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Abstract. Selection of the most appropriate non-traditional machining process (NTMP) for a 

definite machining requirement can be observed as a multi-criteria decision-making (MCDM) 

problem with conflicting criteria. This paper proposes a novel hybrid method encompassing 

factor relationship (FARE) and multi-attributive border approximation area comparison 

(MABAC) methods for selection and evaluation of NTMPs. The application of FARE method is 

pioneered in NTMP assessment domain to estimate criteria weights. It significantly condenses 

the problem of pairwise comparisons for estimating criteria weights in MCDM environment. In 

order to analyze and rank different NTMPs in accordance with their performance and technical 

properties, MABAC method is applied. Computational procedure of FARE-MABAC hybrid 

model is demonstrated while solving an NTMP selection problem for drilling cylindrical 

through holes on non-conductive ceramic materials. The results achieved by FARE-MABAC 

method exactly corroborate with those obtained by the past researchers which validate the 

usefulness of this method while solving complex NTMP selection problems. 
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1. INTRODUCTION 

Increasing global competition and rapid progress in manufacturing expertise are the 

major state of things in today’s commercial environment. They have forced the 

manufacturing organizations to reallocate the business priorities in the direction of quality, 

cost optimization and responsiveness to market changes. The manufacturing scenario of the 

21
st
 century is budding out as the integration of fragmented consumer market and rapidly 

varying production technologies. These changes are motivating the manufacturing 

organizations to struggle along several product dimensions including design, manufacturing 

and others. Although manufacturing has never been utilized as a viable weapon historically, 

still, the market place of the 21
st
 century demands manufacturing technologies to presume an 

imperative role in the new competitive arena. At present, customers aspire for a huge variety 

of products. The growing need for generating and machining complex and precise shapes in 

newer materials, like glass, titanium, ceramics, high strength temperature resistant 

(HSTR) alloys, fiber-reinforced composites, stainless steel, refractory materials and other 

difficult-to-machine alloys in nonexistence of adequately hard and strong cutting tool 

materials has resulted in the advancements of a number of new machining processes, 

commonly known as non-traditional machining processes (NTMPs). Now-a-days, NTM is 

considered as one of the major strategic resources for operational enhancement and for 

maintaining competitive position of an organization in the global marketplace. This 

competitive environment has refurbished interest with respect to research on economic 

analysis and NTMP validation methods, which can be utilized to aid organizations in 

selecting suitable NTMPs to meet their operational and business objectives. The 

conventional machining processes mostly remove materials in the form of chips by 

applying forces on the work material with a wedge-shaped cutting tool that is harder than 

the work material. These forces stimulate plastic deformation in the workpiece which 

leads to shear deformation next to the shear plane and also lay the foundation for chip 

formation. As compared to the conventional machining processes, the NTMPs use variety 

of mechanical, thermoelectrical, electrochemical and chemical energies to provide 

machining or removing materials in the shape of chips or atoms to get the preferred 

accuracy and burr-free machined surface [1,2]. Material removal perhaps occurs by 

means of chip formation or without chip formation. For example, in abrasive jet 

machining (AJM), chips are in infinitesimal dimension and for electrochemical machining 

(ECM), material removal takes place because of electrochemical dissolution at atomic 

level. Thus, an exhaustive knowledge about various machining characteristics is very 

important for efficient exploitation of the capabilities of different NTMPs. Comparing to 

the conventional machining processes, NTMPs possess superior process capabilities 

whose application domain may go on increasing in diverse ranges. As NTMPs can 

provide new ways of satisfying the demands of modern technological advances in many 

areas, including data transmission and miniaturization, the designers and nowadays 

manufacturing engineers are venturing towards the applications of different NTMPs to 

fulfill the machining and surface quality requirements. Latest possibility of choices from a 

group of available NTMPs has been unlocked for designing and machining extremely 

intricate products. Existence of a huge number of NTMPs along with multifarious 

uniqueness and capabilities, and lack of proficiency in NTMP selection domain have 



 A Novel Hybrid Method for Non-Traditional Machining Process Selection Using Factor Relationship… 441 

 

forced the manufacturing and design engineers to develop structured approaches for 

NTMP selection for assorted machining applications. The uncertainties regarding material 

requirements, shape applications, technical capabilities and other process attributes with 

the availability of many alternatives make NTMP selection for a meticulous application a 

very difficult and risky task. To properly select the predominant NTMP for a specific 

application, the process engineer must understand the limitations as well as strengths of 

each NTMP with specific functionalities and applicability [3]. 

