Haeji Kim, Nadeem Qaiser, Byungil Hwang

DOI Number
First page
Last page


With the technological development of wearable devices, there are increasing demands for stretchable conductor that have stable electro-mechanical performance. In this study, a stretchable PDMS composite electrodes using ternary systems of fillers consisting of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) / carbon nanotube (CNT) / silver nanowire (AgNW) is explored in a perspective of electro-mechanical response. PDMS matrix is mixed with binary fillers of CNT and PEDOT:PSS, which is followed by AgNW peeling-off process. The PDMS composite is mechanically reliable especially under tensile deformation, which showed a high rupture strain of ~102 % and tensile strength of ~2.7 MPa. In addition, the PDMS composites shows the stable electro-mechanical response, where high electrical conductivity is sustained even under stretchable conditions, showing an electrical resistance value of ~11.7 Ω/cm under 40% of strain. As a demonstration, a supercapacitor using the PDMS composites is demonstrated that shows reliable electrochemical performance.


Electro-mechanical response, Composite, Tensile deformation, Strength, Conductivity

Full Text:



Liu, Y., Pharr, M., Salvatore, G.A., 2017, Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring, ACS Nano, 11(10), pp. 9614-9635.

Kim, H., Matteini, P., Hwang, B., 2022, Mini Review of Reliable Fabrication of Electrode under Stretching for Supercapacitor Application, Micromachines, 13(9), 1470.

Qaiser, N., Al-Modaf, F., Khan, S.M., Shaikh, S.F., El-Atab, N., Hussain, M.M., 2021, A robust wearable point-of-care cnt-based strain sensor for wirelessly monitoring throat-related illnesses, Advanced Functional Materials, 31(29), 2103375.

Yi, F., Wang, X., Niu, S., Li, S., Yin, Y., Dai, K., Zhang, G., Lin, L., Wen, Z., Guo, H., Wang, J., Yeh, M.-H., Zi, Y., Liao, Q., You, Z., Zhang, Y., Wang, Z.L., 2016, A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring, Science Advances, 2(6), e1501624.

Wu, H., Huang, Y., Xu, F., Duan, Y., Yin, Z., 2016, Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability, Advanced Materials, 28(45), pp. 9881-9919.

Wang, Y., Ding, Y., Guo, X., Yu, G., 2019, Conductive polymers for stretchable supercapacitors, Nano Research, 12(9), pp. 1978-1987.

Yoon, H., Kim, H., Matteini, P., Hwang, B., 2022, Suspension with Surfactants in Their Application as Electrodes of Batteries: A Mini-Review, Batteries, 8(12), 254.

Christoe, M.J., Han, J., Kalantar-Zadeh, K., 2020, Telecommunications and data processing in flexible electronic systems, Advanced Materials Technologies, 5(1), 1900733.

Hussain, A.M., Hussain, M.M., 2016, Cmos-technology-enabled flexible and stretchable electronics for internet of everything applications, Advanced Materials, 28(22), pp. 4219-4249.

Harris, K.D., Elias, A.L., Chung, H.J., 2016, Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies, Journal of Materials Science, 51(6), pp. 2771-2805.

Luo, R., Li, H., Du, B., Zhou, S., Zhu, Y., 2020, A simple strategy for high stretchable, flexible and conductive polymer films based on pedot:Pss-pdms blends, Organic Electronics, 76, 105451.

Seo, Y., Ko, S., Ha, H., Qaiser, N., Leem, M., Yoo, S.J., Jeong, J.H., Lee, K., Hwang, B., 2022, Stretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth, Composites Science and Technology, 218, 109150.

Matsuhisa, N., Chen, X., Bao, Z., Someya, T., 2019, Materials and structural designs of stretchable conductors, Chemical Society Reviews, 48(11), pp. 2946-2966.

Qaiser, N., Khan, S.M., Nour, M., Rehman, M.U., Rojas, J.P., Hussain, M.M., 2017, Mechanical response of spiral interconnect arrays for highly stretchable electronics, Applied Physics Letters, 111(21), 214102.

Qaiser, N., Damdam, A.N., Khan, S.M., Shaikh, S.F., Hussain, M.M., 2019, Design, mechanics, and operation of spiral-interconnect based networked sensor for stretchable electronics, Applied Physics Letters, 115(18), 181904.

Qaiser, N., Damdam, A.N., Khan, S.M., Bunaiyan, S., Hussain, M.M., 2021, Design criteria for horseshoe and spiral-based interconnects for highly stretchable electronic devices, Advanced Functional Materials, 31(7), 2007445.

Widlund, T., Yang, S., Hsu, Y.-Y., Lu, N., 2014, Stretchability and compliance of freestanding serpentine-shaped ribbons, International Journal of Solids and Structures, 51(23), pp. 4026-4037.

Nasreldin, M., Delattre, R., Marchiori, B., Ramuz, M., Maria, S., Tocnaye, J.L.d.B.d.l., Djenizian, T., 2019, Microstructured electrodes supported on serpentine interconnects for stretchable electronics, APL Materials, 7(3), 031507.

Guo, C.F., Sun, T., Liu, Q., Suo, Z., Ren, Z., 2014, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography, Nature Communications, 5(1), 3121.

