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Abstract. Recently, Pohrt and Popov have shown that for simulation of adhesive contacts 

a mesh dependent detachment criterion must be used to obtain the mesh-independent 

macroscopic behavior of the system. The same principle should be also applicable for the 

simulation of fracture processes in any method using finite discretization. In particular, in 

the Discrete Element Methods (DEM) the detachment criterion of particles should depend 

on the particle size. In the present paper, we analyze how the mesh dependent detachment 

criterion has to be introduced to guarantee the macroscopic invariance of mechanical 

behavior of a material. We find that it is possible to formulate the criterion which 

describes fracture both in tensile and shear experiments correctly. 

Key Words: Fracture, Mesh-Dependence, Discrete Element Method, Particle Size 

1. INTRODUCTION 

Since the work of Hertz [1] it is well-known that stress distribution in a contact area is 

not uniform. Stress distribution in the contact between an elastic half-space and sharp-

edged rigid or elastic counter-bodies of a different shape (e.g. a cylinder, frustum etc.) 

tends to infinity in a vicinity of the contact area boundary [2, 4-6]. In reality, stresses at 

the contact area boundary never achieve infinite values due to surface roughness and/or 

plastic deformation [3]. Nevertheless, these stresses are several times higher than in the 

center of the contact area.  

The presence of high stress concentrations near contact patch boundaries, notches etc. 

leads to nucleation of cracks on different scales [7, 8]. In order to describe conditions of 

fracture in the regions with heterogeneous stress/strain fields, non-local fracture criteria 
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have been developed. Perhaps one of the most popular nonlocal fracture criteria is 

Novozhilov fracture criterion [9] which reads 
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where σc is the strength of a homogeneous material under uniaxial tension without stress 

concentrators, σy(x) is the maximum normal stress, x axis corresponds to a “most probable” 

direction of crack propagation, d1 is a material constant having a dimensionality of length. 

Similar forms of nonlocal criterion (1) were used in [10] for composites and in [11] for 

notched samples. Another way of taking into account stress concentrators is to include 

both absolute value of stress (either maximal or average value) and its gradient in a crack 

processing zone: 

 
0( , / )e cf L L   ,  (2) 

where L0 is a characteristic size of material structure elements, Le is a size of stress 

concentration zone [12]. In the framework of this approach the size of stress concentration zone 

depends on a local stress gradient: Le = Le(grad(σ)).  

When developing a numerical model of the contact, or, more generally, of a sample 

with stress concentrators, it is necessary to adequately describe crack nucleation conditions 

since they significantly depend on stress distribution approximation accuracy that is 

determined, in turn, by mesh size. Correspondingly, variation of the mesh size may have 

influence on the values of mechanical characteristics of the simulated samples, e.g. their 

compressive/tensile strength, etc. 

The traditional way of describing heterogeneous stress/strain fields, based on mesh 

refinement, is not applicable to problems where “quasi-infinite” local values of stresses 

can occur. These problems include friction and wear, contact problems with punches 

having sharp edges, etc. In this case, in order to adequately describe fracture in numerical 

models, nonlocal fracture criteria of types (1) and (2) are widely used. Examples of their 

applications in the finite-element method (FEM) can be found in papers [13, 14] and in 

many others.  

Recently, Popov and Pohrt have suggested a mesh-dependent detachment criterion in 

the boundary element method (BEM) for a normal adhesive contact problem of linearly 

elastic and power-law graded elastic materials [15-17]. The main idea of the suggested 

approach is a modification of local ultimate stress value instead of stress field correction. 

The given criterion is local and it allows adequate descriptions of a normal contact 

between an elastic half-space and a rigid indenter in the presence of adhesive forces.  