2. REVIEW OF LITERATURE ON NTMP SELECTION  

To the utmost level of information, there are not so many published works on 

selection of NTMPs in multi-criteria decision-making (MCDM) environment. Before 

probing for an appropriate NTMP, it is obligatory to be acquainted with the nature of 

application where the NTMP would be implemented. Even though an NTMP can be 

employed very efficiently for a particular application, changes in the application type, 

material and other requirements can reduce its efficiency significantly. Therefore, the 

selection approach must start with a clear identification of the application domain. Cogun 

[3,4] developed a computer-aided NTMP selection approach for some given industrial 

applications using an interactively generated 16-digit classification code. The developed 

system was used to categorize and rank the viable NTMPs. Yurdakul and Cogun [5] 

proposed a combined analytical hierarchy process (AHP) and technique for order 

preference by similarity to ideal solution (TOPSIS)-based procedure for selecting suitable 

NTMPs for the given industrial application viewpoints and characterized the alternative 

NTMPs using a number of criteria, including workpiece material suitability, shape 

applications, process capability and cost considerations. Chakraborty and Dey [6] 

developed an AHP-based expert system to help the decision maker (DM) for selecting the 

most appropriate NTMPs for some given applications. The expert system was based on 

the priority assessments for different criteria and sub-criteria as associated to the explicit 

NTMP selection problems. Chakraborty and Dey [7] designed a quality function 

deployment (QFD)-based expert system for NTMP selection, considering various product 

and process characteristics. The weights of NTMP selection criteria were used to calculate 

overall scores for the possible NTMPs. Das Chakladar and Chakraborty [8] utilized a 

combined AHP-TOPSIS-based methodology for selection of the best NTMPs for some 

given machining applications. Edison Chandrasselan et al. [9] proposed a web-based 

knowledge base system for identifying the most appropriate NTMP, while considering 

material requirements, shape applications, process economy and process capabilities 

parameters. Edison Chandrasselan et al. [10] illustrated a knowledge-based system for 

recognizing the most suitable NTMP from 20 alternatives of engineering significance. 

The developed knowledge-based system considered material variety and some process 

capability constraints, including tolerance, corner radii, surface damage, taper, width of cut, 

surface finish, hole diameter, depth-to-diameter ratio (for cylindrical holes) and depth-to-

width ratio (for blind cavities) to select the best NTMP for a particular machining 

application. Das Chakladar et al. [11] applied a digraph-based decision-making approach to 

select the most appropriate NTMPs for some real time manufacturing applications. Sadhu 
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and Chakraborty [12] applied a two-phase decision-making model, based on data envelopment 

analysis (DEA) and weighted overall efficiency ranking method, to select and rank feasible 

NTMPs for some certain shape characteristics and work material combinations. Das and 

Chakraborty [13] developed an analytic network process (ANP)-based graphical user 

interface model to select the most appropriate NTMPs, captivating interdependency and 

feedback relationships among different criteria, affecting the NTMP selection decision. 

Chakraborty [14] applied multi-objective optimization by ratio analysis (MOORA) method 

to choose NTMPs for various engineering applications. Temuçin et al. [15] provided some 

methodical approaches and a decision support model in fuzzy and crisp situations to deal 

with NTMP selection problems. Karande and Chakraborty [16] applied an integrated 

preference ranking organization method for enrichment evaluation (PROMETHEE) as 

well as a geometrical analysis for an interactive aid (GAIA) method for solving NTMP 

selection problems. The suggested approach would act as a visual decision support to the 

process engineers. Temucin et al. [17] proposed a fuzzy decision support system for 

selecting NTMPs considering the vagueness of several inter-related decision criteria. 

