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Abstract. Integration of classical, passive structures and active elements based on multi-

functional materials resulted in a novel structural concept denoted as active structures. 

The new structural systems are characterized by self-sensing and actuation. Coupling the 

two distinctive features by means of a controller enables a number of exquisite 

functionalities such as vibration suppression, noise attenuation, shape control, structural 

health monitoring, etc. Reliable, accurate and highly efficient modeling tools are an 

important ingredient of the active structure design. This paper addresses the Abaqus 

implementation of a recently developed piezoelectric 3-node shell element. The element 

uses co-rotational formulation to cover geometric nonlinearities. Special techniques are 

used to address the issues originating from low-order interpolation functions. The discrete 

shear gap is used to resolve the shear locking, while the assumed natural deviatoric strain 

technique improves the membrane behavior. Examples are computed in Abaqus upon 

implementation of the developed element.  

Key Words: Abaqus, Corotational FEM, Piezoelectric shell element, Discrete shear 
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1. INTRODUCTION

Over two decades ago, a novel structural concept denoted as ‘active’, ‘adaptive’, or 

‘smart’ structures has seen the light of day [1]. It features integration of classical, passive 

structures and active elements based on multi-functional materials. In this manner, 

artificial systems are given the ability of self-sensing and actuation coupled by control 

capabilities. The concept is obviously the result of mimicking the natural systems that 
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actively react to environmental stimuli in order to protect their integrity and maintain 

optimal functionality. This provides them with a number of exquisite functionalities such 

as vibration suppression [2], noise attenuation [3], structural health monitoring [4], shape 

control [5], etc. In this manner, active systems offer significant benefits over passive ones, 

including improved safety, ergonomics, robustness, product lifespan, etc. 

Such an enticing research field has attracted many researchers, whereby, generally 

speaking, two major directions of work can be distinguished. One group of researchers 

focused their work on resolving some practical problems such as design of active 

elements, types of materials applied, ways of embedding active elements into passive 

structures, etc. The other group dedicated their work to development of modeling tools 

thus enabling reliable simulation and therewith less expensive and successful design. The 

Finite Element Method (FEM), as the most powerful method in the field of structural 

analysis, is addressed and many authors proposed various types of elements that enable 

modeling of active structures.  

In case of thin-walled structures, active elements are typically in the form of small, 

rather thin patches made of piezoelectric materials that operate based on the e31-effect. 

This actually means that the patches couple the electric field acting across the thickness to 

the in-plane strains. The same patches are used as both sensors and actuators with the 

essential difference only in the boundary conditions. When exposed to mechanical 

deformation, sensor patches deliver electric signals, i.e. voltages, proportional to the 

average in-plane strains in the area covered by the piezoelectric patch. Oppositely, when 

supplied with electric voltage, actuator patches produce distributed in-plane forces 

proportional to the electric voltage and acting perpendicularly to the edges of the patch. 

The patches are usually placed at the maximum offset distance from the mid-plane in 

order to produce the maximum bending moment uniformly distributed over the patch 

edges. They are commonly glued onto the outer shell surfaces. The effect may be 

amplified by using a pair of such patches collocated with respect to the structure’s mid-

surface by placing one of them on the upper while the other one on the lower surface, and 

they are additionally oppositely polarized in order to produce only a bending moment 

when exposed to the same electric voltage.  

A large number of shell type of finite elements were proposed for piezoelectric active 

shell structures. Benjeddou [6] gave a thorough survey of the development in the 90’s and 

the development in the beginning of the new millennium retained the same intensity and 

innovativeness. Various approaches to modeling were investigated. One should notice 

that the application of piezopatches onto a passive shell structure results in a multilayered 

structure, even if the passive structure consists of a single layer of material. However, not 

rarely the passive structure is actually made of a composite laminate. The mainstream 

developments implemented the equivalent single-layer approach. Some of them were 

based on the classical laminate theory (Kirchhoff-Love kinematics) [7, 8], while others 

used the first-order shear deformation theory (Mindlin-Reissner kinematics) [9, 10]. The 

latter was more frequently used. One reason for this choice is to be sought in the greater 

generality as the formulation includes the transverse shear effects, but an equally 

important reason is the attractiveness of the C0-continuity needed from the element shape 

functions, whereas the Kirchhoff-Love elements demand the C1-continuity. To improve 

the accuracy of shell formulations at the cost of somewhat higher numerical effort, 

layerwise theories were also addressed. One of the elements based on this approach is the 
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9-node plate element proposed by Cinefra et al. [11] and which implements the technique 

of Mixed Interpolation of Tensor Components and variable through-the-thickness layer-

wise kinematics. The approach was recently extended by Carrera et al. [12, 13] in order to 

locally increase the accuracy by means of node-dependent kinematics. Furthermore, both 

geometrically [14, 15, 16] and materially [17] nonlinear problems in the behavior of 

piezoelectric thin-walled structures were also considered in the work of many researchers.  

