### DESIGN AND OPTIMIZATION OF THE VARIABLE-DENSITY LATTICE STRUCTURE BASED ON LOAD PATHS

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Wang, Y., Li, S.S., Yu, Y., Xin, Y.M., Zhang, X.Y., Zhang, Q., Wang, S., 2018, Lattice structure design optimization coupling anisotropy and constraints of additive manufacturing, Materials & Design, 196, 109089.

Helou, M., Kara, S., 2018, Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing, 31(3), pp. 243-261.

Panesar, A., Abdi, M., Hickman, D., Ashcroft, I., 2018, Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Additive Manufacturing, 19, PP. 81-94.

Wu, J., Aage, N., Westermann, R., Sigmund, O., 2017, Infill optimization for additive manufacturing approaching bone-like porous structures, IEEE Transactions on Visualization and Computer Graphics, 24(2), pp. 1127-1140.

Alzahrani, M., Choi, S.K., Rosen, D.W., 2015, Design of truss-like cellular structures using relative density mapping method, Materials & Design, 85(15), pp. 349-360.

Choy, S.Y., Sun, C.N., Leong, K.F., Wei, J., 2017, Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: design, orientation and density, Additive Manufacturing, 16(1), pp. 213-224.

Liu, J., Gaynor, A.T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., Li, L., Kato, J., Tang, J., Wang, C.C.L., Cheng, L., Liang, X., To, A.C., 2018, Current and future trends in topology optimization for additive manufacturing, Structural and Multidisciplinary Optimization, 57(2), pp. 2457-2483.

Cheng, L., Zhang, P., Biyikli, E., Bai, J.X., Robbins, J., To, A.C., 2017, Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation, Rapid Prototyping Journal, 23(4), pp. 660-677.

Smith, M., Guan, Z., Cantwell, W.J., 2013, Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique, International Journal of Mechanical Sciences, 67(1), pp. 28-41.

Strzalka, C., Marinkovic, D., Zehn, M.W., 2021, Stress mode superposition for a priori detection of highly stressed areas: mode normalisation and loading influence, Journal of Applied and Computational Mechanics, 7(3), pp. 1698-1709.

Strzalka, C., Zehn , M., 2020, The influence of loading position in a priori high stress detection using mode superposition, Reports in Mechanical Engineering, 1(1), pp. 93-102.

Chen, W., Xia, L., Yang, J., Huang, X., 2018, Optimal microstructures of elastoplastic cellular materials under various macroscopic strains, Mechanics of Materials, 118, pp. 120-132.

Savio, G., Meneghello, R., Concheri, G., 2016, Optimization of lattice structures for additive manufacturing technologies, Advances on Mechanics, Design Engineering and Manufacturing, 9, pp. 213-222.

Liu, C., Du, Z., Zhang, W., Guo, X., 2017, Additive manufacturing oriented design of graded lattice structures through explicit topology optimization, Journal of Applied Mechanics, 84(8), 081008.

Groen, J., Sigmund, O., 2017, Homogenization-based topology optimization for high-resolution manufacturable microstructures, International Journal for Numerical Methods in Engineering, 113(8), pp. 1148-1163.

Chu, C., Graf, G., Rosen, D.W., 2013, Design for additive manufacturing of cellular structures, Computer Aided Design and Applications, 5(5), pp. 686-696.

Nguyen, J., Park, S.I., Rosen, D., 2013, Heuristic optimization method for cellular structure design of light weight components, International Journal of Precision Engineering and Manufacturing, 14(6), pp. 1071-1078.

Zhang, P., Toman, J., Yu, Y.Q., Biyikli, E., Kirca, M., Chmielus, M., To, A.C., 2015, Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation, Journal of Manufacturing Science and Engineering, 137, 021004.

Cheng, L., Bai, J.X., To, A.C., 2019, Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints, Computer Methods in Applied Mechanics and Engineering, 344, pp. 334-359.

Cheng, L., Liu, J., To, A.C., 2018, Concurrent lattice infill with feature evolution optimization for additive manufactured heat conduction design, Structural and Multidisciplinary Optimization, 58(2), pp. 511-535.