Choudhury et al. [18] developed a TOPSIS-AHP based expert system for NTMP selection 

and considered several paradoxical criteria. Prasad and Chakraborty [19] developed a 

quality function deployment (QFD) based expert system module in Visual Basic 6.0 to 

automate the NTMP selection. Temuçin et al. [20] proposed a fuzzy decision model for 

NTMPs selection. A graphical user interface (GUI), built in SETED 1.0 software, was 

also developed to validate the potentiality of the proposed approach. Roy et al. [21] 

suggested a fuzzy AHP and QFD technique for the purpose of NTMP selection. Madic et 

al. [22] again explored the applicability of MOORA and AHP methods while solving 

NTMP selection problems and compared the results with TOPSIS method. Khandekar 

and Chakraborty [23] proposed the application of fuzzy axiomatic design (AD) principles 

to select best NTMP for generating cavities on ceramics and micro-holes on hardened 

tool steel and titanium materials, based on their practical/industrial importance. Boral & 

Chakraborty [24] applied case-based reasoning (CBR) approach for NTMPs selection 

using a GUI, developed in Visual Basic 6.0. Roy et al. [25] proposed a novel approach 

combining fuzzy AHP with QFD for NTMPs selection and ranked the alternatives by 

applying grey relational analysis (GRA) methodology.  

Regarding the above survey of referential literature, it has been observed that in most 

of the NTMP selection papers, the past researchers have mainly applied AHP, TOPSIS, 

QFD and DEA models. Very few applications are related to PROMETHEE, MOORA and 

EVAMIX etc. methods. AHP is an expedient method of breaking down an intricate and 

unstructured problem into its various constituent parts to amalgamate the judgments in 

order to establish the highest priority variables which may influence the outcome of the 

situation. However, the computational requirement of AHP is tremendous even for a small 

problem. It suffers from inconsistencies between judgment and ranking criteria. Rank 

reversal may occur due to the changes of the order of the alternatives when a new alternative 

is added to the problem. When the number of the levels in the hierarchy increases, the 

number of pairwise comparisons also increases which is a very time consuming effort [26]. 

The fundamental theory of the TOPSIS method is based on the concept that the best 

alternative has the shortest distance from the ideal solution and the farthest distance from 

the negative-ideal solution. The TOPSIS method instigates two reference points using 
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vector normalization; however, it does not contemplate the relative significance of the 

distances from these reference points. It means that the best alternative in the TOPSIS 

method may not always mean that it is the closest to the ideal solution [27]. As a typical 

formulation of DEA builds a separate linear program for every alternative, so it becomes 

computationally intensive. Also as DEA is an extreme point method, measurement error can 

root considerable problems. DEA does not provide estimates which can effortlessly be 

validated with conventional statistical procedures and it does not tender the ranking of the 

alternatives [28, 29]. A major objective of QFD is to transform customer requirements (CRs) 

into engineering characteristics (ECs) of a product. QFD is a very time consuming approach. 

Numerous complexities may be countered while prioritizing CRs and EC using ordinal 

ratings. Differentiating between diverse and contradictory CRs is very difficult [30,31]. 

PROMETHEE method does not provide the possibility to really structure a decision 

problem. In the case of many criteria and alternatives, it may become difficult for the DM 

to obtain a clear view of the problem and to evaluate the results due to the involvement of 

different preferential parameters like preference functions which may be very difficult to 

define in real time scenarios [32]. 

The literature survey also indicates that criteria weights for NTMP selection problems 

are generally determined by expert opinion-based pair-wise comparisons using AHP 

method. The criteria weights being one of the vital decisive phases in the selection 

process, the accuracy of expert evaluation essentially depends on the number of criteria. 

When this number is too large, an expert may no longer be proficient to evaluate the 

criteria to determine their relative importance.  

Thus, it is evident that the past researchers have adopted different decision-making 

tools for evaluating, justifying and selecting NTMPs, but all those methods are either 

very complicated or require lengthy computations and sometimes need the help of 

linear programming tools to solve the developed models. Also, for the decision-making 

problems with large number of criteria and smaller number of alternatives, those approaches 

may occasionally give poor results. To overcome such difficulties, the present paper 

proposes a novel hybrid method encompassing a new criteria weighting technique, namely 

factor relationship (FARE) and multi-attributive border approximation area comparison 

(MABAC) approaches, as shown in Fig. 1. The proposed model allows criteria weight 

calculation based on the relationship between one criterion with the others to reduce the 

amount of expert assessment, while the precision of evaluation augments and also provides a 

more precise and accurate rankings of the feasible NTMP alternatives. 
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Fig. 1 Proposed FARE-MABAC hybrid method 
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3. METHODS 

3.1. FARE method 

Ginevicius [33] developed FARE method for estimating criteria weights in MCDM 

background. The procedural steps to apply FARE method to determine criteria weights 

are described as follows [33-35]:  

Step 1: Determination of potential impact of the attributes:  

Initially, the potential impact of the criteria is found out using:  

 )1(  nSP  (1) 

where P is the potential of the system’s criteria impact and S is the maximum value of the 

evaluation scale used, as given in Table1. 

