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Abstract. A closed-form general analytic solution is presented for the adhesive normal 

contact of convex axisymmetric power-law graded elastic bodies using a Dugdale-

Maugis model for the adhesive stress. The case of spherical contacting bodies is 

studied in detail. The known JKR- and DMT-limits can be derived from the general 

solution, whereas the transition between both can be captured introducing a 

generalized Tabor parameter depending on the material grading. The influence of the 

Tabor parameter and the material grading is studied. 
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1. INTRODUCTION 

 Propelled by the technological demand for versatile high-performance materials and 

the study of biological materials and contact solutions, living nature developed in several 

circumstances, Functionally Graded Materials (FGM), i.e. media with continuously 

inhomogeneous mechanical properties, have encountered a lot of scientific interest and 

research in the past years. The use of FGM is proven to be possibly beneficial in physical 

[1] and biological [2] applications. Whereas rigorous solutions for non-adhesive contact 

problems of FGM, at least for some special forms of inhomogeneity, have been available 

for quite a long time [3-5], the adhesive contact of FGM is still in the focus of current 

research [6-9]. These latter studies, nonetheless, only concern the limiting case of a 

negligible range of the adhesive interaction, established by Johnson, Kendall and Roberts 

(JKR, [10]) in 1971. After Derjaguin, Muller and Toporov (DMT, [11]) a few years later 

presented a different theory of long-range adhesive interactions giving a different result 
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for the critical pull-off force in a parabolic contact, a discussion started, which was only 

finally resolved by Maugis [12], who – based on a model of the adhesive stress first 

introduced by Dugdale [13] – was able to show the transition between what was proven 

by Tabor [14] to be correct descriptions of limiting cases. The present paper generalizes 

Maugis’ solution for the adhesive contact of homogeneous spheres to arbitrary 

axisymmetric bodies with elastic-grading in form of a power-law. As the contact problem 

of interest can be ascribed to the frictionless, non-adhesive normal contact of power-law 

graded elastic materials a solution procedure based on the Method of Dimensionality 

Reduction (MDR) can be applied. 

2. GENERAL AXISYMMETRIC SOLUTION 

We consider elastic grading of the Young modulus E with depth z in form of a power-

law: 
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Thereby constants E0 and z0 as well as Poisson ratio ν may be different for the contacting 

bodies. Exponent k, however, needs to be the same for both of them. As the exponent may 

take positive or negative values, both soft surfaces with a hard core and hard surfaces with 

a soft core can be studied.  

It has been shown that the frictionless normal contact of axisymmetric power-law 

graded elastic bodies can be exactly mapped onto a plain contact of a rigid profile g with 

a one-dimensional foundation of independent linear springs, each in distant Δx from each 

other [15,16]. Thereby the equivalent plain profile g = g(x) within this mapping procedure 

called Method of Dimensionality Reduction (MDR) can be calculated from the 

axisymmetric gap f = f (r) between the non-deformed three-dimensional bodies by the 

integral transform: 
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Stiffness Δkz of a single spring at position x is given by the expression: 
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with: 
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Dimensionless auxiliary function H can be determined from exponent k and Poisson’s 

ratio according to: 
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with: 
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and Gamma function Γ. 

Note that the spatial distribution of the spring stiffness in Eq. (3) obeys the same 

power-law as the elastic grading. If equivalent profile g is pressed into the foundation of 

springs by an indentation depth d the vertical spring displacement w1D(x) in the area of 

direct contact is elementarily given by:  

 1D ( ) ( ),     ,w x d g x x a     (8) 

with contact radius a. Normal force FN as well as the local distributions of pressure p and 

relative displacement w in the original three-dimensional system can be calculated from 

w1D(x) according to: 
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The second of these latter Eqs. (9) can be inverted to give: 
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If we now assume a Dugdale model of a constant adhesive stress σ0 within the 

adhesive zone with radius b: 

 adh 0( ) ,     ,p r r b     (11) 

the corresponding displacements in the MDR model are due to Eq. (10) given by: 
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Hence, the one-dimensional displacements in the Dugdale-Maugis adhesive contact are: 
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For the three-dimensional stresses to be finite at the edge of direct contact these 

displacements must be continuous at x = a, which results in: 
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The total external normal force is due to the first of Eqs. (9) given by: 
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with the hypergeometric function: 
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Radius b of the adhesive zone is not known a priori but can be determined from the 

condition that the gap between the deformed surfaces at r = b has to equal the range h of 

the adhesive stresses. As the gap between the deformed surfaces can be easily calculated 

from three-dimensional relative displacement w, indentation depth d and axisymmetric 

non-deformed gap f, we obtain the additional relation  

 ( ) ( ).h w r b d f r b       (17) 

to close the equation system. Evaluating Eq. (17) with the help of the third of Eqs. (9) and 

using the identity: 
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one obtains: 
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Equations (14), (15) and (19) completely solve the given contact problem. In the 

homogeneous case k = 0 they are reduced to the axisymmetric generalization of Maugis’ 

results given very recently by Popov et al. [17]. The stresses in the area of direct contact 

could theoretically be calculated inserting Eq. (13) into the second of Eqs. (9).  

