### BENDING, BUCKLING AND FREE VIBRATION ANALYSES OF NANOBEAM-SUBSTRATE MEDIUM SYSTEMS

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Iijima, S., 1991, Helical microtubules of graphitic carbon, Nature, 354, pp. 56-58.

Hornyak, G.L., Moore, J.J., Tibbals, H.F., Dutta, J., 2008, Fundamentals of nanotechnology, Taylor & Francis CRC Press, Boca Raton, USA.

Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., Shirazi, A.H., 2021, Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load, Facta Universitatis Series Mechanical Engineering, 19(4), pp. 633-656.

Uzun, B., Civalek, O., Aydogdu, I., 2021, Optimum design of nano-scaled beam using the social spider optimization (SSO) algorithm, Journal of Applied and Computational Mechanics, 7(3), pp. 1348-1361.

Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P., 2003, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8), pp. 1477-1508.

Jung, W.-Y., Han, S.-C., 2015, Static and eigenvalue problems of Sigmoid Functionally Graded Materials (S-FGM) micro-scale plates using the modified couple stress theory, Applied Mathematical Modelling, 39(12), pp. 3506-3524.

Zhu, Z., Wang, Z., Zhou, Y., Chen, Y., Zhou, L., She, A., 2021, Evaluation of the nanostructure of calcium silicate hydrate based on atomic force microscopy-infrared spectroscopy experiments, Nanotechnology Reviews, 10(1), pp. 807-818.

Senturia, S.D., 2001, Microsystem design, Springer, Boston, MA, USA.

Limkatanyu, S., Prachasaree, W., Damrongwiriyanupap, N., Kwon, M., 2014, Exact stiffness matrix for nonlocal bars embedded in elastic foundation media: The virtual-force approach, Journal of Engineering Mathematics, 89, pp. 163-176.

Ghodrati, B., Yaghootian, A., Zadeh, A.G., Mohammad-Sedighi, H., 2018, Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories, Waves in Random and Complex Media, 28(1), pp. 15-34.

Limkatanyu, S., Sae-Long, W., Horpibulsuk, S., Prachasaree, W., Damrongwiriyanupap, N., 2018, Flexural responses of nanobeams with coupled effects of nonlocality and surface energy, ZAMM Journal of Applied Mathematics and Mechanics, 98(10), pp. 1771-1793.

Barretta, R., Canadija, M., Marotti de Sciarra, F., 2020, Nonlocal mechanical behavior of layered nanobeams, Symmetry, 12(5), 717.

Pourabdy, M., Shishesaz, M., Shahrooi, S., Roknizadeh, S.A.S., 2021, Analysis of axisymmetric vibration of functionally-graded circular nano-plate based on the integral form of the strain gradient model, Journal of Applied and Computational Mechanics, 7(4), pp. 2196-2220.

Müller, P., Saúl, A., 2004, Elastic effects on surface physics, Surface Science Reports, 54(5-8), pp. 157-258.

Shenoy, V.B., 2005, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Physical Review B, 71, 094104.

Wang, S., Yao, Y., Zhang, B., 2021, Atomistic simulations of the graded residual elastic fields in metallic nanowires, Results in Physics, 25, 104272.

Zhang, Y., Cao, P., Deng, B., Huang, L., Shi, Y., 2021, Strain rate-dependent tensile response of glassy silicon nanowires studied by accelerated atomistic simulations, AIP Journal of Applied Physics, 130(8), 085105.

Demir, C., Mercan, K., Numanoglu, H.M., Civalek, O., 2018, Bending response of nanobeams resting on elastic foundation, Journal of Applied and Computational Mechanics, 4(2), pp. 105-114.

Sedighi, H.M., 2020, Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid, Acta Mechanica Sinica, 36, pp. 381-396.

Malikan, M., Eremeyev, V.A., Sedighi, H.M., 2020, Buckling analysis of a non-concentric double-walled carbon nanotube, Acta Mechanica, 231, pp. 5007-5020.

Pereira, R.S., 2001, Atomic force microscopy as a novel pharmacological tool, Biochemical Pharmacology, 62(8), pp. 975-983.

Qi, D., Liu, Z., Leow, W.R., Chen, X., 2017, Elastic substrates for stretchable devices, MRS Bulletin, 42(2), pp. 103-107.

Jena, S.K., Chakraverty, S., Malikan, M., Tornabene, F., 2021, Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory, Mechanics Based Design of Structures and Machines, 49(4), pp. 581-595.

Qi, D., Zhang, K., Tian, G., Jiang, B., Huang, Y., 2021, Stretchable electronics based on PDMS substrates, Advanced Materials, 33(6), 2003155.

Eringen, A.C., 1972, Nonlocal polar elastic continua, International Journal of Engineering Science, 10(1), pp. 1-16.

Eringen, A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, AIP Journal of Applied Physics, 54, pp. 4703-4710.

Mindlin, R.D., 1964, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 16, pp. 51-78.