Step 2: Ranking criteria and assessment of their interrelationship: 

Criteria are now ranked based on their importance while the relationship among the 

criteria is assessed using Table 2. Any criterion with a lower rank has less significant 

impact on other criteria having higher ranks and consequently it ought to transmit a larger 

part of its potential impact to others. 

Table 1 Scale of quantitative evaluation of interrelationship between the system’s attributes 

Type of the effect produced 
Rating of the effect produced  

by interrelationship (in points) 

Almost none 1 

Very weak 2 

Weak 3 

Lower than average 4 

Average 5 

Higher than average 6 

Strong 7 

Very strong 8 

Almost absolute 9 

Absolute 10 

Table 2 Measurement scale for pair wise comparison 

Verbal  judgment or preference Numerical rating 

Extremely preferred 9 

Very strongly to extremely preferred 8 

Very strongly preferred 7 

Strongly to very strongly preferred 6 

Strongly preferred 5 

Moderately to strongly preferred 4 

Moderately preferred 3 

Equally to moderately preferred 2 

Equally preferred 1 
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Step 3: Determination of impact of the attributes on the main attribute:  

The impact of criterion aj on the main criterion is computed and then, this impact is 

transformed as follows: 

 1 1j ja S ã    (2) 

where, a1j is the impact of the j
th

 criterion on the first main criterion and ã1j is the part of 

the j
th

 attribute’s potential impact transmitted to the main criterion.  

Step 4: Determination of total impact: 

The total impact and consistency of any criterion is calculated using Eq. (3). The 

subset considered is reliable, consistent and steady if the total impact of its criteria with a 

positive sign is equal to the total impact with a negative sign, i.e. their sum is always 

equal to zero.  

 
ijn

j ijajP   ,1
  (3) 

The total impact can also be estimated using Eq. (4). The total impact or dependence 

of a criterion exemplifies its dominance over the others. Therefore, the most significant 

criterion in the matrix presented should be the first one with maximum total dominance. 

 1 1.j jP P n a   (4)  

where Pj is the total impact (dependence) of the j
th

 criterion and n is the total number of 

criteria. 

Step 5: Computation of attribute weights: 

Lastly, the criteria weights are derived using: 

 
1 1 ( 1)

( 1)

f

j j

j

S

P P na S n
w

P nS n

  
 


  (5)  

where PS  is the total potential of a set of criteria, calculated using Eq. (6) and Pj
f
 is the 

actual total impact of the j
th 

criterion of the system, calculated using Eq. (7): 

 . . ( 1)SP n P n S n     (6) 

 
1 1 ( 1)f

j j jP P na S n P P        (7) 

where Pj is the total impact produced by the j
th

 criterion of the system signifying its total 

dependence on the other criteria and P is the potential impact of the criteria. 

 

3.2. MABAC method 

The MABAC method was developed at the research centre of University of Defense 

in Belgrade. Once the weight importances of the criteria are assessed using FARE 

method, the provisions are all laid to instigate the mathematical formulation of MABAC 

method. The elementary concept of this method can be realized in the explanation of the 
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distance of criterion function of each alternative from the border approximation area. In 

this section, six easy steps to execute MABAC method are presented as follows [36-39]: 

Step 1: Formation of the preliminary decision matrix (X): 

The primary step is to assess m alternatives according to a set of n predefined criteria, 

describing the alternatives. This decision matrix is presented in the formation of vectors 

Ai=(xi1,xi2,…,xin), where xij is the value of the i
th

 alternative according to the j
th

 criterion 

(i = 1,2,…,m; j = 1,2,…,n). 

 

1 11 12 1

2 21 22 2

1 2

...

...

... ... ... ... ...

