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Abstract. In the present-day manufacturing environment, the modeling of a machining 

process with the help of statistical and machine learning techniques in order to 

understand the material removal mechanism and study the influences of the input 

parameters on the responses has become essential for cost optimization and effective 

resource utilization. In this paper, using a past CNC face milling dataset with 27 

experimental observations, a random forest (RF) regressor is employed to effectively 

predict the response values of the said process for given sets of input parameters. The 

considered milling dataset consists of four input parameters, i.e. cutting speed, feed 

rate, depth of cut and width of cut, and three responses, i.e. material removal rate, 

surface roughness and active energy consumption. The RF regressor is an ensemble 

learning method where multiple decision trees are combined together to provide better 

prediction results with minimum variance and overfitting of data. Its prediction 

performance is validated using five statistical metrics, i.e. mean absolute percentage 

error, root mean squared percentage error, root mean squared logarithmic error, 

correlation coefficient and root relative squared error. It is observed that the RF 

regressor can be deployed as an effective prediction tool with minimum feature 

selection for any of the machining processes. 
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1. INTRODUCTION 

In the manufacturing domain, machining is the process of removing unwanted 

material from a given workpiece to provide the desired shape geometry while fulfilling 

the requirements of better surface quality and close dimensional tolerance. In the milling 

process, the material is removed from the workpiece with the help of an advancing multiple-

teeth cutter. As the milling cutter enters the workpiece, its cutting edges repeatedly cut into 

and exit from the materials, removing material from the workpiece with each pass due to 
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shear deformation. The milling operation generally consists of four indispensable components, 

i.e. milling machine, workpiece, fixture and a suitable cutter. From small individual 

components to large heavy-duty products, the paradigm of milling covers a wide variety 

of operations. Based on the motion of the rotary cutter, milling operations can largely be 

divided into two categories, i.e. face milling and peripheral milling. In the face milling, 

the rotary cutter is placed perpendicular to the workpiece while generating a surface 

normal to the axis of rotation [1]. On the other hand, in the peripheral milling, the cutter is 

placed parallel to the workpiece so that its sides always come into contact with the top of the 

workpiece. A large variety of materials, like aluminum, brass, magnesium, nickel, steel, zinc 

etc. can be machined in conventional milling machines; but when high precision and close 

dimensional tolerance are required, computer numerical control (CNC) milling machines may 

be employed. As the dynamic nature of the face milling operation requires close control, 

investigation of the material removal mechanism, modeling of the interrelationship between 

the milling parameters and responses, prediction of the responses and optimization of the 

process have been found to be of utmost importance [2]. 

Like all other machining operations, the process outputs (responses) of a face milling 

operation, like material removal rate (MRR), average surface roughness (Ra), directional 

cutting force (Fc), active energy consumption (AEC) etc. are also observed to be influenced 

by its various input parameters, such as spindle speed (s), cutting speed (N), depth of cut (ap), 

width of cut (ae), feed rate (f), cutting power, etc. These process outputs usually determine the 

quality of the end products in order to satisfy the consumers’ requirements. For this reason, it 

has become essential for the designer/process engineer to have a close control and better 

understanding of various milling parameters along with their interactions with the responses. 

Based on the available experimental dataset, these interrelationships between the milling 

parameters and responses can be effectively modeled with the help of various statistical and 

machine learning techniques [3]. The developed models would also act as the prediction tools 

to envisage the tentative values of the considered responses for the given sets of different 

milling parameters. 

The main advantage of machine learning techniques lies with their ability to solve 

complex problems while reducing the complicacy of the dataset and making the models more 

interpretable [4]. With the help of these techniques, predictive monitoring of the process 

outputs has become easier, while integrating customers’ demands and taking care of other 

external factors affecting the process under consideration [5]. They also provide a broader 

scope for continuous improvement while automating the related decision-making tasks by 

efficiently manipulating the huge volume of available dataset. There are mainly two types of 

machine learning techniques, i.e. supervised machine learning and unsupervised machine 

learning. In supervised learning technique, the learning algorithm is usually trained on the 

basis of labeled data, and when the training data are not labeled, it is called unsupervised 

learning technique. Classification and regression are the two popular examples of supervised 

learning technique, while unsupervised learning technique primarily encompasses clustering 

and association. In general terms, regression deals with quantitative anticipation of the 

responses, whereas, prediction of a qualitative response is termed as classification. In real time 

manufacturing environment, supervised learning algorithms are usually preferred due to 

availability of huge experimental datasets which would finally help in quantitative prediction 

of different responses based on the given sets of various machining parameters. In the domain 

of milling operation, the past researchers have already applied various statistical and machine 

learning techniques, mainly in the form of linear regression, k-nearest neighbors (KNN) 
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regression, support vector regression (SVR), artificial neural network (ANN), adaptive neuro-

fuzzy inference system (ANFIS) etc. for predictive modeling of the considered processes. 

