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Abstract. Two numerical methods are proposed to improve accuracy of the numerical 

calculation of fretting wear in the framework of the Method of Dimensionality Reduction 

(MDR). Due to the singularity of the transformation equations, instabilities appear at the 

border between the stick and slip regions after many transformations from the 

one-dimensional to the three-dimensional contact and back. In these two methods, the 

transformation equations are reformulated to weaken the singularity of the integrals and 

a stable simulation of fretting wear is realized even with the wear models which go 

beyond the classical Archard law. With an example of dual-oscillation, we show the 

change in the worn profile of a parabolic indenter as well as the stress distribution on the 

contacting surface during the oscillating cycles under the Archard’s law of wear and 

Coulomb’s law of friction.      
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1. INTRODUCTION 

In recent years, the Method of the Dimensionality Reduction has been applied to various 

contact problems. The classic contacts of rotationally symmetric indenters like the Hertzian 

normal contact, partial sliding, or JKR (Johnson-Kendall-Roberts)-type adhesive contact, etc. 

can be easily understood and resolved very quickly in the framework of the MDR [1]. A similar 

approach, the Method of Memory Diagrams (MMD), provides semi-analytical solutions for 

axisymmetric contact problems, for example, friction-induced energy loss [2]. The paper [3] 

provides a series of guidelines for using the MDR in the applications of homogeneous media or 

graded material, in elastic and viscoelastic contacts. If the contacting bodies and the material 

properties do not change in the whole contact case, one can obtain the results by simulation 

merely in the framework of the one-dimensional contact, for example, relaxation damping [4] 
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or adhesive pull-off [1]. However, in some cases, for example, in the wear contact, the surface 

profile of the indenter changes due to wear so that one has to come back to the 

three-dimensional contact by using the transformation equations to calculate a new surface 

profile. Then the 3D profile is transformed into the corresponding new 1D profile for the 

solution of the contact problem. The procedure is then repeated for the whole contact. Fig.1 

shows this simulation procedure as presented in the papers [5, 6].  

 

Fig. 1 Procedure of numerical calculation of wear using the MDR  

These transformation equations are listed in the following for the profile, from 3D f(r) to 1D 

g(x), and for the displacement and stress, from 1D u(x), q(x) to 3D w(r), p(r):  

 
2 20

( )
( ) d

x f r
g x x r

x r





 , (1) 

 
2 20

2 ( )
( ) d

r u x
w r x

r x



 , (2) 

 
2 2

1 ( )
( ) d

r

q x
p r x

x r

 
 


 . (3) 

These Abel equations have a singularity at point x r . Numerically, the integral can be 

calculated in different ways, for example, using Simpson’s 1/3
rd

 rule, or via a semianalytical 

technique with piecewise approximation in a segment by a constant or linear profile [7, 8]. 

From Fig.1, we can see that in the case of numerical description of wear, the transformation 

from 1D to 3D and the back transformation have to be carried many times, which will lead to 

instability if the integral is numerically approximated with a low accuracy. In the recent paper 

[9], the transformations (1)-(3) are rewritten by using the integration by parts to avoid the 

singularity, and the corresponding numerical implementation is given in detail. With an 

example of gross slip wear, this method shows very accurate results, where, however, only 

transformations (1) and (3) are necessary. In the fretting wear, we observe instability using the 

same method where the Eq. (2) is also involved. In this short communication, we will give two 

further approaches to improve the integral precision and stability in the fretting wear 

simulation.   
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2. METHODS 

2.1. Method A 

As suggested in [10], the singularity of the integrand can be weakened by splitting it 

into two parts to improve accuracy of an approximate integration. Focusing on the Eq. (2), 

it can be rewritten as   
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Eq. (4) can further be written with a derivative: 
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This integral can be numerically calculated with greater accuracy than Eq. (2). In a discrete 

form, Eq. (6) is  
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First derivative u΄k is obtained via forward difference.  

For Eqs. (1) and (3), however, we use the method from the recent paper [9] which gives 

highly accurate results. 

2.2. Method B 

Here we rewrite all the three transformations (1)-(3) simply in the following form 
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Using the trapezoidal method, they can be written in the discrete form 
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The first derivatives in Eqs. (11)-(13) can be obtained via central differences. Different 

from the method in [9] by using the technique of integration by parts, the second 

derivatives are not necessary in the above Method B.  