...

n

n

m m m mn

A x x x

A x x x
X

A x x x

 
 
 
 
 
  

  (8) 

Step 2: Normalization of initial decision matrix (X): 

Normalize the initial decision matrix (X) using linear normalization method. The 

reason of normalization is to attain dimensionless assessments of different criteria to make 

them comparable with each other. 
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  (9) 

The components of the normalized decision matrix (R) are determined using the following 

equations: 

a) For beneficial criteria (for which higher values are always desirable) 

   









jj

jij

ij
xx

xx
r

  (10) 

b) For non-beneficial or cost criteria (for which lower values are always preferable) 

 










jj

jij

ij
xx

xx
r

  (11) 

where xj
+
 and xj

-
  are the maximum and minimum values of j

th
 criterion according to the 

alternatives. 

Step 3: Determination of the weighted normalized decision matrix (V): 

The elements from the weighted matrix (V) are calculated according to  

 ( 1)ij j ijv w r     (12) 

where rij
 
are the elements of the normalized matrix (R), wj are the weight coefficients of 

the criteria. 
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where n is the total number of criteria, m is the total number of alternatives. 

Step 4: Estimation of the border approximation area (BAA) matrix (B): 

The elements of matrix (B) for each criterion are determined according to: 

 

1/

1

m
m

j ij

i

b v


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 
   (13) 

where vij are the elements of weighted matrix (V), and m is the total number of alternatives. 

After calculating value gj
 
for each criterion, a border approximation area matrix (B) is 

formed with format n  1. 

 
321 c...cc  

 
[ ... ]1 2B b b bn   (14) 

Step 5: Calculation of the distance matrix of alternatives ( Q ) from the BAA: 
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The distance of the alternatives from the BAA is determined as the difference between the 

elements in weighted matrix (V) and the value of border approximation area (B): 
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 (17) 

where bj
 
is the BAA for j

th
 criterion and vij is the weighted matrix of elements (V), n is the 

number of criteria, m is the number of alternatives. 
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Alternative Ai may belong to BAA (B), upper approximation area (B
+
) or lower 

approximation area (B
-
), i.e. Ai  {B  B

+
 B

-
}. Upper approximation area (B

+
) is the area 

which contains ideal alternative (A
+
), while lower approximation area (B

-
) is the area 

which contains anti-ideal alternative (A
-
), as shown in Fig. 2. 

 

Fig. 2 Presentation of the upper (B
+
), lower (B

-
) and border (B) approximation areas [36] 

The belonging of alternative Ai to approximation area (B, B
+
 or B

-
) is determined on 

the basis of Eq. (18): 
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if 0
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B qij

A B qi ij

B qij
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

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
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  (18) 

In order to select alternative Ai as the best in the set, it is necessary for it to belong to 

upper approximate area (B
+
) for as many criteria as possible. If value qij>0, that is qijB

+
, 

then alternative Ai is near or equal to the ideal alternative. If value qij<0, that is qijB
-
, it 

indicates that alternative Ai is near or equal to the anti-ideal alternative.  

Step 6: Calculation of criteria function (Si) values and ranking the alternatives: 

Calculation of the criteria function values for the alternatives is obtained as the sum of the 

distance of the alternative from the border approximation area (qi), as indicated by Eq. (19). By 

adding together the rows of elements of matrix Q, the final values of the criterion functions for 

the alternatives can be obtained. Finally, alternatives are arranged in the descending order of Si 

values and the alternative with the highest Si value is ranked as the best one: 

 
1

,  1,2,..., ,  1,2,...,
n

i ij

j
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    (19) 
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4. ILLUSTRATIVE EXAMPLE 

To reveal the computational flexibility and expediency of the proposed hybrid FARE-

MABAC method, an NTMP selection problem for drilling cylindrical through holes on non-

conductive ceramic materials is considered here. The diameter (D) and slenderness ratio 

(L/D) of the hole are given as 0.64 mm and 5.7 respectively, where L designates hole depth. 

Yurdakul and Cogun [5] developed an MCDM approach for deciding appropriate NTMPs 

for different industrial applications. The authors characterized different NTMPs using a 

number of attributes, including shape applications, workpiece material suitability, process 

capability and cost considerations to provide a way of evaluating the levels of achievement 

of NTMPs with respect to their capabilities and output quality. In the manufacturing domain, 

NTMPs are used generally for machining different shapes, including blind cavities, 

producing through profiles or holes, cutting operations and surface finishing operations. 

