GEOMETRIC ANALYSIS BY CONSTRUCTAL DESIGN OF STIFFENED STEEL PLATES UNDER BENDING WITH TRANSVERSE I-SHAPED OR T-SHAPED STIFFENERS

Derick M. P. Kucharski, Vinícius T. Pinto, Luiz A. O. Rocha, Elizaldo D. dos Santos, Cristiano Fragassa, Liércio A. Isoldi

DOI Number
https://doi.org/10.22190/FUME211016070K
First page
617
Last page
632

Abstract


Several stiffened plates arrangements subjected to bending were configured applying the Constructal Design Method (CDM) and solved by Finite Element Method (FEM), aiming through the Exhaustive Search (ES) technique analyze the influence of transverse I-Shaped or T-Shaped stiffeners in mechanical behavior. Considering a non-stiffened plate as reference and maintaining the total steel volume constant, a portion of the reference plate was deducted from its thickness, and transformed into stiffeners through the phi volume fraction parameter, which represents the ratio between the steel volume of the stiffeners and the steel volume of the reference plate. Assuming phi = 0.3, 25 plates with just I-Shaped stiffeners in longitudinal and transverse directions and 25 plates with I-Shaped stiffeners in longitudinal direction and T-Shaped stiffeners in transverse direction were proposed. The results showed that the plates with transverse T-Shaped stiffeners are more effective, reducing the maximum von Mises stress and maximum deflection, respectively, in up to more than 60% and 50% when compared with the plates with just I-Shaped stiffeners.

Keywords

Stiffened plates, Computational modeling, Constructal Design, T-Shaped Stiffeners, I-Shaped Stiffeners

Full Text:

PDF

References


Rama, G., Marinkovic, D., Zehn, M., 2018, High performance 3-node shell element for linear and geometrically nonlinear analysis of composite laminates, Composites Part B: Engineering, 151, pp. 118-126.

Marinković, D., Rama, G., Zehn, M., 2019, Abaqus implementation of a corotational piezoelectric 3-node shell element with drilling degree of freedom, Facta Universitatis-Series Mechanical Engineering, 17(2), pp. 269-283.

Pagani, A., Azzara, R., Augello, R., Carrera, E., Stress states in highly flexible thin-walled composite structures by unified shell model, AIAA Journal, doi: 10.2514/1.J060024.

Marinković, D., Marinković, Z., 2012, On FEM modeling of piezoelectric actuators and sensors for thin-walled structures, Smart Structures and Systems, 9(5), pp. 411-426.

Liu, Z., Niu, J., Jia, R., Guo, J., 2021, An efficient numerical method for dynamic analysis of polygonal plate under moving loads, Thin-Walled Structures, 167, 108183.

Khaloo, A., Ghamari, A., Foroutani, M., 2021, On the design of stiffened steel plate shear wall with diagonal stiffeners considering the crack effect, Thin-Walled Structure, 31, pp. 828-841.

Kövesdi, B., Haffar, M.Z., Ádany, S., 2021, Buckling resistance of longitudinally stiffened plates: Eurocode-based design for column-like and interactive behavior of plates with closed-section stiffeners, Thin-Walled Structures, 159, 107266.

Feng, L., Sun, T., Ou, J., 2021, Elastic buckling analysis of steel-strip-stiffened trapezoidal corrugated steel plate shear walls, Journal of Constructional Steel Research, 184, 106833.

Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T.J.R., 2010, Isogeometric shell analysis: The Reissner-Mindlin shell, Computer Methods in Applied Mechanics and Engineering, 199(5-8), pp. 276-289.

Milić, P., Marinković, D., 2015, Isogeometric FE analysis of complex thin-walled structures, Transactions of Famena, 39(1), pp. 15-26.

Ventsel, E., Krauthammer, T., 2001, Thin Plates and Shells: Theory, Analysis and Applications, CRC Press.

Szilard, R., 2004, Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, John Wiley & Sons, Inc.

Bedair, O.K., 2009, Analysis and limit state design of stiffened plates and shells: a world view, Applied Mechanics Reviews, 62(2), 020801.