As it is of utmost importance to enable users to apply developed numerical tools in 

modeling and simulation, this paper addresses Abaqus implementation of the recently 

developed piezoelectric 3-node shell element. Similar works were already reported in 

available literature [18, 19]. In what follows, the most important aspects of the element 

development are briefly presented together with the results of several test cases computed 

by using the element implemented in Abaqus. 

2. PIEZOELECTRIC 3-NODE SHELL ELEMENT WITH DRILLING DEGREE OF FREEDOM 

The developed element combines features of already developed and in literature 

available shell elements. It implements the mechanical field of the element proposed by 

Rama et al. [20] that was also extended to composite laminates by Rama et al. [21], and 

the electric field, including the both way coupling between the two, as described in the 

work by Marinkovic and Rama [22]. As the mentioned references provide detailed 

derivations, the element description given in this section will not go into all the details, 

but for the sake of completeness, some major aspects of the development will be 

presented together with the most important matrices.  

As is the case with most shell elements, the formulation of this one strongly relies on 

the use of local coordinate frame x, y, z, which is defined so as to have one of its axis, 

the z-axis, perpendicular to the element, while the other two axes lie in the element’s 

plain, Fig. 1. In the case of an isotropic material, their orientation is mainly of importance 

for proper evaluation of the results, as stresses and strains are determined and typically 

given with respect to this coordinate system. On the other hand, in the case of a composite 

laminate, it is of crucial importance for defining the material elastic properties. The same 

coordinate system comes also quite handy in the presence of piezoelectric layers, as the 

mathematical description of the considered e31-piezoelectric effect is straightforward with 

respect to it.  

 

Fig. 1 3-node shell element with the local frame and mechanical degrees of freedom 
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Since the 3-node element is a flat element, its mechanical field is effectively a 

superposition of a plate and a membrane element, Fig. 2. 

 

Fig. 2 3-node shell element as a superposition of plate and membrane elements 

According to the Mindlin-Reissner kinematics, the displacement field with respect to 

the local coordinate frame is given as follows: 
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where ui, vi, and wi , i=13, are the nodal displacements along the x-, y- and z-axis, 

respectively, xi and yi, are the nodal rotations about the x- and y-axis, respectively, Ni 

are the typical nodal shape functions of a linear triangular element, hi are the nodal values 

of shell thickness and t is the natural coordinate in the thickness direction.  

The plate behavior of the element is determined by plate stiffness and transverse shear 

stiffness. The plate stiffness is obtained by deriving the bending strains directly from the 

displacement field. The resulting bending strain-displacement matrix reads [20]:  
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where A is the element area, while xij= xi- xj and yij= yi- yj.  

Since shell elements are notorious for shear locking effects, particularly when low-

order shape functions are used, special measures are typically needed to mitigate the 

effect. The developed element implements the discrete shear gap technique originally 

proposed by Bletzinger et al. [23] and improved by the cell strain smoothing technique 

suggested by Ngyen-Thoi et al. [24]. The resulting transverse shear strain-displacement 

matrix for a triangular element is given by [20]:  
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where:  
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In order to avoid the dependence of the strain-displacement matrix on the node 

numbering and to improve the accuracy, the strain smoothing technique [24] is applied. It 

implies that the element is divided into three sub-elements by an additional node at the 

element centroid. Equation (3) is then applied to each of the sub-elements and, at the 

same time, the assumption is used that the displacement at the element centroid is given as 

the average value of the displacements at the original three nodes. In this manner, the 

central node is condensed out. Finally, the resulting transverse shear strain-displacement 

matrix is simply given by averaging the matrices of all three sub-elements, [Bs
i] :  
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Since the strain-displacement matrices are constant over the element area, the plate 

stiffness is obtained in the following manner:  

     T T
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where [D] and [F] are the laminate bending and transverse shear stiffness matrices 

obtained by integrating the corresponding constants from the Hooke’s matrix across the 

thickness.  