Work material suitability mainly indicates the easiness of an NTMP to machine a particular 

material. Based on the shape application and workpiece material suitability constraints, 

Yurdakul and Cogun [5] eradicated a number of NTMPs, including ECM, ECG, ECH, 

EDM, WEDM, PAC and WJM from further deliberations for this cylindrical through hole 

drilling operation. Yurdakul and Cogun [5] observed AJM, USM, CHM, EBM and LBM 

processes as the most feasible alternatives to be judged and developed the corresponding 

decision matrix, as shown in Table 3. Tolerance (TL), surface finish (SF), surface damage 

(SD), taper (T), material removal rate (MRR), work material (M) and cost (C) were chosen 

as the most pertinent attributes, affecting this NTM process selection decision. TL and SF 

are the two most important product capability attributes, used to measure the performance of 

an NTMP for a particular machining application. Tolerance can be defined as the difference 

between the maximum and minimum dimensions of a component. Depending on the type of 

application, the permissible variation of dimension is set according to the available standard 

grades. It also relates to the capability of an NTMP stating how closely the process can 

achieve the required surface finish on the given work material. Material removal rate is one 

of the most important criteria leading to the fact that higher MRR leads to lower machining 

time. The effectiveness of an NTMP is usually measured in terms of its MRR. Machining 

cost is an important criterion for NTMP selection. It generally comprises tooling and fixture, 

power consumption and tool wear costs. Tooling and fixture costs include workpiece 

holding and adjustment costs. Power consumption includes costs associated with electricity 

used for material removal or in driving pumps, compressors, motors, heating units, beam 

generators, cost of electrolytes, dielectrics, chemicals, acid solutions or gases consumed 

during the machining operation. Tool wear cost includes entire tool and tool replacement 

costs. Yurdakul and Cogun [5] developed a generalized overall machining cost formula to 

provide an approximated cost score for NTMPs, based on tooling and fixture, power 

consumption and tool wear cost elements. Among these seven considered criteria, TL (mm), 

SF (CLA) (µm), SD (µm), T (mm/mm) and C are non-beneficial in nature, whereas, MRR 

(mm
3
/mm) and M are beneficial. Also, among these attributes, TL, SF, SD, T and MRR are 

expressed quantitatively, having absolute numerical values, whereas M and C have 

qualitative measures for which ranked value judgments on some qualitative scales are used, 

as shown in Tables 4-6 [5]. Table 7 shows the transformed decision matrix for this NTMP 

selection problem. The criteria weights were determined by Yurdakul and Cogun [5] as wTL 

= 0.32, WSF = 0.19, wSD = 0.04, wT = 0.04, wMRR = 0.19, wM = 0.11 and wC = 0.11 using AHP 
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method. Yurdakul and Cogun [5] solved this NTMP selection problem using a combined 

AHP-TOPSIS method and observed the ranking of the alternative NTM processes as USM 

> LBM > EBM > CHM > AJM. Now, this NTMP problem is solved using the proposed 

FARE-MABAC method and the results are then compared.  

Table 3  NTMP selection matrix for drilling cylindrical through holes on ceramics [5] 

NTM process TL SF SD T MRR M C 

AJM (A1)   0.05 0.6 2.5    0.005 50 Good 4 

USM (A2)   0.013 0.5 25       0.005 500 Good 5 

CHM (A3)   0.03 2 5       0.3 40 Poor 2 

EBM (A4)   0.02 3 100       0.02 2 Good 1 

LBM (A5)   0.02 1 100       0.05 2 Good 1 

Table 4 Qualitative scale for workpiece material suitability level [5] 

Linguistic variable Poor Fair Good 

Scale value 1 2 3 

4.1. Calculation of criteria weights using FARE method 

 In this phase, the calculation of criteria weights are performed using the steps as 

explained in Section 3.2. First of all, the potential impact of the attributes is computed as 60. 

Next the initial priority of the NTMP selection criteria (TL > SF > MRR > M > C > SD > T) 

are decided according to their weight values as determined by Yurdakul and Cogun [5] and 

an extensive literature review as presented earlier. The priority order indicates that TL is the 

most preferred criterion, while T is the least important criterion for the considered NTMP 

selection problem. Since TL is the most significant criterion, the impact of other criteria will 

be transferred through it and, therefore, their direct impact on this NTMP selection problem 

will be decreased, as exhibited through Table 8. As shown in this table, the matrix of 

potential equilibrium has a particular structure, i.e. aij = - aji. For example, priority of PL to 

SF is 3, then priority of SF to PL is automatically settled as -3. In this case, a row or column 

of the matrix demonstrates the total (summed up) effect or dependence of a particular 

criterion on other criteria compared with it. 