Mindlin, R.D., 1965, On the equations of elastic materials with micro-structure, International Journal of Solids and Structures, 1(1), pp. 73-78.

Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P., 2002, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10), pp. 2731-2743.

Zhang, G.Y., Gao, X.-L., 2020, A new Bernoulli–Euler beam model based on a reformulated strain gradient elasticity theory, Mathematics and Mechanics of Solids, 25(3), pp. 630-643.

Cammarata, R.C., 1994, Surface and interface stress effects in thin films, Progress in Surface Science, 46(1), pp. 1-38.

Gurtin, M.E., Murdoch, A.I., 1975, A continuum theory of elastic material surface, Archive for Rational Mechanics and Analysis, 57, pp. 291-323.

Gurtin, M.E., Murdoch, A.I., 1978, Surface stress in solids, International Journal of Solids and Structures, 14(6), pp. 431-440.

Peddieson, J., Buchanan, G.R., McNitt, R.P., 2003, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41(3-5), pp. 305-312.

Challamel, N., Wang, C.M., 2008, The small length scale effect for a non-local cantilever beam: A paradox solved, Nanotechnology, 19(34), 345703.

Juntarasaid, C., Pulngern, T., Chucheepsakul, S., 2012, Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity, Physica E: Low-dimensional Systems and Nanostructures, 46, pp. 68-76.

Nikam, R.D., Sayyad, A.S., 2020, A unified nonlocal formulation for bending, buckling and free vibration analysis of nanobeams, Mechanics of Advanced Materials and Structures, 27(10), pp. 807-815.

Sae-Long, W., Limkatanyu, S., Rungamornrat, J., Prachasaree, W., Sukontasukkul, P., Sedighi, H.M., 2021, A rational beam-elastic substrate model with incorporation of beam-bulk nonlocality and surface-free energy, The European Physical Journal Plus, 136, 80.

Barretta, R., Faghidian, S.A., Marotti de Sciarra, F., Pinnola, F.P., 2021, Timoshenko nonlocal strain gradient nanobeams: Variational consistency, exact solutions and carbon nanotube Young moduli, Mechanics of Advanced Materials and Structures, 28(15), pp. 1523-1536.

Li, C., Yao, L., Chen, W., Li, S., 2015, Comments on nonlocal effects in nano-cantilever beams, International Journal of Engineering Science, 87, pp. 47-57.

Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N., 2016, Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved, International Journal of Engineering Science, 99, pp. 107-116.

Limkatanyu, S., Sae-Long, W., Sedighi, H.M., Rungamornrat, J., Sukontasukkul, P., Zhang, H., Chindaprasirt, P., 2022, Flexibility-based stress-driven nonlocal frame element: Formulation and applications, Engineering with Computers.

Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F., 2017, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, International Journal of Mechanical Sciences, 121, pp. 151-156.

Koutsoumaris, C.C., Eptaimeros, K.G., Zisis, T., Tsamasphyros, G.J., 2016, A straightforward approach to Eringen’s nonlocal elasticity stress model and applications for nanobeams, AIP Conference Proceedings, 1790(1), 150018.

Lu, L., Guo, X., Zhao, J., 2017, A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms, International Journal of Engineering Science, 119, pp. 265-277.

Chen, W., Wang, L., Dai, H.-L., 2019, Nonlinear free vibration of nanobeams based on nonlocal strain gradient theory with the consideration of thickness-dependent size effect, Journal of Mechanics of Materials and Structures, 14(1), pp. 119-137.

Bian, P.‐L., Qing, H., 2021, On bending consistency of Timoshenko beam using differential and integral nonlocal strain gradient models, ZAMM Journal of Applied Mathematics and Mechanics, 101(8), e202000132.

Merzouki, T., Houari, M.S.A., Haboussi, M., Bessaim, A., Ganapathi, M., 2022, Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory, Engineering with Computers, 38, pp. 647-665.

Zhao, X., Zheng, S., Li, Z., 2022, Bending, free vibration and buckling analyses of AFG flexoelectric nanobeams based on the strain gradient theory, Mechanics of Advanced Materials and Structures, 29(4), pp. 548-563.

Polizzotto, C., 2017, A hierarchy of simplified constitutive models within isotropic strain gradient elasticity, European Journal of Mechanics - A/Solids, 61, pp. 92-109.

Altan, B.S., Aifantis, E.C., 1997, On some aspects in the special theory of gradient elasticity, Journal of the Mechanical Behavior of Materials, 8(3), pp. 231-282.

Barretta, R., Marotti de Sciarra, F., 2013, A nonlocal model for carbon nanotubes under axial loads, Advances in Materials Science and Engineering, 360935.

Sidhardh, S., Ray, M.C., 2019, Exact solutions for elastic response in micro- and nano-beams considering strain gradient elasticity, Mathematics and Mechanics of Solids, 24(4), pp. 895-918.

Yin, S., Xiao, Z., Deng, Y., Zhang, G., Liu, J., Gu, S., 2021, Isogeometric analysis of size-dependent Bernoulli–Euler beam based on a reformulated strain gradient elasticity theory, Computers & Structures, 253, 106577.