Wang, X., Zhang, P., Ludwick, S., Belski, E., To, A.C., 2018, Natural frequency optimization of 3D printed variable-density honeycomb structure via a homogenization-based approach, Additive Manufacturing, 20, pp. 189-198.

Huang, X., Zhou, S.W., Xie, Y.M., Li, Q., 2013, Topology optimization of microstructures of cellular materials and composites for macrostructures, Computational Materials Science, 67, pp. 397-407.

Coelho, P.G., Amiano, L.D., Guedes, J.M., Rodrigues, H.C., 2016, Scale-size effects analysis of optimal periodic material microstructures designed by the inverse homogenization method, Computurs & Structures, 174(10), pp. 21-32.

Huang, X., Xie, Y., 2010, A further review of ESO type methods for topology optimization, Structural and Multidisciplinary Optimization, 41, pp. 671-683.

Zhang, W., Yuan, J., Zhang, J., Guo, X., 2016, A new topology optimization approach based on Moving Morphable Components (MMC) and theersatz material model, Structural and Multidisciplinary Optimization, 53(6), pp. 1243-1260.

Allaire, G., Jouve, F., Toader, A.M., 2004, Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics, 194(1), pp. 363-393.

Suzuki, T., Fukushige, S., Tsunori, M., 2020, Load path visualization and fiber trajectory optimization for additive manufacturing of composites, Additive Manufacturing, 31, 100942.

Zhao, S., Mao, L., Wu, N., Karnaoukh, S., 2022, Load path visualization using u* index and principal load path determination in thin-walled structures, Facta Universitatis-Series Mechanical Engineering, doi: 10.22190/FUME211105006Z.

Wu, F., Wang, Z., Song, D., Lian, H., 2022, Lightweight design of control arm combining load path analysis and biological characteristics, Reports in Mechanical Engineering, 3(1), pp. 71-82.

Wang, Q.G., Zhang, G., Sun, C., Wu, N., 2019, High efficient load paths analysis with U* index generated by deep learning, Computer Methods in Applied Mechanics and Engineering, 344, pp. 499-511.

Tamijani, A., Gharibi, K., Kobayashi, M., Kolonay, R., 2018, Load paths visualization in plane elasticity using load function method, International Journal of Solids and Structures, 135, pp. 99-109.

Takahashi, K., Omiya, M., Iso, T., Zaiki, Y., Sakurai, T., Maki, T., Urushiyama, Y., Naito, T., 2013, Load transfer ustar (U*) calculation in structures under dynamic loading, Transactions of the Japan Society of Mechanical Engineers, Part A, 79(807), pp. 1657-1668.

Kelly, D.W., Elsley, M., 1995, A procedure for determining load paths in elastic continua, Engineering Computations, 12(5), pp. 415-424.

Kelly, D.W., Hsu, P., Asudullah, M., 2001, Load paths and load flow in finite element analysis, Engineering Computations, 18(1/2), pp. 304-313.

Tosh, M.W., Kelly, D.W., 2000, On the design, manufacture and testing of trajectorial fibre steering for carbon fibre composite laminates, Composites Part A: Applied Science and Manufacturing, 31(10), pp. 1047-1060.

Kelly, D.W., Reidsema, C., Lee, M., 2010, On load paths and load bearing topology from finite element analysis, IOP Conference Series: Materials Science and Engineering, 10(1), pp. 51-54.

Zhao, J., Li, B.T., Gao, X., Zhen, Y., Hua, Y., 2013, Research on the load-bearing characteristics of complex structural components based on the representation of load paths, IEEE International Symposium on Assembly & Manufacturing, IEEE, 2013, pp. 176-179.

Wang, Z.H., Wu, N., Wang, Q.G., Guo, B.S., Wu, F.H., 2020, Novel bionic design method for skeleton structures based on load path analysis, Applied Sciences-Basel, 10(22), 8251

Waldman, W., Heller, M., Rose, F., 2002, Advances in two dimensional structural load flow visualisation, Engineering Computations, 19(3), pp. 305-326.

DOI: https://doi.org/10.22190/FUME220108017W

### Refbacks

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4