Table 5 Cost levels of different NTMPs [5] 

NTMP 
Tooling and 

fixture cost rating 

Power consumption 

rating 

Tool wear 

cost rating 

Overall machining 

cost score 

A1 Low (3) Low (3) Medium (5) 4 

A2 Low (3) Low (3) High (7) 5 

A3 Low (3) Very low (1) Very low (1) 1.8 (2) 

A4 Very low (1) Low (3) Very low (1) 1.2 (1) 

A5 Very low (1) Very low (1) Very low (1) 1.2 (1) 
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Table 6 Qualitative scale used to gauge machining cost elements [5] 

Linguistic variable Very low Low Medium High Very high 

Scale value 1 2 4 3 5 6 7 8 9 

Table 7 Transformed decision matrix 

NTMP TL SF SD T MRR M C 

A1 0.05     0.6 2.5 0.005 50    3 4 

A2 0.013   0.5 25 0.005 500    3 5 

A3 0.03     2 5 0.3 40    1 2 

A4 0.02     3 100 0.02 2    3 1 

A5 0.02     1 100 0.05 2    3 1 

Table 8 Summary matrix of potential equilibrium of the NTMP selection criteria 

Criteria TL SF SD T MRR M C 
Total effect 

(dependence) 

TL  3 3 4 4 3 5 22   

SF -3  2 3 3 4 4 13   

SD -3 -2   2 -4  -3  -3  -13    

T -4 -3  -2   -2  -2  -2  -15    

MRR -4 -3  4 2  4 4 7 

M -3 -4  3 2 -4   4 -2  

C -5 -4  3 2 -4  -4   -12   

Total effect -22   -13    13   15   -7 2 12   

In order to calculate the total impact (Pj), summation of each row is computed using 

and also exhibited in Table 8. This table reveals that the total impact of the criteria set 

with a positive sign is equal to the total impact with a negative sign. Consequently, the set 

is totally consistent. Total potential (PS) value of 420, required for determining the 

weights, is now computed using Eq. (6). For this example, n = 7 and P = 60. Once the PS 

value is calculated, the individual potentials of all the considered NTMP selection criteria 

are determined and the criteria weights are estimated, as given in Table 10. These weights 

are subsequently used for MABAC-based analysis. 

Table 9 Total impact of NTMP selection criteria 

Criteria TL SF SD T MRR M C Sum 

TL  7 7 6 6 7 5 38 

SF -7  8 7 7 6 6 27 

SD -7 -8   8 -6  -7  -7  -27  

T -6 -7  8  -8  -8  -8  -29  

MRR -6 -7  6 8  6 6 13 

M -7 -6  7 8 -6   6   2 

C -5 -6  7 8 -6  -6   -8 
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Table 10 Individual potential and criteria weight values 

Criteria Pj
f 

PS = n.P = n.S(n1)
 

Wj = Pj
f
/PS 

TL 98 

7 x 60 = 420 

98/420 =  0.23 

SF 87 87/420 =  0.21 

SD 33 33/420 =  0.08 

T 31 31/420 =  0.07 

MRR 73 73/420 =  0.17 

M 62 62/420 =  0.15 

C 52 52/420 =  0.12 

4.2. Application of MABAC method for selection of NTMPs 

 Through the second phase, the evaluation and ranking of NTMP alternatives is now 

performed by applying the MABAC method. After forming the transformed decision 

matrix of Table 7, normalization of its elements is carried out respectively for beneficial 

and non-beneficial type criteria, as shown in Table 11.  

Table 11 Normalized decision matrix for NTMP selection problem 

NTMP TL SF SD T MRR M C 

A1 0          0.9600 1.0000 1.0000 0.2500 0.0964 1.0000 

A2 1.0000 1.0000 0.7692 1.0000 0          1.0000 1.0000 

A3 0.5405 0.4000 0.9744 0          0.7500 0.0763 0          

A4 0.8108 0          0          0.9492 1.0000 0          1.0000 

A5 0.8108 0.8000 0          0.8475 1.0000 0          1.0000 

Table 12 Weighted normalized matrix 

NTMP TL SF SD T C MRR M 

A1 0.2333 0.4060 0.1571 0.1476 0.1500 0.1906 0.2952 

A2 0.4667 0.4143 0.1390 0.1476 0.1200 0.3476 0.2952 

A3 0.3595 0.2900 0.1551 0.0738 0.2100 0.1871 0.1476 

A4 0.4225 0.2071 0.0786 0.1439 0.2400 0.1738 0.2952 

A5 0.4225 0.3729 0.0786 0.1364 0.2400 0.1738 0.2952 

The elements of weighted normalized matrix (V) are then estimated by multiplying the 

weight coefficients of the criteria with the elements of the normalized matrix using Eq. 