Although all of those techniques have provided satisfactory results, they also have their own 

limitations which often hinder their widespread applications as effective prediction tools. The 

main disadvantages of different statistical and machine learning techniques are summarized in 

Table 1. 

Table 1 Disadvantageous features of some popular statistical and machine learning techniques 

Method Disadvantages 

Linear regression It assumes normal distribution of the input variables, and presence 

of a linear relationship between the dependent and independent 

variables. In reality, these assumptions are often not valid. It is 

also quite sensitive to the presence of outliers. 

KNN regression It is highly sensitive to the scale of the data. It also does not perform 

well for large datasets and widely varying dimensional data. 

Ridge regression It includes bias in the model output. Selection of hyper- parameters 

may also affect its accuracy.   

Lasso regression Its prediction performance largely depends on the variability of 

the data under consideration. The selected features may result in 

higher bias. 

SVR In this technique, selection of the appropriate kernel influences 

its prediction performance. It is also not at all suitable for large 

datasets and suffers from poor interpretability. 

ANN Its performance greatly depends on the system configuration and 

volume of the training data. Being a black box type approach, it 

has poor interpretability. Selection of the right activation 

function along with the number of hidden layers and number of 

nodes per layer affects its prediction accuracy.  

ANFIS It is highly sensitive to the number and type of the membership 

functions selected. Cross-validation error would largely differ 

from the actual error for a smaller dataset. 

Decision tree regressor Being a highly unstable technique, a small change in the dataset 

may cause a significant change in the developed tree structure. It 

cannot be employed for continuous numerical variables. 

From Table 1, it can be clearly noticed that all the considered statistical and machine 

learning techniques have some deficiencies, especially with respect to either flexibility or 

interpretability. Thus, a trade-off has become essential between prediction accuracy and 

model interpretability. Many of the machine learning algorithms are unstable, showing 

high variance resulting in poor prediction for the test datasets. Using ensemble learning, 

these unstable and weak learners can be combined together to bring stability in the 

prediction process. The random forest (RF) regressor is based on ensemble learning, and 

can effectively bridge the gap between prediction accuracy and model interpretability. It 

is an aggregation of decision trees having more stability and capability to deal with 

continuous numerical variables. The RF is an example of the bagging method, which is 

an amalgamation of tree predictors that operates by constituting a profusion of decision 
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trees, making it less prone to bias. Despite having a wide range of flexibility, it has not 

been specifically applied to predict responses for any of the machining processes. This 

paper lays down a framework to model a CNC face milling process using the RF 

regressor. Unlike linear regression, it does not assume the presence of any existent 

relationship between the dependent and independent variables, and also does not need the 

dataset to be normally distributed. Its prediction accuracy would suppose to increase with 

large datasets, unlike SVR or KNN regressor. Its application does not require any super-

sophisticated hardware configuration (like ANN); neither is there any need to choose any 

membership function (like ANFIS). There is also no requirement to scale the training and 

testing data before its application. All these advantageous features of the RF regressor 

make it a suitable machine learning technique having good prediction accuracy without a 

convoluted feature selection process. In this paper, an endeavor is thus put forward to 

explore the application potentiality of the RF regressor to predict values of MRR, Ra and 

AEC based on 27 experimental observations with N, f, ap and ae as the input CNC face 

milling parameters. 

This paper is organized as follows: Section 2 presents a brief literature survey on the 

applications of different statistical and machine learning techniques in face milling 

operation. In Section 3, the experimental details are presented, while in Section 4, the 

theoretical and application framework for the RF regressor is laid down. Section 5 

introduces different statistical metrics along with the prediction results. Conclusions are 

drawn in Section 6. 

