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Abstract. Complex mechanical systems usually include nonlinear interactions between 

their components which can be modeled by nonlinear equations that describe the 

sophisticated motion of the system. In order to interpret the nonlinear dynamics of these 

systems, it is necessary to compute their nonlinear frequencies more precisely. The 

nonlinear vibration process of a conservative oscillator always follows the law of energy 

conservation. A variational formulation is constructed and its Hamiltonian invariant is 

obtained. This paper suggests a Hamiltonian-based formulation to quickly determine the 

frequency property of the nonlinear oscillator. An example is given to explicate the 

solution process. 
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1. INTRODUCTION 

Small amplitude oscillation of a pendulum or vibration in a long slender beam with low 

amplitude represent examples of the systems that can be well described using linear 

vibration theories. However, as the system components shift toward more sophisticated 

interactions, both nonlinear oscillators and their nonlinear characteristic equations play a 

vital role in explaining the behavior of complex systems. The unique phenomenon that can 

be modeled only through nonlinear systems, such as jump phenomenon, chaos, multiple 

steady-state solutions, etc., are the main significance of using the nonlinear oscillators in 

the vast majority of fields, especially in engineering structures. Nonlinear stiffness and 

friction in dynamical systems [1], complex beam and piezoelectric plate-based self-sustainable 

electromechanical models [2,3], nonlinear reinforced nanofibers [4], vibration caused by the 

interaction between vehicle and bridge [5], large amplitude vibration of beams [6-12] and 

dynamics of micro/nanoelectromechanical systems [13-18] are a few examples of nonlinear 

systems in the field of mechanical engineering. From the mathematical point of view, the 

Duffing oscillator, Van der Pol and Mathieu are well-known nonlinear equations. Several 

nonlinear systems can be described by utilizing the Duffing equation, from a simple pendulum 

with harmonic motion to the vibration of arched structures [19]. The Duffing equation 

especially emerges in mechanical systems with the presence of nonlinear stiffness springs. In 

many cases, stiffness is a function of displacement, which leads to cubic terms in the governing 

equations. Ultimately, this forms a nonlinear relation between the applied force to the spring 

and the resulting displacement. For instance, Fig. 1 shows a truck's rear Leaf suspension. The 

chaotic vibration caused by road excitation in vehicles can be studied by modeling the leaf 

spring with magnets as a double-potential-well Duffing oscillator [20]. 

 

Fig. 1 Leaf Spring (Left) and quarter car diagram of a nonlinear suspension (Right)  

Van der Pol is another example of nonlinear self-excited limit cycle oscillators that is 

widely used to describe various systems in electrical and mechanical engineering, 

seismology, economics, etc. A classical representation of the Van der Pol oscillator is in 

oscillator triode circuits [21]. This equation is also used to describe the Cardiac Pulse 

Modeling [22]. Another well-known nonlinear equation is Mathieu's equation. This 

equation was firstly encountered by Émile Léonard Mathieu when he was studying 

vibrating elliptical drumheads. Mathieu’s equation tends to appear in the systems with 
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harmonic motion and is a powerful tool for modeling systems with elliptic boundary 

conditions. For instance, a wind turbine blade under influence of wind shear force and 

gravitational cyclic force (Fig. 2) can be expressed using the forced Mathieu equation [23]. 

 

Fig. 2 Wind turbine (Left) and cyclic gravitational force on a blade (Right) 

In this paper, based on the energy conservation, a modification of the frequency formulation 

is proposed in order to obtain the frequency-amplitude formulation of nonlinear systems. It is 

demonstrated that the proposed formulation is accurate enough for highly nonlinear differential 

equations containing large nonlinear terms. Several examples are also provided to exhibit the 

integrity of the introduced formulation. 

2. PROBLEM STATEMENT 

This paper focuses itself on the following conservative oscillator 

 ( ) 0, (0) 0 (0)w p w w w B + = = =  (1) 

For a periodic solution, it requires p(w) / w > 0. There are many analytical methods 

available for solving Eq. (1), see some review articles in Refs. [24-26] . This paper will discuss 

the frequency-amplitude formulation, which was first proposed in 2006; it was obtained 

according to an ancient Chinese algorithm [27-29]. Due to its simplicity and accuracy, the 

formulation has been widely applied to solving various nonlinear oscillators; various 

modifications appeared in literature  [30-38].  

The formulation is to find a suitable solution in the form 

 tBw cos=  (2) 

where   is the frequency to be further determined. B residual equation is obtained by 

introducing Eq. (2) into Eq. (1), which results in   

 )cos(cos)( 2 tBptBtr  +−=  (3) 
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The average residual can be calculated as 

 =
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where  /2=T . 