Yun, G., Tang, S.-Y., Lu, H., Zhang, S., Dickey, M.D., Li, W., 2021, Hybrid-filler stretchable conductive composites: From fabrication to application, Small Science, 1(6), 2000080.

Przybyłek, P., Opara, T., Kucharczyk, W., Żurowski, W., Pietras, A., 2022, Simulation of operating loads of ablative composite shields used in flight data recorders, Reports in Mechanical Engineering, 3(1), pp. 145-157.

Hwang, B., Yun, T.G., 2019, Stretchable and patchable composite electrode with trimethylolpropane formal acrylate-based polymer, Composites Part B: Engineering, 163, pp. 185-192.

Sidhu, A.S., 2021, Surface texturing of non-toxic, biocompatible titanium alloys via electro-discharge, Reports in Mechanical Engineering, 2(1), pp. 51-56.

Onyibo, E.C., Safaei, B., 2022, Application of finite element analysis to honeycomb sandwich structures: A review, Reports in Mechanical Engineering, 3(1), pp. 192-209.

Hwang, B., Han, Y., Matteini, P., 2022, Bending fatigue behavior of ag nanowire/cu thin-film hybrid interconnects for wearable electronics, Facta Universitatis, Series: Mechanical Engineering, 20(3), pp. 553-560.

Lee, M.-S., Lee, K., Kim, S.-Y., Lee, H., Park, J., Choi, K.-H., Kim, H.-K., Kim, D.-G., Lee, D.-Y., Nam, S., Park, J.-U., 2013, High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures, Nano Letters, 13(6), pp. 2814-2821.

Shi, J., Li, X., Cheng, H., Liu, Z., Zhao, L., Yang, T., Dai, Z., Cheng, Z., Shi, E., Yang, L., Zhang, Z., Cao, A., Zhu, H., Fang, Y., 2016, Graphene reinforced carbon nanotube networks for wearable strain sensors, Advanced Functional Materials, 26(13), pp. 2078-2084.

Yun, G., Tang, S.-Y., Sun, S., Yuan, D., Zhao, Q., Deng, L., Yan, S., Du, H., Dickey, M.D., Li, W., 2019, Liquid metal-filled magnetorheological elastomer with positive piezoconductivity, Nature Communications, 10(1), 1300.

Seo, Y., Ha, H., Cheong, J.Y., Leem, M., Darabi, S., Matteini, P., Müller, C., Yun, T.G., Hwang, B., 2022, Highly reliable yarn-type supercapacitor using conductive silk yarns with multilayered active materials, Journal of Natural Fibers, 19(3), pp. 835-846.

Chodankar, N.R., Pham, H.D., Nanjundan, A.K., Fernando, J.F.S., Jayaramulu, K., Golberg, D., Han, Y.-K., Dubal, D.P., 2020, True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors, Small, 16(37), 2002806.

Yoon, H., Matteini, P., Hwang, B., 2023, Effect of the Blade-Coating Conditions on the Electrical and Optical Properties of Transparent Ag Nanowire Electrodes, Micromachines, 14(1), 114.

Babita, Sharma, S.K., Gupta, S.M., 2018, Synergic effect of sdbs and ga to prepare stable dispersion of cnt in water for industrial heat transfer applications, Materials Research Express (Online), 5(5), 12.

Lin, Y.-J., Ni, W.-S., Lee, J.-Y., 2015, Effect of incorporation of ethylene glycol into PEDOT:PSS on electron phonon coupling and conductivity, Journal of Applied Physics, 117(21), 215501.

Yoon, S.-S., Khang, D.-Y., 2016, Roles of nonionic surfactant additives in PEDOT:PSS thin films, The Journal of Physical Chemistry C, 120(51), pp. 29525-29532.

Yerbolat, G., Amangeldi, S., Ali, M.H., Badanova, N., Ashirbeok, A., Islam, G., 2018, Composite materials property determination by rule of mixture and monte carlo simulation, 2018 IEEE International Conference on Advanced Manufacturing (ICAM), 2018, pp. 384-387.

Sepúlveda, A.T., Fachin, F., Villoria, R.G.d., Wardle, B.L., Viana, J.C., Pontes, A.J., Rocha, L.A., 2011, Nanocomposite flexible pressure sensor for biomedical applications, Procedia Engineering, 25, pp. 140-143.

Tahk, D., Lee, H.H., Khang, D.-Y., 2009, Elastic moduli of organic electronic materials by the buckling method, Macromolecules, 42(18), pp. 7079-7083.

Kumar Singaravel, D., Sharma, S., Kumar, P., 2022, Recent progress in experimental and molecular dynamics study of carbon nanotube reinforced rubber composites: A review, Polymer-Plastics Technology and Materials, 61(16), pp. 1792-1825.

Loos, M.R., Manas-Zloczower, I., 2012, Reinforcement efficiency of carbon nanotubes – myth and reality, Macromolecular Theory and Simulations, 21(2), pp. 130-137.

Hu, Y., Zhao, T., Zhu, P., Zhang, Y., Liang, X., Sun, R., Wong, C.-P., 2018, A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring, Nano Research, 11(4), pp. 1938-1955.

Li, Y., Zhao, X., Xu, Q., Zhang, Q., Chen, D., 2011, Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors, Langmuir, 27(10), pp. 6458-6463.

DOI: https://doi.org/10.22190/FUME221205002K


  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4