2. LITERATURE SURVEY 

It has already been mentioned that different statistical and machine learning 

techniques have been deployed by the past researchers as effective prediction tools for 

milling operation. Table 2 provides a comprehensive review of the past literature mainly 

focusing on different milling parameters, responses and prediction tools considered for 

milling operations. It has become quite clear that although several forms of regression 

analysis, ANN, ANFIS, SVR, etc. have been adopted by the past researchers, the 

literature seriously lacks the application of the RF regressor as an effective prediction 

tool in the machining domain. To the best of the authors’ knowledge, there is no 

application of the RF technique as a predictive and regressor model in CNC milling 

operation. In order to validate the performance of the previously adopted prediction tools, 

a limited number of statistical metrics has been considered by the past researchers. In this 

paper, five statistical metrics in the form of mean absolute percentage error (MAPE), root 

mean squared percentage error (RMSPE), root mean squared log error (RMSLE), 

correlation coefficient (R) and root relative squared error (RRSE) are taken into account 

to evaluate the performance of the RF regressor as an effective prediction tool during 

CNC face milling operation. 
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Table 2 List of milling parameters, responses and prediction tools considered by the past 

researchers  

Author(s) Milling parameters Response(s) Prediction model(s) 

Lo [6] s, f, ap Ra ANFIS 

Radhakrihnan and 

Nandan [7] 

s, f, ap Fc Regression analysis, 

ANN 

Ozcelik and 

Bayramoglu [8] 

s, ap, f, step over Ra Regression analysis 

Lela et al. [9] N, f, ap Ra Regression analysis, 

SVR, Bayesian neural 

network 

Rashid et al. [10] s, f, ap Ra Regression analysis 

Dave and Raval [11] N, f, ap Fx, Fy  

(cutting force along 

x and y directions) 

Regression analysis, 

ANN 

Sharkawy [12] s, f, ap Ra ANFIS, radial basis 

function network, 

genetically evolved 

fuzzy inference system 

Durakbaşa et al. [13] N, ap, f Ra Regression analysis 

Zhang et al. [14] s, f, ap Ra Gaussian process 

regression 

Rubeo and Schmitz 

[15] 

s, feed per tooth, 

radial immersion 

Fc Regression analysis 

Bandapalli et al. [16] s, f, ap Ra ANFIS 

Yeganefar et al. [17] s, f, axial and radial 

depth of cut 

Ra SVR, ANN, regression 

analysis 

Lin et al. [18] s, f, ap Ra Regression analysis, 

ANN 

This paper N, f, ap, ae MRR, Ra, AEC RF regressor 

Table 3 Milling parameters and their operating levels [19] 

Parameter Symbol Unit Level 1 Level 2 Level 3 

Cutting speed N  rev/min 1200 1700 2200 

Feed rate f  mm/min 220 270 320 

Depth of cut ap  mm 0.3 0.4 0.5 

Width of cut ae  mm 5 10 15 
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3. EXPERIMENTAL DATA 

Using a CNC machine tool (Carver 400M_RT) with a spindle power of 5.6 kW and a 

maximum rotational speed of 6000 rpm, Khan et al. [19] performed face milling operations on 

AISI-1045 steel material. A three-fluted carbide cutting tool with 24 mm diameter was 

deployed for the milling operations. During the milling operation, four input parameters, i.e. 

N, f, ap and ae were considered and their settings were varied at three different operating 

levels. Those input milling parameters and their varying operating levels are shown in Table 

3. Based on L27 orthogonal array, 27 experiments were conducted while treating MRR 

(mm3/min), Ra (µm) and AEC (kJ) as the process outputs/responses. The experimental plan 

and values of the measured responses are exhibited in Table 4. During the application of the 

RF regressor as a prediction tool for this CNC face milling operation, among the 27 

experimental runs, 21 trials are randomly selected for the training purpose and the remaining 

six trials are considered for testing of the developed model. 

Table 4 Experimental dataset [19] 

Sl. 