3. THE JKR LIMIT 

It is of course possible to retrieve the known solution in the JKR limit of adhesion 

from the relations derived in the previous section. For this purpose we study the limit of 

negligible adhesion range h → 0, whereas the surface energy per unit area, Δγ = σ0h, is 

kept constant. In this case the radius of the adhesive zone can be written in the form: 

 (1 ),b a     (20) 

with a small parameter ε. Using the linearization: 

 ( ) ( ) ( ) ,g a x g a g a x      (21) 

performing the integration and neglecting all terms of higher than first order in ε leads to: 
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Hence, 
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and therefore: 
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which perfectly coincides with the known solution in the JKR limit [8]. The normal force 

via the same mechanism is also reduced to the known relation: 
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Note that Eq. (23) is actually independent of the profiles of the contacting bodies. 

4. PARABOLIC CONTACT 

Let us now consider the specific case of parabolic contact with the radius of curvature 

R, i.e.: 
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The equivalent profile is accordingly: 
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Thus, evaluating the general solution derived above, the solution of the Dugdale-Maugis 

adhesive normal contact problem in case of power-law elastic grading is given by: 
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Radius b of the adhesive zone can be determined from the condition: 
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Introducing the normalized variables 
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with the critical values in the JKR limit under force-controlled boundary conditions [6]: 
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and the generalized Tabor parameter for power-law elastic grading, i.e. the ratio of the 

characteristic height of the adhesive neck and the adhesion range:  
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Equations (28) can be written in the form: 
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The compatibility condition (29) in dimensionless variables reads: 
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which in the homogeneous case coincides with Maugis’ solution [12] (Maugis uses a 

slightly different scaling for normalization). The JKR limit is given by the known 

relations [17]: 
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As the adhesive force in the DMT limit, 
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is independent of the elastic contact properties (it is actually the force for the adhesive 

contact of rigid spheres derived by Bradley [18]), the DMT limit of Eqs. (33) reads: 
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To illustrate above findings and the influence of material grading Figs. 1 and 2 show 

the implicitly defined force-indentation relations as well as the respective JKR- and DMT 

limits for two different values of the power-law exponent k. 

 

Fig. 1 Force-indentation-curves for the Dugdale-Maugis adhesive normal contact of power-

law graded elastic spheres for k = -0.5 and several values of the Tabor parameter Λ  

 

Fig. 2 Force-indentation-curves for the Dugdale-Maugis adhesive normal contact of power-

law graded elastic spheres for k = 0.5 and several values of the Tabor parameter Λ 
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Note that the DMT limit is only well-defined for positive indentation depths although 

the branch without direct contact (and therefore negative indentation depths) can be seen 

as its “natural” continuation. To denote this slight distinction a small gap is left between 

the DMT limit and the curve without direct contact in Fig. 1. Obviously the convergence 

for higher values of the Tabor parameter towards the JKR limit is much faster for larger 

values of k. For k = 0.5 there is already no noticeable difference between the solution for 

Λ = 1 and the JKR limit. Also the normalized indentation depths are getting much higher 

for larger values of k. Interestingly, the critical pull-off forces in the JKR- and DMT limit 

are the same for k → 1 (as it was pointed out already in [6]). In this case the left branch of 

the JKR curve and the curve without direct contact will be practically indistinguishable. 

5. CONCLUSIONS 

Based on the MDR a closed-form analytic solution has been obtained for the Dugdale-

Maugis adhesive normal contact of arbitrary convex axisymmetric, power-law graded elastic 

bodies. As the most common and probably most relevant special case the contact of 

spherical or parabolic bodies has been studied in detail. The common limits for very large 

(JKR) or very small (DMT) values of the Tabor parameter are derived from the general 

solution. In dimensionless variables the relations between indentation depth, contact radii 

and normal force only depend on the Tabor parameter and exponent k of the elastic grading. 

Thereby the convergence for larger values of the Tabor parameter towards the JKR limit is 

faster for higher values of k. 

 The presented solution is of course based on strong contact-mechanical assumptions 

(half-space hypothesis, absence of friction or roughness) and quantitatively problematic 

physical models (power-law grading with either infinitely stiff or infinitely soft surfaces, 

Dugdale model for the adhesive stress); it is, however, to the author’s best knowledge, the 

only tool, to rigorously study the influence of both material grading and adhesion range in 

a closed form, for example in micro- or nano-applications, for which the range of the 

(adhesive) molecular forces becomes relevant. And although other models might seem 

physically more appropriate, they will probably neither allow for analytic treatment nor 

show a qualitatively different behavior.  

For future work it would be interesting to compare the obtained analytical results with 

numerical or experimental findings. 
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