the use of Fourier series expansions [68], 

ESL and LW FEM higher-order [69]. A non-uniform mesh grid of 38×54 elements 

ensures the convergence of the solution with a LW4 single-model, see Fig. 17. For the 

sake of brevity the study of the convergence is here omitted. The adopted refined mesh is 

necessary to study the behavior of the mechanical variables along the whole plate domain, 

and not in one single point. The difficult task is to obtain a good behavior of the 

mechanical stresses, and in particular of transverse normal stress zz along the in-plane 

directions avoiding strange oscillations due to the changing of the element size. 

For the asymmetrically laminated rectangular sandwich plate, mono-theory models are 

compared with those from the present global/local approach in Table 4. ESL models are 

not able to correctly describe all the variables; therefore, LW theories are necessary to 

match the reference analytical and 3D results. Table 4 also shows solutions for variable 

kinematic multi-model theories. As emerged in the previous numerical sections, the 

primary variables (displacements) depend on the global domain approximation, in 

particular transverse displacement w is better described in the Case B configuration with a 

DOFs reduction of 34 % respect to the Case A multi-model. On the contrary, the 

postprocessed variables (stresses) are dependent on the local approximation. 
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Fig. 17 Non-uniform adopted mesh and graphical representation  

of the multi-model cases, for a quarter of the sandwich plate 
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Table 4 Asymmetrically laminated rectangular sandwich plate. Transverse displacement w, 

in-plane normal stresses xx and yy, and transverse normal stress zz evaluated at 

(a/2, b/2) by various single- and multi-theory models 

 
z w xx yy zz DOFs 

  Top Skin 

3D Analytical [67] Top -3.78 -624 -241 -  

 Bottom  580 211 -  

3D NASTRAN [67] Top -3.84 -628 -237 -  

 Bottom  582 102 -  

LWM2 Analytical [68] Top -3.8243 -619.49 - -  

 Bottom  577.36 - -  

LWM2 FEM [69] Top -3.7628 -595.56 -223.93 -  

 Bottom  556.00 196.37 -  

              Top Skin 

LW4 Top -3.7774 -622.48 -233.39 -0.9649 327327 

 Bottom  578.60 203.25 -0.8738  

LW3 Top -3.7723 -618.14 -232.33 -1.0143 251790 

 Bottom  574.87 202.36 -0.8270  

LW2 Top -3.7552 -601.46 -228.13 -0.9813 176253 

 Bottom  559.72 198.73 -0.8710  

LW1 Top -3.3896 -562.86 -286.15 -242.69 100716 

 Bottom  530.98 262.78 240.82  

ET4 Top -2.5498 -248.99 -38.930 256.87 125895 

 Bottom  184.89 -1.7709 -275.80  

ET3 Top -0.5995 -121.19 -56.428 -21.706 100716 

 Bottom  59.439 8.9946 -19.349  

ET2 Top -0.0238 -29.573 -28.178 -30.655 75537 

 Bottom  -27.989 -27.470 -29.934  

ET1 Top -0.0191 -29.740 -25.448 -25.404 50358 

 Bottom  -29.444 -25.211 -25.248  

Case A Top -2.1386 -622.21 -220.95 -0.9649 245619 

 Bottom  567.44 198.35 -0.8738  

Case B Top -2.4177 -609.14 -217.40 -0.9654 161007 

 Bottom  563.79 196.16 -0.8663  

Some results in terms of transverse displacement w, and transverse normal stress, zz, 

along the thickness of the sandwich plate are represented in Figs. 18a, and 18b. The 

transverse displacement w behavior can change sensitively depending on the distribution 

of the kinematic enrichment within the structure plane. Fig. 18a shows that ESL mono-

models can vary sensitively their accuracy depending on the expansion order; differently 

the LW mono-models have almost the same accuracy independently of the adopted 

expansion. Moreover, for the multi-models, it is noticeable that the choice of the LW 

higher-order models for the loaded zone is not decisive for the correct description of the 

transverse mechanical displacement, as shown for Case A and Case B. 