No. 
N F ap ae MRR Ra AEC Purpose 

1 1200 220 0.3 5 330 3.30 535.802 Training 

2 1200 220 0.4 10 880 2.95 184.929 Training 

3 1200 220 0.5 15 1650 1.41 88.519 Training 

4 1200 270 0.3 5 405 3.83 426.109 Training 

5 1200 270 0.4 10 1080 3.87 146.050 Testing 

6 1200 270 0.5 15 2025 1.68 69.823 Training 

7 1200 320 0.3 5 480 3.97 361.832 Training 

8 1200 320 0.4 10 1280 3.53 122.976 Testing 

9 1200 320 0.5 15 2400 2.29 53.988 Training 

10 1700 220 0.3 10 660 1.81 337.042 Training 

11 1700 220 0.4 15 1320 1.13 142.727 Testing 

12 1700 220 0.5 5 550 3.47 299.031 Training 

13 1700 270 0.3 10 810 2.85 269.604 Training 

14 1700 270 0.4 15 1620 1.41 113.648 Training 

15 1700 270 0.5 5 675 3.91 238.476 Training 

16 1700 320 0.3 10 960 2.55 213.559 Testing 

17 1700 320 0.4 15 1920 1.39 92.551 Training 

18 1700 320 0.5 5 800 4.12 193.109 Training 

19 2200 220 0.3 15 990 1.76 244.303 Training 

20 2200 220 0.4 5 440 3.33 425.797 Testing 

21 2200 220 0.5 10 1100 2.36 165.620 Training 

22 2200 270 0.3 15 1215 1.17 193.939 Training 

23 2200 270 0.4 5 540 3.72 338.579 Training 

24 2200 270 0.5 10 1350 2.58 131.343 Testing 

25 2200 320 0.3 15 1440 1.41 160.886 Training 

26 2200 320 0.4 5 640 3.86 286.850 Training 

27 2200 320 0.5 10 1600 2.76 108.147 Training 
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4. APPLICATION OF RF AS A PREDICTION TOOL  

During any machining operation, depending on the experimental plan employed, a 

large volume of useful dataset is usually generated. To better understand the machining 

operation and study the influences of the input parameters on the responses, a suitable 

model needs to be developed so as to extract valuable information from the experimental 

dataset. A subfield of artificial intelligence which mainly focuses on various ways of 

training the machines for having a better understanding of a problem/system, is called 

machine learning. As it can be interpreted, the goal of a machine learning algorithm is to 

better generalize an existing problem while providing the desired solutions. To achieve 

the desired outputs, a designer needs to train different learners. Often, due to presence of 

noise in the training data, the designed learners turn out to be occasionally weak. Ensemble 

learning is a machine learning archetype [20] where multiple learners are combined together 

to predict the response values. Two of the most commonly employed ensemble learning 

approaches are bagging and boosting [21]. Bagging or bootstrap aggregation is a parallel 

ensemble method, whereas boosting is considered as a sequential ensemble method. 

Ensemble learning models perform best for machine learning techniques that are generally 

unstable, like decision trees, ANNs etc. [22]. The main reason behind using unstable learners 

for ensemble learning is that they can produce different generalization patterns which help in 

minimizing variability to some extent [23]. 

The RF is an example of the bagging method [24], which is an amalgamation of tree 

predictors that operates by constituting a profusion of decision trees. It can be effectively 

employed for both classification and regression. The basic function of RF can be understood 

using the schematic diagram, as depicted in Fig. 1. 

  

Fig. 1 Schematic Diagram of a Random Forest 
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From this diagram, it can be observed that, based on the training dataset, several decision 

trees are created which are assumed to be uncorrelated. Each of the decision trees is developed 

based on subsets of variables and samples from the training data. Again, each of the subsets of 

variables is considered with replacement. In the RF regressor, the final prediction is performed 

after averaging the outputs of all the developed decision trees. While employing the RF 

regressor as an effective prediction tool, there are few parameters to be tuned by the concerned 

designer, mainly based on intuition [25]. In Table 5, some important parameters of the RF 

regressor are provided, where p is the number of input variables. 