A particular weakness of low-order 3-node shell elements resides in their membrane 

behavior. ANDES formulation by Felipa and Militello [25] aims to resolve this weakness 

and to improve the behavior of the element to the level of at least a quadratic element. It 

represents a combination of the free formulation (FF) proposed by Bergan and Nygard 

[26] and a modification of the assumed natural strain (ANS) formulation derived by Park 

and Stanley [27]. The formulation abandons the discretized displacement field (Eq. (1)) 

and instead, represents the displacements as a superposition of carefully chosen linearly 

independent modes consisting of rigid-body, constant-strain and linear-strain modes. The 

first two groups are denoted as basic modes, while the third group as higher-order modes. 

Accordingly, the stiffness is divided into basic and higher-order stiffness, each 

determining the behavior of the corresponding modes. For a unique transformation 

between the modal and nodal degrees of freedom, the number of modes is the same as the 

number of nodal degrees of freedom. The so-called drilling degree of freedom, i.e. the 

rotation around the local thickness axis (z-axis) plays the crucial role in the definition of 

the modes. On the other hand, one should notice that this degree of freedom is not a part 

of the discretized displacement field given by Eq. (1). Already this important difference 

speaks in favor of the new quality offered by ANDES formulation.  

The basic membrane stiffness is the same as in the FF formulation [26]:  

      
T

/  ( )mbK L A L Ah ,  (7) 

where [A] is the membrane stiffness of a laminate, i.e. a part of the ABD matrix, while [L] 

reads:  
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with  denoting a non-dimensional parameter.    

The higher-order modes cover the in-plane bending, as illustrated by the three modes 

on the left in Fig. 3. The linear dependency of those three modes is the reason to 

introduce the fourth, torsional mode (the same rotation around the z-axis at all three 

nodes) shown on the right in Fig. 3.  

 

Fig. 3 Higher-order modes – three bending modes (left) and a torsional mode (right) 

Without interpretation of single matrices that appear below, the higher-order 

membrane stiffness is given by [20]:  
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where 0 is a non-dimensional parameter, and furthermore [20]: 
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with lij denoting the length of the element edge between nodes i and j. Furthermore:  
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There are different possibilities for the choice of parameters  and 0-9. This aspect 

is elaborated in [21] and the following choice explained: =1/8, 0=2/4, 1=1, 2=2, 

3=1, 4=0, 5=1, 6= –1, 7= –1, 8= –1, 9= –2. 

Upon the very compact description of the mechanical field in the element, the 

attention needs to be turned to the electric field in the piezoelectric layers. The function 

describing the electric field distribution across the thickness of piezolayers is supposed to 

be consistent with the Maxwell’s equations for dielectrics and with the element 

kinematics. In the case of Mindlin-Reissner kinematics, the consistent electric field is 

linear across the thickness [28]. However, it has also been shown [28] that the classical 

assumption of constant electric field over the thickness provides sufficient accuracy for 

typical, rather thin piezopatches. The electric field of the kth piezolayer is then given by:  

 k
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E
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
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where k is the difference of electric potentials between the electrodes of the kth 

piezolayer and hk denotes the thickness of the piezolayer, leading to the typical diagonal 

form of the electric field – electric potential matrix: 
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The dielectric stiffness matrix is then defined by:  
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where [d] is the matrix of dielectric constants at constant strain.  

Finally, the piezoelectric stiffness matrix reads:  

   
TT

u u mf

V

K K B e B dV  
           ,  (19) 

where [Bmf] collects the strain-displacement terms that define membrane and flexural 

strains, because the formulation considers the e31-piezoelectric effects that couples the in-

plane strains with the thickness-oriented electric field. In Eq. (19) [e] is the matrix of 

piezoelectric constants. The integration in Eqs. (18) and (19) needs to cover all the 

piezoelectric layers across the thickness of the structure.  

In order to cover geometric nonlinearities, the element implements corotational FE 

formulation [29]. Beside the updated and total Lagrangian formulations [30] that both 

represent standard solutions in major commercially available FE codes, the corotational 

FE formulation has gained lately in importance in many applications ranging from real-

time simulations [31] to engineering solutions [32]. All the details are available in the 

literature (including above mentioned references), and only the basic idea is briefly 

outlined here. The general idea is to introduce a new, corotational coordinate frame 

attached to the element that performs the same rigid-body motion as the element itself and 

to measure all necessary quantities, such as strains and stresses, with respect to it (Fig. 4). 