Despite a wide application of non-local and mesh size dependent fracture criteria in 

continuum-based approaches like FEM, the size-dependent fracture criteria in DEM still 

remain much less studied [18]. In the paper we study the relation between tensile and 

shear contact strength and a discrete element size. Hereinafter the term “contact strength” 

means a maximal value of a force divided to the contact square that is required to detach 

the contacting bodies. Based on the obtained results, we suggest a mesh-dependent local 

fracture criterion which allows us to overcome the mentioned problem, namely to avoid  

dependence of the contact strength on element size.  
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2. FORMULATION OF THE PROBLEM 

Let us consider a contact between an elastic half-space and an elastic punch, which are 

initially bonded (see Fig. 1). We study dependence of the contact tensile strength on element 

size d. A displacement with constant vertical velocity is applied to the upper layer of the 

punch while the lower layer of the half-space is fixed in vertical direction. Horizontal 

motions of elements of the top boundary of the punch and the bottom boundary of the half-

space are allowed. The materials of the punch and the half-space are considered linearly 

elastic. We used the Movable Cellular Automaton method (MCA) [19-21] which is a DEM 

family representative with multi-particle distinct element formulation of the equations of 

elasticity and motion.  

 

Fig. 1 Schematic of the simulated sample; element size d=0.001 m 

The elastic modulus of the half-space was Ehalf-space = 200 GPa, the elastic modulus of 

the punch Epunch was varied in a certain range in order to perform a parametric study of the 

problem. The values of the Poisson’s ratios were νpunch = νhalf-space = 0.3. The value of the 

ultimate stress in von Mises fracture criterion was YMises = 200 MPa that leads to relatively 

small values of strains in the punch and the substrate at the moment of fracture. The strain 

rate was of the order of   ≈ 0.3 sec
-1

 that provides a quasi-static loading regime. 

We used a finite-size punch and a large counter-body which imitates a half-space. 

Evidently, the boundary conditions produce a contribution to the values of sample strength 

obtained during simulations. In order to diminish influence of the boundary conditions we 

studied the convergence of the strength value when thickness and height of a punch and a 

counter-body simulating a half-space increase. The values of thickness H and width W of 

the counter-body greater than five widths of the punch 2a0 guarantee convergence of the 

value of the tensile strength and, consequently, the absence of the boundaries’ influence. 

Punch height h>3a0 guarantees tensile strength being independent of h. The following 

values of the sizes of the punch and the “half-space” were used in the calculations 

described below: a0=0.01 m, h=0.03 m, H=0.125 m, W=0.1 m. The closed package of 
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discrete elements was used. It should be noted that the use of a close-packed ensemble of 

circular discrete elements leads to the appearance of an "artificial roughness" on the boundaries 

of the sample (see Fig. 1). 

2.1. Description of the discrete element model 

In the framework of MCA a solid body is considered as an ensemble of interacting 

particles (elements) of finite size. Contacts of interacting pairs of elements are considered 

to be initially bonded that simulates a consolidated solid, while the contacts between 

crack faces are considered as unbonded. Switching between bonded and unbounded states 

occurs when a given fracture or linkage criterion is satisfied. 

Interaction between the contacting elements (either bonded or unbonded) is realized 

through their common plane faces. The evolution of an ensemble of discrete elements is 

defined by a numerical solution of the system of Newton-Euler equations of motion: 
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where 
ir , 

iv  and 
i  are the radius-vector, velocity vector and angular velocity of discrete 

element i, mi is the element mass, Ji is the moment of inertia of an equivalent disc or sphere, 
n

ijF  and ijF 

 are the forces of central (normal) and tangential interaction between element i 

and its neighbor j, and ij ij ij ijM q n F    is the torque. Equation (3) describes translational and 

rotational motion of the discrete elements having a finite size. Both the constituents ( n

ijF  and 

ijF 

) of the interaction force between discrete elements i and j in Eq. (3) include potential 

(
np

ijF  and 
p

ijF 
) and dissipative/viscous ( nv

ijF  and v

ijF  ) contributions [19]: 
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As follows from Eq. (4), the value of torque ijM  includes both potential and dissipative 

constituents. 

The major features of the MCA method are the approximation of a homogeneous 

stress-strain distribution in a simply deformable element and the postulated form of the 

relation for the reaction force of a discrete element in response to the action of its 

neighboring element. 

In the simply deformable element approximation the state of a discrete element is 

determined by average stress tensor 
i

  and average strain tensor 
i

  [21] calculated 

based on the specific values of normal and tangential forces in interacting pairs of discrete 

elements. Tensors 
i

  and 
i

  are assumed to be related by an assigned constitutive law. 