The formulation is to choose two trial frequencies, e.g., 1
1
= and 2

2
= , and their 

residuals are respectively calculated as  
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The frequency-amplitude formulation is obtained as follows [27-29]  
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There are many modifications of Eq. (7), see for examples, refs  [30-38].  This paper 

will suggest an effective modification based on the Hamiltonian invariant.  

3. HAMILTONIAN-BASED FREQUENCY-AMPLITUDE FORMULATION 

The above frequency formulation is derived from a differential equation, here we 

suggests a modification from an energy form. The kinetic energy and the potential energy 

are changed during the oscillation process, but the total energy will keep unchanged for 

a conservative oscillator. In 2002, an energy approach to nonlinear oscillations was 

suggested [39].  

The variational principle of Eq. (1) can be constructed by the semi-inverse method 

[40-43], which is  

 dtwPwwJ 








−= )(
2

1
)( 2  (8) 

where p(w) is the potential, satisfying the following relation:  

 )()( wpwP
dw

d
=  (9) 

In the variational formulation given in Eq.  (8), 2

2

1
w  is the kinetic energy, and P(w) is 

the potential energy. The total energy keeps unchanged during the oscillation: 

 HwPw =+ )(
2

1 2  (10) 
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where H is the Hamiltonian constant, which can be identified by the initial conditions given 

in Eq. (1). Finally we obtain the following first order differential equation,  

 0)()(
2

1 2 =−+ BPwPw  (11)                                                                                      

We use Eq.  (11) instead of Eq.  (1) to re-build the frequency-amplitude formulations. 

Substituting Eq. (2) into Eq. (11) results in the following residual equation, 

 )()cos(sin)( 222 BPtBPtBtR −+=   (12) 

Similarly we define two average residuals 
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A modification of the frequency- amplitude formulation is given as follows 
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4. EXAMPLE 

Consider the following well-known Duffing equation,  

 Bwwwww ===++ )0(0)0(,03  (16) 

Eq. (16) can be reduced to the following first-order differential equation,  
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We choose two arbitrary frequencies, e.g., 1 = 1ω and 2 = 2ω , and obtain the following 

residual equations, respectively. 
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Their average residuals can be easily calculated:  
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According to the modified frequency-amplitude formulation, we obtain  
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To show its accuracy given in Eq.  (22), we consider two extremes when 02 →B  

and →2B .  

When 12 B  Eq. (22) can be approximated as  

 2

20

7
1 B +=  (23) 

While the perturbation solution is [32]  

 2

8

3
1 B +=  (24) 

Table 1 shows that both Eq.  (23) and Eq.  (24) see good accuracy when 12 B . Fig. 3 

also shows the good agreement between the approximate and the exact solutions. 

 

Fig. 3 Comparison of the approximate solution, the red continuous line is the exact 

solution, the black discontinuous line is the approximate solution, and the blue 

circles are perturbation solution 
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Table 1. Comparison of the approximate frequency of Eq. (23) with the exact one and the 

perturbation solution 

B2 0 0.001 0.0025 0.003 0.005 0.007 0.009 

Eq.(23) 1 1.00035 1.000875 1.00105 1.00175 1.00245 1.00315 

Eq.(24) 1 1.000375 1.0009375 1.001125 1.001875 1.002625 1.003375 

Exact frequency 1 1.000380 1.0009442 1.00113 1.0018726 1.002613 1.003369 

When →2B , its approximate period becomes  
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The exact period, when →2B , is  
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The relative error is 1.317% when →2B .  

The approximate period by the homotopy perturbation method is  
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The relative error is 2.153% even when →2B , see Fig. 4 and Table 2. 

Table 2. Comparison of the approximate period of Eq. (25) with the exact one 

B2 100 500 1000 1500 2000 B2 →  

Exact period 0.73629 0.33118 0.23435 0.19140 0.16577 2/4164.7 B  

Eq.(25) 0.74568 0.33537 0.23731 0.19381 0.16787 2/5098.7 B  

Relative error 1.275% 1.265% 1.263% 1.259% 1.267% 1.317% 

Eq.(28) 0.72073 0.32403 0.22928 0.18725 0.16218 2/2552.7 B  

Relative error 2.113% 2.159% 2.163% 2.168% 2.166% 2.153% 



206 J.-H. HE, W.-F. HOU, N. QIE, K.A. GEPREEL, A.H. SHIRAZI, H.M. SEDIGHI  

 

Fig. 4 Comparison of the approximate solution, the red continuous line is the exact solution, 

the black discontinuous line is the approximate solution, and the blue circles are 

perturbation solution 

4. CONCLUSION 

This paper suggests a modification of the frequency formulation based on the energy 

conservation, the obtained result is globally valid for  0  B2 < . The example shows that 

our result sees a good agreement with the perturbation solution for the weak nonlinearity. 

Even when B2 → , our approximate frequency has also an extremely high accuracy, 

better than those obtained by the variational iteration method and the homotopy perturbation 

method. 
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