With the presented shell element, the local frame is used as corotational. Small strains are 

assumed despite finite displacements and rotations. Observing the problem in this way 

allows for further simplifications, such as to use linear dependency between deformational 

displacement (i.e. with the rigid-body motion removed from the overall displacements) 

and strains. With the rigid-body motion extracted from the overall motion, one may 

further determine all other mechanical and electric quantities in a relatively 

straightforward manner. For the sake of brevity, the equations are not presented here, but 

an interested reader may consult the above references for more details.  

 

Fig. 4 The idea behind the corotational FE formulation 
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3. NUMERICAL EXAMPLES  

The element was implemented in Abaqus by means of User Subroutine (UEL) and 

currently supports up to two electric degrees of freedom per element, i.e. two piezolayers 

that can be used both as sensors and actuators. The below given examples are of academic 

nature. As the focus is on numerical results, all the values are given as dimensionless. Of 

course, any set of consistent units corresponding to the quantities (both mechanical and 

electric quantities and material parameters, including dielectric and piezoelectric 

parameters) can be associated with them.   

3.1. Bimorph beam 

Bimorph beam is one of the classical benchmark cases to test the developed numerical 

tools for piezoelectric active structures. The entire beam structure consists of two 

piezoelectric layers with opposite polarization. As explained in the introduction, when both 

layers are exposed to the same electric voltage, bending moment uniformly distributed over 

the edges of the structure is induced, thus causing bending. The left end of the structure is 

clamped (Fig. 5) and the displacement along the beam length is observed as a representative 

solution. The length of the beam is l=0.1, the width is w=0.005 and the overall thickness 

(both layers together) h=0.001. The Young’s modulus of the material is 2109, piezoelectric 

constant of the e31-coupling is 0.046 and the dielectric constant 0.106210-9. The difference 

of electric voltages supplied to the electrodes placed on the outer surfaces of the beam is 1. 

 

Fig. 5 Bimorph beam 

The analytical solution for deflection [33] is obtained by assuming beam kinematics 

(implying Poisson’s ratio equal to 0) and it is a quadratic function in x. Fig. 6 gives a 

screen-shot of the deformed configuration with the contour plot of displacements obtained 

in Abaqus. The same case is also considered as a sensor case by exposing the structure to 

two transverse forces of magnitude 0.1, acting at the two free beam corners. It is assumed 

that the whole beam acts as a single sensor (each face completely covered by a single 

electrode) and the resulting electric voltage reflects the average strain in the whole beam. 

The obtained result for the electric voltage of 165 coincides with the analytical solution. 

A sensitivity analysis of the electric voltage to mesh distortion is performed. In order to 

summarize the results of both cases, Fig. 7a shows the diagram of deflection normalized 

with respect to the analytical value of the displacement at the beam tip, while Fig. 7b 
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represents the voltage sensitivity to mesh distortion, by normalizing it in the same manner, 

i.e. with respect to the analytical value of 165. The distortion is performed by increasing 

the value of parameter e from 0 to 20 with the increment size of 5 (see FE mesh within the 

diagram in Fig. 7b).  

 

Fig. 6 Deformed bimorph beam – Abaqus contour plot for deflection 

 

Fig. 7 Bimorph beam: a) Actuator case – normalized deflection; b) Sensor case – normalized 

sensor voltage 

3.2. Piezolaminated arch 

A curved structure is considered in this example. It is a semi-cylindrical arch with 

dimensions and boundary conditions as depicted in Fig. 7. The single layer of passive 

material has thickness of 5.842, the Young’s modulus is 68.95103 and the Poisson’s ratio 

0.3. Each of the two outer piezolayers has the thickness of 0.254 and the following 

material properties: the Young’s modulus 63103 and Poisson’s ratio 0.3. Furthermore, the 

same piezoelectric constant e31=16.1110-6 is assumed in all in-plane directions, and the 

dielectric constant is 1.6510-11. A vertical force of 200, acting upwards at the free tip, 

deforms the structure. The free tip displacements in the x- and y- directions and the 

induced sensor voltage in the inner piezolayer are observed in a geometrically nonlinear 

analysis performed in Abaqus.   

a) b) 
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Fig. 8 Semi-cylindrical arch – dimensions and boundary conditions 

The obtained results are compared with those reported by Zhang [34], who originally 

proposed the example. Fig. 9 depicts the deformed configuration computed using the developed 

3-node shell element implemented in Abaqus. The contour plot in Fig. 9, left, corresponds to 

the displacement in the global x-direction (U1), while the one in Fig. 9, right, to the 

displacement in the global y-direction (U2). Fig. 10 shows the time history of displacements in 

the x- and y-directions with the increasing force, computed by the implemented 3-node shell 

element, Abaqus 3-node shell element and the results by Zhang [34]. 