(12), as given in Table 11. For example, element v12 of weighted matrix (V) is obtained as 

follows: 

 v12 = w2 x (r12 + 1) = (0.96+1) x 0.21 = 0.4060 

where r12 is an element of normalized matrix (R), w2 is the weight coefficient of criterion SF.  

Now, border approximation area matrix (B) is obtained by taking geometrical average 

of the values, as given in Table 13. 

For example, BAA for criterion SF is obtained as follows: 

 

1/7
7

1/7
2

1
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i

b v x x x x



 
   
 
 


 



454 P. CHATTERJEE, S. MONDAL, S. BORAL, A. BANERJEE, S. CHAKRABORTY  

Table 13 Border approximation area (B) matrix 

BAA TL SF SD T C MRR M 

bj 0.3706 0.3275 0.1159 0.1258 0.1852 0.2064 0.2570 

The next step is the estimation of distance matrix (Q) elements of NTMP alternatives 

from border approximate area matrix (B).The distance of the alternative NTMPs from 

matrix B is determined using Eq. (17) as the difference between the elements in  weighted 

matrix (V) and the values from the elements of matrix B, as exhibited in Table 14. For 

example, element q11 is calculated as follows: 

 q11 = v11  b1 = 0.2333  0.3706 = 0.1372 

Table 14 Distance of NTMP alternatives from border approximation area (B) 

NTMP TL SF SD T C MRR M 

A1 -0.1372 0.0785 0.0412 0.0218 -0.0352 -0.0158 0.0382 

A2 0.0961 0.0868 0.0231 0.0218 -0.0652 0.1412 0.0382 

A3 -0.0111 -0.0375 0.0392 -0.0520 0.0248 -0.0193 -0.1094 

A4 0.0520 -0.1204 -0.0373 0.0180 0.0548 -0.0326 0.0382 

A5 0.0520 0.0454 -0.0373 0.0105 0.0548 -0.0326 0.0382 

The last step is the calculation of criteria function (Si) values for each NTMP 

alternative. The Si values of the alternative NTMPs along with their ranks are presented in 

Table 15. For example, Si value of A1 (AJM) is computed as below: 

 Si (A1) = -0.1372 + 0.0785 + 0.0412 + 0.0218  0.0352  0.0158 + 0.0382 = 0.0085 

The results of Table 15 imply that alternative A2 (USM) is ranked as the first one, and 

alternative A3 (CHM) as the worst and the least favorable NTMP. The results show that 

the rankings of the NTMPs are exactly the same as those derived by Yurdakul and Cogun 

[5] using a combined AHP-TOPSIS method, which leads to the confirmation that the 

proposed FARE-MABAC model can be an effective, efficient and simple method for 

solving complex NTMP selection problems. 

Table 15 NTMPs with Si values and corresponding ranks 

NTMP Si value Rank AHP-TOPSIS [5] 

A1 -0.0085 3 3 

A2 0.3421 1 1 

A3 -0.1653 5 5 

A4 -0.0272 4 4 

A5 0.1310 2 2 
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5. CONCLUSIONS 

This paper presents a new FARE-MABAC model for NTMP selection problems in 

manufacturing domain. This combined application is based on an uncomplicated weight 

calculation tool which involves least amount of mathematical calculations, followed by a 

simple ranking methodology. The analytical results show that the ranking preorder 

produced by the FARE-MABAC approach exactly corroborate with those derived by the 

past researchers and that the proposed procedure is comprehensible to NTMP selection 

process under conflicting multi-criteria environment. The computations of the proposed 

approach are simple and explained in detail. It is apparent that the proposed FARE-

MABAC model is very easy-to-use in real-life engineering applications as it does not 

involve much expert opinion or qualitative process for criteria weight calculation. Also, it 

is expected to assists engineers and designers in making critical decisions during the 

selection of the best alternative in complex environment. 
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