This law determines a relationship between force and spatial interaction parameters for a 

pair of elements. The MCA method postulates a structural form of relations for the central 

and tangential interaction forces of discrete elements. We have used a generalized Hooke’s law 
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for isotropic materials as constitutive relation ( )i i

  
 for the elastic response of a simply 

deformable discrete element.  

The developed approach allows using multi-parametric failure criteria (von Mises, 

Mohr–Coulomb, Drucker–Prager and others) for simulation of bond breaking between the 

pairs of interacting discrete elements. In this paper we used the von Mises fracture criterion in 

the following form: 

 2 2 2 21
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2
xx yy yy zz zz xx xy MisesY           , (5) 

written for a pair of interacting discrete elements. 

3. RESULTS OF SIMULATION 

There is a well-known analytic solution for the normal pressure distribution under an 

elastic flat punch contacting with an elastic half-space [3, 6]. This solution suggests the 

presence of peaks of normal pressure near the boundary of the contact area. Height and, 

more generally, shape of these peaks depend on curvature of the corners of the punch, the 

relation of elastic moduli of the punch and the half-space, the roughness and the coefficient 

of friction between the contacting bodies, etc. In any case, these peaks are much higher than 

the pressure on the axis of the punch. This fact leads to a curious result at the DEM 

simulation of detachment of a punch from a half-space. Namely, tensile strength σt of a 

contact between a punch and half-space becomes lower with decrease of the diameter of a 

discrete element in accordance with the power law: 
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where σt0 is a parameter having the dimensionality of stress, d is a discrete element size, 

d0 is a normalizing constant and s is the exponent. The dependencies of tensile strength on 

element size for different relations of elastic moduli of the punch and the half-space 

e = Epunch / Ehalf-space are shown in Fig. 2.  

Evidently, the upper limit of the element size is a punch size and the lower limit tends 

to zero. As one can see from Fig. 2, there is no convergence (at least, asymptotic) of the 

values of tensile strength on the lower limit of element size. This means the formulation of 

the numerical model is physically inadequate and must be improved in a way guarantying 

convergence of the results of simulation with decreasing of an element size. It is necessary 

to note the fact that the mentioned effect of element size dependence of tensile contact 

strength holds for different types of fracture criteria (von Mises, Drucker-Prager, detachment 

at a given value of normal tensile stress etc). Also this effect exists when a quadratic 

package of elements is used. 
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Fig. 2 Dependencies of the contact tensile strength on the element size  

for the size independent local detachment criterion 

In order to study the influence of the direction of loading, we carried out a series of 

calculations in which shear loading with constant horizontal velocity was applied to the 

top layer of the punch, while it was fixed in vertical direction. It was found that shear 

strength of the contact between the punch and the half-space depends on the element size 

in the same manner as the tensile strength discussed above (see Fig. 3). 

Shear strength of the contact obeys to the power law 
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where τ0 has the dimension of stress, q is the exponent determining the slope of the 

logarithmical dependence of shear strength on the element size. Based on the analysis of 

the dependencies shown in Figs. 2 and 3 we obtained the following estimate of the exponents 

from Eqs. (6) and (7) for e = 1: 

 0.4 0.01s q   . (8) 

 

Fig. 3 Shear strength of a contact versus element size 
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The estimates of s and q for different values of e are summarized in Table 1. It is evident 

that the highest discrepancy between the values of exponents s and q takes place for e = 10 

(the stiffest punch); in other cases the difference between them does not exceed few percent. 

This demonstrates universality of the obtained dependencies of strength on element diameter 

and their applicability to construction of a mesh-dependent fracture criterion. 

Table 1 Values of s and q for different values of e = Epunch / Ehalf-space  

E 
Tension Shear 

S q 

0.2 0.3 0.31 

1 0.4 0.41 

10 0.44 0.47 

4. DISCUSSION 

The obtained element size dependence originates from the non-uniform stress 

distribution in the contact area with high values of stresses near boundaries. The peaks of 

stresses take place for all components of stress tensor and for equivalent (von Mises) 

stress which determines crack formation due to the fact that the von Mises fracture 

criterion was used in the performed calculations. At that, the smaller an element size the 

higher the peaks and the earlier fracture occurrence (see Fig. 4). 