Mukhopadhyay, M., Satsangi, S.K., 1984, Isoparametric stiffened plate bending element for the analysis of ship's structure, Royal Institution of Naval Architects Transactions, 126, pp. 141-151.

Guo, M., Issam, E.H., Ren, W., 2002, Semi-discrete finite element analysis of slab-girder bridges, Computers & Structures, 80(23), pp. 1789-1796.

Peng, L.X., Kitipornchai, S., Liew, K.M., 2005, Analysis of rectangular stiffened plates under uniform lateral load based on FSDT and element-free Galerkin method, International Journal of Mechanical Sciences, 47(2), pp. 251-276.

Singh, D.K., Duggal, S.K., Pal, P., 2015, Analysis of stiffened plates using FEM - a parametric study, International Research Journal of Engineering and Technology, 2(4), pp. 1650-1656.

Khosravi, H., Mousavi, S.S., Tadayonfar, G., 2017, Numerical study of seismic behavior of composite steel plate shear walls with flat and corrugated plates. Revista de la Construcción, 16(2), pp. 249-260.

Souza, B.F., Anflor, C.T.M., Jorge, A.B., 2021, Application of modified adaptive morphogenesis and robust optimization algorithms for thin stiffened plates, Engineering with Computers, doi: 10.1007/s00366-021-01465-w.

Isoldi, L.A., Real, M.V., Correia, A.L.G., Vaz, J., Dos Santos, E.D., Rocha, L.A.O., 2013, Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling, In: Rocha, L.A.O., Lorente, S., Bejan, A. (Ed.), Constructal Law and the Unifying Principle of Design - Understanding Complex Systems, Springer.

Isoldi, L.A., Real, M.V., Vaz, J., Correia, A.L.G., Dos Santos, E.D., Rocha, L.A.O., 2013, Numerical analysis and geometric optimization of perforated thin plates subjected to tension or buckling, Marine Systems & Ocean Technology, 8(2), pp. 99-107.

Helbig, D., Da Silva, C.C.C., Real, M.V., Dos Santos, E.D., Isoldi, L.A., Rocha, L.A.O., 2016, Study about buckling phenomenon in perforated thin steel plates employing computational modeling and Constructal Design method, Latin American Journal of Solids and Structures, 13, pp. 1912-1936.

Helbig, D., Real, M.V., Dos Santos, E.D., Isoldi, L.A., Rocha, L.A.O., 2016, Computational modeling and Constructal Design method applied to the mechanical behavior improvement of thin perforated steel plates subject to buckling. Journal of Engineering Thermophysics, 25, pp. 197-215.

Helbig, D., Cunha, M.L., Da Silva, C.C.C., Dos Santos, E.D., Iturrioz, I., Real, M.V., Isoldi, L.A., Rocha, L.A.O., 2018, Numerical study of the elasto-plastic buckling in perforated thin steel plates using the Constructal Design method. Research on Engineering Structures and Materials, 4(3), pp. 169-187.

Da Silva, C.C.C., Helbig, D., Cunha, M.L., Dos Santos, E.D., Rocha, L.A.O., Real, M.V., Isoldi, L.A., 2019, Numerical buckling analysis of thin steel plates with centered hexagonal perforation through Constructal Design method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8), 309.

Da Silveira, T., Pinto, V.T., Neufeld, P.D.S., Pavlovic, A., Rocha, L.A.O., Dos Santos, E.D., Isoldi, L. A., 2021, Applicability evidence of Constructal Design in structural engineering: case study of biaxial elasto-plastic buckling of square steel plates with elliptical cutout, Journal of Applied and Computational Mechanics, 7(2), pp. 922-934.

Lima, J.P.S., Rocha, L.A.O., Dos Santos, E.D., Real, M.V., Isoldi, L.A., 2018, Constructal Design and numerical modeling applied to stiffened steel plates submitted to elasto-plastic buckling, Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 19, pp. 195-200.