Table 5 Parameters of a RF regressor  

Parameter Default value 

Number of decision trees 500 

Number of variables per split √p 

Maximum number of terminal nodes Unrestricted 

Resampling scheme With replacement 

While employing the RF regressor as a prediction tool for the CNC face milling 

operation, the number of decision trees generated plays a significant role. A smaller number 

of decision trees leads to underfitting of data, whereas a large number of decision trees are 

responsible for data overfitting. When each decision tree is framed, there is a scope of feature 

selection where the designer can choose all the input variables under consideration or set 

them accordingly. The maximum number of terminal nodes, as the name suggests, is the 

upper limit of number of nodes that each tree can have. Now, when a subset of training data 

is adopted to model the RF, the designer may wish to set features in such a way that if a 

subset is once used, it would not be used again. In this case, the resampling scheme needs to 

be considered without replacement. Among various parameters employed for modeling a RF 

regressor, number of decision trees and number of variables selected per split mostly affect 

the prediction accuracy. The default value for number of variables per split is the squared 

root of the number of input variables, but for datasets with a smaller number of input 

variables (preferably less than 13), number of variables per split is generally set equal to the 

number of input variables [25]. On the other hand, the optimal number of decision trees to be 

framed is identified after simulating the model for up to 500 decision trees and then selecting 

the number which would yield the lowest value of mean squared error (MSE). The variations 

of MSE value with changing number of decision trees for MRR, Ra and AEC are portrayed 

in Figs. 2-4, respectively. From these figures, the optimal number of decision trees for each 

RF is selected having the lowest MSE value for each of the responses under consideration. 

The optimal numbers of decision trees to be developed for MRR, Ra and AEC are provided 

in Table 6.  

Table 6 Optimal number of decision trees for each response  

Response Number of decision trees 

MRR 367 

Ra 25 

AEC 195 
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Fig. 2 Number of Decision Trees against MSE for MRR 

 
Fig. 3 Number of Decision Trees against MSE for Ra  
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Fig. 4 Number of Decision Trees against MSE for AEC 

In this paper, the entire modeling based on the past experimental data for the CNC 

face milling operation is performed with the help of Random Forest package available in 

the statistical programming software R [26], which is an open-sourced, robust and easy to 

apprehend language [19]. Based on the training dataset, the developed RF regressor 

generates a large number of decision trees (as mentioned in Table 6) for each of the 

responses under consideration which are finally aggregated to predict the corresponding 

response values. Some typical examples of the framed decision tress for MRR, Ra and 

AEC are respectively provided in Figs 5-7. In Fig. 5, for MRR, the RF regressor first 

treats width of cut (ae) as the predictor variable in the root node. Now, depending on its 

value, two branches emerge from the root node. When its value is observed to be greater 

than 5 mm, feed rate (f) is considered as the next predictor variable. The RF regressor 

predicts the MRR value as 1628.8 mm3/min for feed rate greater than 220 mm/min. 

On the other hand, when the corresponding feed rate is less than or equal to 220 

mm/min, it envisages the value of MRR as 1056 mm3/min. In the experimental dataset, 

there are eight observations satisfying the condition of width of cut greater than 5 mm 

and feed rate greater than 220 mm/min. Similarly, five observations fulfill the condition 

of width of cut greater than 5 mm and feed rate less than or equal to 220 mm/min. In this 

decision tree, when the value of width of cut is less than or equal to 5 mm, spindle speed 

(N) is considered as the succeeding predictor variable. 
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Fig. 5 A Sample Decision Tree for MRR 

 

 

Fig. 6 A Sample Decision Tree for Ra 
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Fig. 7 A Sample Decision Tree for AEC 

When the corresponding spindle speed is noticed to be greater than 1700 rev/min, it 
leads to a terminal node with the predicted MRR value as 590 mm3/min. But, for spindle 
speed less than or equal to 1700 rev/min, depth of cut (ap) is adopted to generate two 
more child nodes. The RF regressor predicts the MRR value as 675 mm3/min when the 
depth of cut is found to be more than 0.4 mm, and for depth of cut less than or equal to 
0.4 mm, the predicted value of MRR is 405 mm3/min. The decision tress for Ra and 
AEC, in Figs. 6 and 7, can also be similarly explained. 

5. PREDICTION PERFORMANCE OF THE RF REGRESSOR  

In this paper, the prediction performance of the proposed RF regressor is validated 
using five statistical metrics, i.e. MAPE, RMSPE, RMSLE, R and RRSE. The mathematical 
formulations of all these measures are presented as below: 
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RRSE: 
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where Ai and Pi are the actual and predicted response values, A  and P  are the means of 

all the actual and predicted response values, and n is the number of observations in the 

test dataset. The MAPE measures the absolute percentage error between the actual and 

predicted response values. Its main problem is that it introduces a heavy penalty when the 

actual value is close to 0. On the contrary, RMSPE provides an estimation of the standard 

deviation of the residuals. But its value is significantly affected by the presence of 

outliers in the dataset. This problem can be avoided to some extent by the application of 

RMSLE along with RMSPE. The degree of association between the actual and predicted 

response values is computed using R value. Finally, RRSE calculates the total squared 

error and normalizes it while dividing by the total squared error of the simple predictor. 