Papargyri-Beskou, S., Polyzos, D., Beskos, D.E., 2009, Wave dispersion in gradient elastic solids and structures: A unified treatment, International Journal of Solids and Structures, 46(21), pp. 3751-3759.

Sapsathiarn, Y., Rajapakse, R.K.N.D., 2018, Mechanistic models for nanobeams with surface stress effects, Journal of Engineering Mechanics, 144(11), 04018098.

Gao, X.-L., Mahmoud, F.F., 2014, A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects, Zeitschrift für angewandte Mathematik und Physik, 65, pp. 393-404.

Ahouel, M., Houari, M.S.A., Bedia, E.A.A., Tounsi, A., 2016, Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept, Steel and Composite Structures, 20(5), pp. 963-981.

Sae-Long, W., Limkatanyu, S., Prachasaree, W., Rungamornrat, J., Sukontasukkul, P., 2020, A thermodynamics-based nonlocal bar-elastic substrate model with inclusion of surface-energy effect, Journal of Nanomaterials, 8276745.

Foroutan, S., Haghshenas, A., Hashemian, M., Eftekhari, S.A., Toghraie, D., 2018, Spatial buckling analysis of current-carrying nanowires in the presence of a longitudinal magnetic field accounting for both surface and nonlocal effects, Physica E: Low-dimensional Systems and Nanostructures, 97, pp. 191-205.

Hosseini-Hashemi, S., Nazemnezhad, R., Rokni, H., 2015, Nonlocal nonlinear free vibration of nanobeams with surface effects, European Journal of Mechanics - A/Solids, 52, pp. 44-53.

Yin, F., Chen, C.P., Chen, D.L., 2015, Vibration analysis of nano-beam with consideration of surface effects and damage effects, Nonlinear Engineering, 4(1), pp. 61-66.

Limkatanyu, S., Damrongwiriyanupap, N., Prachasaree, W., Sae-Long, W., 2013, Modeling of axially loaded nanowires embedded in elastic substrate media with inclusion of nonlocal and surface effects, Journal of Nanomaterials, 635428.

Azizi, S., Safaei, B., Fattahi, A.M., Tekere, M., 2015, Nonlinear vibrational analysis of nanobeams embedded in an elastic medium including surface stress effects, Advances in Materials Science and Engineering, 318539.

Niknam, H., Aghdam, M.M., 2015, A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation, Composite Structures, 119, pp. 452-462.

Demir, C., 2016, Nonlocal vibration analysis for micro/nano beam on Winkler foundation via DTM, International Journal of Engineering & Applied Sciences, 8(4), pp. 108-118.

Ponbunyanon, P., Limkatanyu, S., Kaewjuea, W., Prachasaree, W., Chub-Uppakarn, T., 2016, A novel beam-elastic substrate model with inclusion of nonlocal elasticity and surface energy effects, Arabian Journal for Science and Engineering, 41, pp. 4099-4113.

Jena, S.K., Chakraverty, S., Tornabene, F., 2019, Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using first-Order nonlocal strain gradient model, Materials Research Express, 6(8), 0850f2.

Wolfram, S., 1992, Mathematica reference guide, Addison-Wesley Publishing Company, Redwood City, California, USA.

Bauchau, O.A., Craig, J.I., 2009, Structural analysis, Springer, Dordrecht, Netherlands.

Fleck, N.A., Hutchinson, J.W., 1997, Strain gradient plasticity, Advances in Applied Mechanics, 33, pp. 295-361.

Miller, R.E., Shenoy, V.B., 2000, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11(3), pp. 139-147.

Winkler, E., 1867, Die Lehre von der und Festigkeit, Dominicus, Prague, Czechoslovakia.

Morfidis, K., 2003, Research and development of methods for the modeling of foundation structural elements and soil, PhD dissertation, Department of Civil Engineering, Aristotle University of Thessaloniki.

Avramidis, I.E., Morfidis, K., 2006, Bending of beams on three-parameter elastic foundation, International Journal of Solids and Structures, 43(2), pp. 357-375.

Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B., 2004, Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Physical Review B, 69, 165410.

Wan, J., Fan, Y.L., Gong, D.W., Shen, S.G., Fan, X.Q., 1999, Surface relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb, Modelling and Simulation in Materials Science and Engineering, 7(2), pp. 189-206.

Nilsson, S.G., Sarwe, E.-L., Montelius, L., 2003, Fabrication and mechanical characterization of ultrashort nanocantilevers, AIP Applied Physics Letters, 83(5), pp. 990-993.

Liew, K.M., He, X.Q., Kitipornchai, S., 2006, Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix, Acta Materialia, 54(16), pp. 4229-4236.

Zhang, G., Zheng, C., Mi, C., Gao, X.-L., 2021. A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory, Mechanics of Advanced Materials and Structures.

DOI: https://doi.org/10.22190/FUME220506029L

### Refbacks

- There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4