Lima, J.P.S., Cunha, M.L., Dos Santos, E.D., Rocha, L.A.O., Real, M.V., Isoldi, L.A., 2020, Constructal Design for the ultimate buckling stress improvement of stiffened plates submitted to uniaxial compressive load, Engineering Structures, 203, 109883.

Cunha, M.L., Troina, G.S., Rocha, L.A.O., Dos Santos, E.D., Isoldi, L.A., 2018, Computational modeling and Constructal Design method applied to the geometric optimization of stiffened steel plates subjected to uniform transverse load, Research on Engineering Structures and Materials, 4(3), pp. 139-149.

Cunha, M.L., Estrada, E.S.D., Lima, J.P.S., Troina, G.S., Dos Santos, E.D., Isoldi, L.A., 2020, Constructal design associated with genetic algorithm to minimize the maximum deflection of thin stiffened steel plates, Heat Transfer, 49(7), pp. 4040-4055.

De Queiroz, J.P.T.P., Cunha, M.L., Pavlovic, A., Rocha, L.A.O, Dos Santos, E.D., Troina, G.S., Isoldi, L.A., 2019, Geometric evaluation of stiffened steel plates subjected to transverse loading for naval and offshore applications, Journal of Marine Science and Engineering, 7(1), pp. 7-18.

Troina, G.S., Cunha, M.L., Pinto, V.T., Rocha, L.A.O., Dos Santos, E.D., Fragassa, C., Isoldi, L.A., 2020, Computational modeling and Design Constructal theory applied to the geometric optimization of thin steel plates with stiffeners subjected to uniform transverse load, Metals, 10(2), 220.

Nogueira, C.M., Pinto, T.V., Rocha, L.A.O., Dos Santos, E.D., Isoldi, L.A., 2021, Numerical simulation and Constructal Design applied to plates with different heights of traverse and longitudinal stiffeners, Engineering Solid Mechanics, 9(2), pp. 221-238.

Pinto, V.T., Rocha, L.A.O., Fragassa, C., Dos Santos, E.D., Isoldi, L.A., 2020, Multiobjective geometric analysis of stiffened plates under bending through Constructal Design method, Journal of Applied and Computational Mechanics, 6, pp. 1438-1449.

Pinto, V.T., Cunha, M.L., Martins, K.L., Rocha, L.A.O., Dos Santos, E.D., Isoldi, L.A., 2021, Bending of stiffened plates considering different stiffeners orientations, Magazine of Civil Engineering, 103(3), 10310.

ANSYS, 2011, ANSYS Mechanical APDL Element Reference - Release 14.0, ANSYS, Inc.

Troina, G.S., De Queiroz, J.P.T.P., Cunha, M.L., Rocha, L.A.O., Dos Santos E.D., Isoldi, L.A., 2018, Verificação de modelos computacionais para placas com enrijecedores submetidas a carregamento transversal uniforme, CEREUS, 10(2), pp. 285-298, (in Portuguese).

Carrijo, E.C., Paiva, J.B, Giogo, J.S., 1999, A numerical and experimental study of stiffened plates in bending, Transactions on Modelling and Simulation, 21, pp. 12-18.

Bejan, A., Zane, J.P., 2012, Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organizations, Doubleday.

Bejan, A., Lorente, S., 2008, Design with Constructal Theory, John Wiley & Sons, Inc.

Rocha, L.A.O., Lorente, S., Bejan, A., 2018, Constructal Theory in Heat Transfer, In: Kulacki, F. (Ed.), Handbook of Thermal Science and Engineering, Springer.

Dos Santos, E.D., Isoldi, L.A., Gomes, M.N., Rocha, L.A.O., 2017, The Constructal Design Applied to Renewable Energy Systems, In: Rincón-Mejía, E., De las Heras, A. (Eds.), Sustainable Energy Technologies, CRC Press.

Salmon, C.G., Johnson, J.R., Malhas, F.A., 2009, Steel Structures: Design and Behavior, Pearson.




DOI: https://doi.org/10.22190/FUME211016070K

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4