While taking the square root of the relative squared error, the error is reduced to the same 

dimension as the response being predicted. Among all these measures, a higher value is 

always preferable for R, while for the remaining measures, lower values would indicate 

better prediction performance of the RF regressor [27]. In Table 7, the predicted values of 

all the responses for the considered testing dataset are provided. On the other hand, Table 

8 shows the computed values of the five statistical metrics used to evaluate the prediction 

performance of the developed RF regressor.  

Table 7 Predicted response values using the RF regressor  

Sl. No. 

Response 

MRR Ra AEC 

Actual Predicted Actual Predicted Actual Predicted 

1 1080 1026.07 3.87 2.66 146.050 182.17 

2 1280 1173.09 3.53 2.67 122.976 174.08 

3 1320 1546 1.13 1.53 142.727 132.51 

4 960 1093.37 2.55 2.62 213.559 253.95 

5 440 626.87 3.33 3.46 425.797 320.95 

6 1350 1125.97 2.58 2.57 131.343 155.14 

Table 8 Values of the statistical measures for the responses 

Statistical measure MRR Ra AEC 

MAPE 17.23 16.34 22.51 

RMSPE 21.00 21.78 24.77 

RMSLE 0.19 0.16 0.23 

R 0.85 0.78 0.92 

RRSE 0.53 0.7 0.5 
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From Table 8, it can be noticed that although Ra has the lowest R value, its corresponding 

MAPE score is the best. For Ra, the model has overestimated and underestimated the true Ra 

value more frequently than the other responses. But, even after this, the relative deviation is 

the lowest. It can be noticed from both these tables that RF regressor performs satisfactorily 

while foreseeing the values of all the three responses of the CNC face milling operation under 

consideration. From the results of the test dataset, it can be noticed that the model has not 

overfitted the data. Otherwise, the outcome of the test dataset would have been far worse even 

after getting a good result from the training dataset. 

Non-parametric machine learning techniques do not assume anything about the dataset, 

whereas, in parametric techniques, some assumptions are made with respect to the 

underlying distribution of the dataset as well as the relationship between the dependent and 

independent variables. Thus, modeling of a machining operation and prediction of the 

corresponding responses using a non-parametric machine learning technique with a small 

dataset is quite challenging, but the proposed RF regressor yields satisfactory results even 

with a small experimental dataset for CNC face milling operation. While predicting the 

corresponding response values, it also employs minimum number of milling parameters as 

the predictor variables in the decision trees. 

6. CONCLUSIONS 

Over the years, application of different machine learning techniques in the manufacturing 

domain has increased exponentially. It has now become a challenging task to choose an 

appropriate machine learning technique to depict the relationship between the dependent 

and independent variables of any machining process. In this paper, an attempt is put 

forward to employ the RF regressor as an effective prediction model based on a small 

experimental dataset of CNC face milling operation. It has several advantageous features as 

compared to other statistical and machine learning models. Its main advantage is that it does 

not consider the inherent distribution of the input data or existent relationship between the 

dependent and independent variables. Number of optimal decision trees and number of 

input variables per split are enough to develop this prediction tool. Its robustness makes it 

suitable for generalizing different machining-related applications. Machining conditions 

with binary or more than two categorical input variables can be accommodated in this tool 

without much effort. But, it has also some limitations. It fails in the cases when the data is 

outside the ‘scope’ of the model. Suppose that there is a training space where each input 

parameter has a particular range. If the test data has some values totally outside the range, 

the model would fail. This problem would not occur for linear regression. The RF regressor 

would also perform poorly in the case of sparse data where certain expected values do not 

exist at all. As a future scope, the prediction performance of the RF regressor can be explored 

using large datasets, although it may lead to overfitting of data. Its application potentiality can 

also be validated based on experimental datasets from other metal removal processes, like 

CNC turning, CNC end milling, and especially non-traditional machining processes.  
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