Guangqing Feng

DOI Number
First page
Last page


A circular sector is commonly used in a linkage mechanism, and its frequency property plays an important role in optimization of the linkage mechanism. Fast insight into its vibration property with simple calculation is very meaningful in scientific research. This paper studies the vibration of the circular sector in a porous medium (e.g. water), and a fractal-fractional oscillator is established using the two-scale fractal derivative. He’s frequency formula and Ma’s modification are used to elucidate the circular sector’s periodic property in a porous medium, the results show that the fractal dimension of the porous medium plays an important role in vibration attenuation.


He’s frequency formula, Ma’s modification, Circular sector oscillator, Fractal variational theory, Two-scale transform

Full Text:



Ahad, F.E., Shi, D., Aftab, S.M., Waqas, H.M., 2019, An improved Fourier series method for vibration analysis of moderately thick annular and circular sector plates subjected to elastic boundary conditions, Journal of Vibroengineering, 18(6), pp.3841-3857.

Aboutalebi, R., Eshaghi, M., Taghvaeipour, A., 2021, Nonlinear vibration analysis of circular/annular/sector sandwich panels incorporating magnetorheological fluid operating in the post-yield region, Journal of Intelligent Material Systems and Structures, 32(7), pp. 781-796.

Hiraoka, T., 2020, Generation of arbitrarily-oriented ripple images using circular-sector-type smoothing filter and inverse filter, Journal of Robotics Networking and Artificial Life, 6(4), pp. 213-216.

Tang, W.S., Xiang, B.J., Zheng, S.Y., Long, Y.L., 2021, Design of wideband/dual-band bandpass filter using a vias and slots loaded sector circular patch resonator, International Journal of RF and Microwave Computer-Aided Engineering, 31(7), e22681.

He, J.H., Kou, S.J., He, C.H., Zhang, Z.W., Gepreel, K.A., 2021, Fractal oscillation and its frequency-amplitude property, Fractals, 29(4), 2150105.

Chen, L.C., Wang, W.H., Li, Z.S., Zhu, W.Q., 2013, Stationary response of Duffing oscillator with hardening stiffness and fractional derivative, International Journal of Non-linear Mechanics, 48, pp. 44-50.

Chen, L.C., Li, Z.S., Zhuang, Q.Q., Zhu, W.Q., 2013, First-passage failure of single-degree-of-freedom nonlinear oscillators with fractional derivative, Journal of Vibration and Control, 19(14), pp. 2154-2163.

Shen, Y.J., Yang, S.P., Xing, H.J., Ma, H.X., 2012, Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives, International Journal of Non-linear Mechanics, 47, pp. 975-983.

He, C.H., Liu, C., 2022, A modified frequency-amplitude formulation for fractal vibration systems, Fractals, 30(3), 2250046.

Feng, G.Q., Niu, J.Y., 2023, An analytical solution of the fractal toda oscillator, Results in Physics, 44,106208.

He, J.H., 2007, Variational iteration method-some recent results and new interpretations, Journal of Computation and Applied Mathematics, 207, pp. 3-17.

Wang, S.Q., He, J.H., 2007, Variational iteration method for solving integro-differential equations, Physics letters A, 367(3), pp. 188-191.

Wang, S.Q., 2009, A variational approach to nonlinear two-point boundary value problems, Computers & Mathematics with Applications, 58(11), pp. 2452-2455.

Nadeem, M., He, J.H., Islam, A., 2021, The homotopy perturbation method for fractional differential equations: part 1 Mohand transform, International Journal of Numerical Methods for Heat & Fluid Flow, 31(11), pp. 3490-3504.

He, C.H., El-Dib, Y.O., 2022, A heuristic review on the homotopy perturbation method for non-conservative oscillators, Journal of Low Frequency Noise, Vibration & Active Control, 41 (2), pp.572-603.

He, J.H., 2010, Hamiltonian approach to nonlinear oscillators, Physics Letters A, 374, pp. 2312–2314.

He, C.H., Shen, Y., Ji, F.Y., He, J.H., 2020, Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28(1), 2050011.

Ain, Q.T., Ji, F.Y., 2019, On two-scale dimension and its applications, Thermal Science, 23, pp. 1707-1712.

He, J.H., Ji, F.Y., 2019, Two-scale mathematics and fractional calculus for thermodynamics, Thermal Science, 23, pp. 2131-2134.

He, J.H., Ain, Q.T., 2019, New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle, Thermal Science, 24, pp. 659-681.

He, C.H., 2023, A variational principle for a fractal nano/microelectromechanical (N/MEMS) system, International Journal of Numerical Methods for Heat & Fluid Flow, 33 (1), pp. 351-359.

He, J.H., 2014, A tutorial review on fractal spacetime and fractional calculus, International Journal of Theoretical Physics, 53, pp. 3698-3718.

He, J.H., 2018, Fractal calculus and its geometrical explanation, Results in Physics, 10, pp. 272-276.

He, J.H., Jiao, M.L., He, C.H., 2022, Homotopy perturbation method for fractal Duffing oscillator with arbitrary conditions, Fractals, 30(9), doi:10.1142/S0218348X22501651.