         

Fig. 9 Abaqus contour plots for displacements in x- (left) and y-direction (right) 

 

Fig. 10 Displacements in x- and y-directions versus force  
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Fig. 11 compares the results obtained for the sensor voltage by the present element 

with the results reported by Zhang [34]. 

 

Fig. 11 Sensor voltage versus force   

3.3. Modal analysis of a piezolaminated composite plate under various electric 

boundary conditions 

The third example considers the change of natural frequency of a piezolaminated 

composite plate with the change of electric boundary conditions. The modal analysis is 

performed with short-circuited and open electrodes. Short-circuited electrodes imply zero 

voltage so that the behavior of the structure is purely mechanical (as if there was no 

piezoelectric effect present). Oppositely, with the electrodes left open, electric voltage is 

induced as a consequence of deformation, which further gives rise to mechanical stresses 

and, therewith, changes in the natural frequencies of the structure. 

The considered structure is a composite plate with the sequence of layers [p/0/90/0/p] 

with respect to the global x-axis (Fig. 11), where ‘p’ stands for piezoelectric layer, while 

the composite layers are made of graphite-epoxy and have the following mechanical 

properties with respect to the principal material orientations: Young’s moduli 

E11=1.324105 and E22=1.08104, Poisson’s ratio 12=0.33 and shear modulus G23=6.6103. 

The piezoelectric layers have the following mechanical properties: E11=8.13104 and 

E22=8.13104, Poisson’s ratio 12=0.33 and shear modulus G23=2.56104. The piezoelectric 

constant is e31=14.810-6 and the dielectric constant 1.150510-11. 

 

Fig. 12 Piezolaminated plate with: short-circuited (left) and open electrodes (right)   
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The span of the plate is a=200. The thickness of each composite layer is 1.068 and of 

each piezolayer 0.4. The modal analysis is performed for all edges simply supported. To 

demonstrate the influence of electric boundary conditions onto the resulting natural 

frequency, only the first eigenmode of the plate is observed. It is depicted in Fig. 13.  

 

Fig. 13 The first eigenmode of the piezolaminated composite plate   

For the purely mechanical case, the results by Abaqus linear shell element (S3) are 

also provided, while the result obtained using a fine mesh of Abaqus quadratic shell 

elements (S8) is used as a reference solution. This example was originally proposed by 

Saravanos et al. [35]. Hence, their results are used as a reference for the open circuit case 

that is affected by the piezoelectric coupling. All the results are summarized in Table 1.  

Table 1 Convergence analysis – normalized first natural frequency 

 Short-circuited 

fref = 22915 Hz 

(Ref: Abaqus S8 2424 mesh) 

Open circuit 

fref = 24594 Hz 

(Ref: Saravanos et al. [35]) 

Elements Present Abaqus S3 [35] Present [35] 

32 1.190 1.220 1.090 1.107 1.109 

128 1.031 1.050 1.034 1.028 1.054 

288 1.008 1.024 1.023 1.005 1.044 

4. CONCLUSIONS 

Development of reliable, accurate and highly efficient numerical tools for modeling 

and simulation of thin-walled piezoelectric active structures is an important prerequisite 

for successful design of those modern structural systems. The presented shell element 

combines features of already available elements. Since it is a 3-node element, it offers 

high meshing ability and numerical efficiency. Geometric nonlinearities are accounted for 

based on the corotational FE formulation. The major weaknesses typical for low-order 

interpolation elements are addressed by means of various existing techniques in order to 

offer a versatile shell type finite element that also covers the electro-mechanical coupling.  

In order to bring the element closer to the end user, it was implemented in Abaqus. 

Several test cases were considered to demonstrate applicability of the element to both 

sensor and actuator cases in linear and geometrically nonlinear analysis.  



282 D. MARINKOVIĆ, G. RAMA, M. ZEHN 

In further work, the element should be extended to cover directional in-plane 

polarization. This would allow to model composites with piezoelectric fibers. A further 

extension to cover nonlinearities in the piezoelectric coupling would allow to accurately 

model the cases that involve strong electric fields.  
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