On the other hand, for transverse normal stress zz, see Fig. 18b, LW higher-order 

models are able to correctly predict a good behavior along the plate thickness. Multi-
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models theories Case A and Case B show the same accuracy of the reference solution 

LW4 in the considered evaluation point. 

   

      a) w                    b) zz 

Fig. 18 Unsymmetrically laminated rectangular sandwich plate. Transverse displacement 

w(x, y), and transverse normal stress zz (x, y) evaluated at (a/2, b/2) by various 

single- and multi-theory models 

Results in terms of the three-dimensional representation of in-plane stress xx and its 

behavior along the in-plane x axis are represented in Figs. 19a and 19b, respectively. In 

Fig. 19a it is noticeable that the maximum values of the in-plane stress are located in the 

loading zone and its surroundings. Furthermore, the behavior of in-plane stress xx along 

the in-plane x axis and evaluated at (y, z) = (b/2, +h/2) is depicted in Fig. 19b. Mono-

models LW4 and ET4 and multi-models Case A and Case B show almost the same 

accuracy solution. Multi-models Case A and Case B, produce small oscillations in the 

transition zone. It is noticeable that the oscillations are small. This is due to a finer mesh 

with respect to the case of the previous numerical section. 

Finally, a three-dimensional distribution on a quarter of the sandwich plate of transverse 

normal stress zz is given to underline the global/local capabilities of the present finite 

element on the whole domain of the analyzed sandwich plate structure. Referential single-

model solution LW4 is depicted in Fig. 20a. For a fair comparison of the results, the 

extremities of the color bar values of the LW4 model are used to limit the color bar of the 

other solutions. The single-model ET4 is not able to correctly describe the transverse shear 

stress behavior, as shown in Fig. 20b.  
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      a) LW4           b) Single and multi-models 

Fig. 19 Asymmetrically laminated rectangular sandwich plate. In-plane stress xx,  

three-dimensional view of a quarter of the plate, and in-plane stress along the in-

plane axis direction x evaluated at (y, z) = (b/2, +h/2), for single and multi-models 

    
      a) LW4           b) ET4 

Fig. 20 Asymmetrically laminated rectangular sandwich plate, three-dimensional view 

of a quarter of the plate. Transverse normal stress zz for single models 
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Multi-model Case A and Case B are shown in Figs. 21a and 21b, respectively. It is 

evident that the transverse normal stress is well represented in the LW4 zone only, close to 

the loaded zone. 

  
      a) Case A           b) Case B 

Fig. 21 Asymmetrically laminated rectangular sandwich plate, three-dimensional view 

of a quarter of the plate. Transverse normal stress zz for multi-models 

4. CONCLUSIONS 

A new simultaneous multi-model approach for a global/local analysis of composite 

and sandwich plates by means of a two-dimensional finite element with node-dependent 

kinematics has been introduced. The finite element governing equations are formulated in 

terms of fundamental nuclei, which are invariants of the theory approximation order. In 

this manner, the plate theory can vary within the same finite elements with no difficulties. 

No ad-hoc techniques and mathematical artifices are required to mix the fields coming 

from two different and kinematically incompatible adjacent zones, because the plate 

structural theory varies within the finite element itself; therefore, the same kinematics at 

the interface nodes between kinematically incompatible plate elements is enforced. The 

proposed methodology has been widely assessed in this paper by analyzing composite and 

sandwich plates and by comparison with analytical, FEM and 3D solid commercial 

solutions from the literature. Furthermore, it has been demonstrated that refined 2D models 

are able to detect complex strain-stress fields, in accordance with more cumbersome 3D 

models. Accurate results have been obtained in the refined part of the model with a 

significant reduction of the total number of degrees of freedom and, therefore, of the 

computational cost. Future developments will deal with the extension of this global/local 

methodology to hierarchical shell theories and to the Reissner Mixed Variational Theorem 

(RMVT). 
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