Fig. 2 shows the numerical errors of 1D profile, normal stress and deformation at each 

discrete point in the contact area in comparison with the Hertzian theory. The error is estimated 

as the absolute value of (Results A or B – Theory)/Theory. It is noted that the adjustment as 

suggested in [9] is not applied for stress in the method A. It is seen that for the profile, there is 

no difference for the two methods, but for the deformation, the method A is better.  

 
a)                        b)   c) 

Fig. 2 Error estimation with an example of Hertzian contact for: (a) 1D profile; (b) normal 

stress; (c) normal deformation 

3. IMPLEMENTATION OF FRETTING WEAR 

Now we numerically simulate fretting wear with the approaches given in Section 2. The 

indenter with initial parabolic profile f=r
2
/(2R) is pressed into the elastic half space with 

elastic modulus E
*
 and Poisson’s ratio . The indenter oscillates with displacement-controlled 

periodic functions in both vertical and horizontal directions:  
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The numerical algorithm is the same as in Fig.1, and we use the local formulation of 

Archard’s law of wear for the change in 3D surface profile:   

 (0)

,3D( ) ( )( ( ))wear x xf r k r u u r    , (15) 

where kwear is the wear coefficient, τ(r) is the tangential stress on the surface, ux
(0) 

is the 

tangential movement of the indenter
 
and ux,3D is the change of tangential displacement of 

the elastic half space in a time increment.  
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      a)                     b) 

 
      c)                     d) 

Fig. 3 Simulation of fretting wear: (a) 3D profiles and (b) corresponding 1D profiles at 

three states; (c) normal and tangential stresses at state 1 and (d) state 3 

It is known that if the tangential oscillation amplitude is small, there will be a stick 

region in the center and a slip region at the boundary of the contact area with Coulomb’s 

law of friction. The contact problem can be solved in the 1D contact with Winkler’s spring 

foundation [3]. The obtained 1D tangential stress qx and tangential movement ux,1D are then 

transformed into three-dimension τ(r) and ux,3D for substitution into the wear law (5) to get 

the new profile. In the MDR, the stick and slip regions of ‘springs’ are determined 

according to the following rule:  
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In the numerical simulation, we first assume that all the springs in the contact region move 

with the same value ux
(0) 

as the indenter and then the tangential forces of these springs are 

calculated kxux,pre. Subsequently, we check the condition (15): the springs that meet 

condition kxux,pre <µfz
 
are located in the stick region, where the relative tangential 

movement is zero, ux =ux
(0)

, as described in (15). The other springs having the relation 
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kxux,pre>µfz are in the slip region, where the tangential displacement must be smaller than 

assumed value ux<ux,pre, and it will be calculated with the rule in (15). In fretting wear, the 

indenter moves also backward, so the sign in (15) should be the same as ux,pre. 
 
 

Numerically, we simulated various cases of the fretting, including variation of phase, 

different oscillation frequencies in normal and tangential directions, amplitude of 

oscillation, coefficient of friction, and also other laws of wear, for example the case when 

the surface change has a power-law function of stress or relative tangential movement. 

Both methods show stable results. Here we give only one example as shown in Fig.3. The 

main parameters are set as ux
(0)

= uz
(0)

=0.1 uz
(0)

,
 
ux

(0)
=0, φ=/4, 1=2=100, µ=0.1 and 

discrete points N=100. The states 1, 2, 3 in Figs.3a and b indicate 50.72, 100 and 199.24 

cycles of oscillation (the large value of wear coefficient is used to observe the wear 

behavior quickly). The 3D worn profile and the corresponding 1D profile are shown in 

Figs.3a and b. Figs.3c and d show the 3D normal and tangential stresses at state 1 and 3, 

where the indenter is located shortly before 3/4 and 1/4 period, respectively. The difference 

of the 3D profile between these two methods is very small. Only when the surface is 

strongly worn, the stress singularity at the border of stick region can be observed.  

4. CONCLUSION 

We provide two approaches to improving the accuracy of the numerical implementation of 

the transformations for the fretting wear. Both the methods provide a fast and stable simulation 

in the fretting contact. Besides the example presented in Section 4, we have tried a few 

simulations with other laws of wear, for example f~τ
1.5

, and using not only the Methods A and 

B but also their combinations. It is found that Method B gives sometimes unstable simulations 

for a relatively large wear coefficient. Generally, for the wear or other contact problems, we 

suggest the users of the MDR to use the numerical implementation of transformations in the 

following consequents: a) Method A; b) combination of Method A for Eqs. (1) and (3) and 

Method B for Eq. (2); c) Method B. In the tests there is almost no difference observed between 

suggestions (a) and (b).  
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