Based on the hypothesis that the power-law dependence of contact strength on element 

size has nearly the same value of the exponent as the contact stress distribution, we have 

carried out the following test. In the paper [6] an approximation for normal stress 

distribution has been proposed: 

 
2 2( ) ( , ) /( )p x FM a a x    , (9) 

where F – total force, applied on punch, M(λ, a) – a non-dimensional weight function, x – 

spatial coordinate along the contact patch measured from the punch center, λ – the 

exponent (see also, [23]). There is an analytic solution for λ, obtained by Rao [3] for a 

punch with an arbitrary angle at the corner θ: 

  2tan(1 ) (1 )sin 2 sin 2(1 ) 1 cos 2(1 ) (1 ) (1 cos 2 )e                 .  (10) 

For a cylindrical punch which is rectangular in 2D cross-section θ = π / 2 and Eq. (10) 

simplifies to  

 
2tan(1 ) sin(1 ) 1 cos(1 ) 2(1 ) 0e            .  (11) 

It is interesting that Eqs. (10) and (11) do not contain Poisson’s ratios of a punch and 

a half-plane that means, in particular, that a value of λ is the same for plane stress and 

plane strain conditions [3]. 
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Fig. 4 Spatial distributions of the von Mises stress on the surface  

of the half-space for different values of element size 

Having applied Eq. (9) for approximation of the von Mises stress distribution in the 

contact area, we obtained the estimation λ ≈ 0.39 (see Fig. 5). This value agrees well with 

the values of exponents s and q, which enter Eqs. (6) and (7) correspondingly. The given 

fact demonstrates that the character of the dependence of contact strength on element size 

is determined by stress distribution in a contact area.  

The analytic estimate of parameter λ, calculated by means of solution of Eq. (11), is 

λ ≈ 0.226 for e = 1. The discrepancy between the given analytic estimate and the value of 

λ, obtained on the basis of approximation of numerical simulation results (see. Fig. 2), has 

the following reason: we applied Eq. (9) for approximation of the von Mises stress 

distribution in the contact area although the given equation was initially obtained for 

description of normal stress distribution, taking no account of squeezing and bending of a 

material in the contact area and surroundings. 

 

Fig. 5 Normalized dependence of the von Mises stress under the punch  

and its analytic approximation Epunch = Ehalf-space. 
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Based on the results described above, we suggest an equation for the value of ultimate 

stress in the von Mises failure criterion: 
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where λ(e) is a function of the relation e = Epunch / Ehalf-space, the value of Y0 depends on  

material strength, ratio e, contact size, etc. Obtaining closed-form equations for λ(e) and Y0 

requires additional research. Application of Eq. (12) in fracture criterion (5) allows obtaining 

almost the same values of tensile strength of samples with different element size (see Figs. 

6a and 6b). One can see that the loading diagrams of samples under tension are almost 

identical (Fig. 6b). A distinction between them is conditioned by a small difference of 

stiffness of samples with different element size. The deviation of tensile stress from its 

sample mean value does not exceed two percent (Fig. 6b). 

It is a well-known fact that macroscopic plasticity of brittle solids is often a consequence 

of microscopic failures nucleation, motion and healing [22]. This is one of the facts 

underlining similarity and interconnectedness of plasticity and fracture phenomena. From 

this point of view it is obvious to make an assumption about an existence of mesh-dependent 

criterion of plasticity. The latter is the topic for a future work. 

 

Fig. 6 a) The diagrams of tensile loading for samples with different element size;  

b) The deviation of tensile strength from its mean value vs. element size Epunch = Ehalf-space 

5. CONCLUSIONS 

We have carried out the numerical simulation of a contact between an elastic punch 

and a half-space within the discrete element method. We have shown that the use of local 

detachment criterion without accounting for a discrete element size leads to a power-law 

dependence of contact strength on element size. The value of exponent in this dependence 

is approximately equal to 0.4±0.01 both for tensile loading and for shearing.  

Based on the obtained results we have proposed a mesh-dependent fracture criterion 

which explicitly includes the discrete element size. The suggested fracture criterion provides 

almost size-independent values of tensile and shear strength for a punch detachment from a 

half-space. Although the obtained fracture criterion is not universal, it demonstrates a 
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perspective of development of discrete-element models for brittle and elastic-plastic 

materials with stress concentrators.  
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