He, J.H., 2006, Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics b, 20(10), pp. 1141–1199.

He, J.H., 2019, The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators, Journal of Low Frequency Noise, Vibration & Active Control, 38, pp. 1252–1260.

He, J.H., 2019, The simplest approach to nonlinear oscillators, Results in Physics, 15, 102546.

Tian, D., Ain, Q.T., Anjum, N., 2020, Fractal N/MEMS: from pull-in instability to pull-in stability, Fractals, 29(2), 2150030.

Li, X.X., He, J.H., 2019, Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning, Results in Physics, 12, pp.‏ 1405-1410.

He, J.H., Yang, Q., He, C.H., Khan, Y., 2021, A simple frequency formulation for the Tangent oscillator, Axioms, 10(4), 320.

Feng, G.Q., 2021, He's frequency formula to fractal undamped Duffing equation, Journal of Low Frequency Noise Vibration & Active Control, 40(4), pp. 1671-1676.

Qie, N., Houa, W.F., He, J.H., 2020, The fastest insight into the large amplitude vibration of a string, Reports in Mechanical Engineering, 2, pp.1–5.

Feng, G.Q., Niu, J.Y., 2021, He’s frequency formulation for nonlinear vibration of a porous foundation with fractal derivative, GEM-International on Geomathematics, 12(1), 14.

Elías-Zúiga, A., Palacios-Pineda, L.M., Jiménez-Cedeo, I.H., Martínez-Romero, O., Trejo, D.O., 2020, He's frequency–amplitude formulation for nonlinear oscillators using jacobi elliptic functions, Journal of Low Frequency Noise, Vibration & Active Control, 39(4), pp. 1216-1223.

Wang, K.J., Wang, G.D., 2021, Gamma function method for the nonlinear cubic-quintic Duffing oscillators, Journal of Low Frequency Noise Vibration & Active Control, 41(1), pp. 216-222.

He, C.H., Wang, J.H., Yao, S.W., 2019, A complement to period/frequency estimation of a nonlinear oscillator, Journal of Low Frequency Noise Vibration & Active Control, 38, pp. 992-995.

Tian, Y., 2022, Frequency formula for a class of fractal vibration system, Reports in Mechanical Engineering, 3(1), pp. 55-61.

Ma, H.J., 2022, Simplified Hamiltonian-based frequency-amplitude formulation for nonlinear vibration systems, Facta Universitatis-Series Mechanical Engineering, 20(2), pp. 445-455.

He, C.H., Liu, C., He, J.H., Sedighi, H.M., Shokri, A., Gepreel, K.A., 2022, A fractal model for the internal temperature response of a porous concrete, Applied and Computational Mathematics, 21(1), pp. 71-77.

Wang, K.J., Wang, J.F., 2021, Generalized variational principles of the Benney-Lin equation arising in fluid dynamics, EPL, doi: 10.1209/0295-5075/ac3cce.

Wang, K.L., 2022, Exact solitary wave solution for fractal shallow water wave model by He’s variational method, Modern Physics Letters B, 36(7), 2150602.

Wang, K.L., 2022, Solitary wave solution of nonlinear Bogoyavlenskii system by variational analysis method, International Journal of Modern Physics B, 36(2), 2250015.

Wang, K.L., 2022, New variational theory for coupled nonlinear fractal Schrodinger system, International Journal of Numerical Methods for Heat & Fluid Flow, 32(2), pp. 589-597.

He, J.H., Hou, W.F., He, C.H., Saeed, T., 2021, Variational approach to fractal solitary waves, Fractals, 29(7), 2150199.

He, J.H., He, C.H., Sedighi, H.M., 2021, Evans model for dynamic economics revised, AIMS Mathematics, 6(9), pp. 9194-9206.

He, J.H., Amer, T.S., Elnaggar, S., Galal, A.A., 2021, Periodic property and instability of a rotating pendulum system, Axioms, 10(3), 191.

He, C.H., Amer, T.S., Tian, D., Abolila, A.F., Galal, A.A., 2022, Controlling the kinematics of a spring-pendulum system using an energy harvesting device, Journal of Low Frequency Noise, Vibration & Active Control, 41(3), pp. 1234-1257.

He, C.H., Tian, D., Moatimid, G.M., Salman, H.F., Zekry, M.H., 2022, Hybrid Rayleigh -Van der Pol-Duffing oscillator (HRVD): Stability analysis and controller, Journal of Low Frequency Noise, Vibration & Active Control, 41(1), pp. 244-268.

Shaban, M., Ganji, D.D., Alipour, M.M., 2010, Nonlinear fluctuation, frequency and stability analyses in free vibration of circular sector oscillation systems, Journal of Current Applied Physics, 10, pp. 1267-1285.

Qian, M.Y., He, J.H., 2022, Two-scale thermal science for modern life –Making the Impossible Possible, Thermal Science, 26(3B), pp. 2409-2412.

He, J.H., Elazem, N.Y.A., 2022, The carbon nanotube-embedded boundary layer theory for energy harvesting, Facta Universitatis-Series Mechanical Engineering, 20(2), pp. 211-235.


  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4