Hamid Al-Abboodi, Huiqing Fan, Mohammed Al-Bahrani, Abdelsalam Abdelhussien, Barhm Mohamad

DOI Number
First page
Last page


In order to evaluate the model metallic glass alloy’s mechanical properties (Fe49.7 Cr17.1 Mn1.9 Mo7.4 W1.6 B15.2 C3.8 Si2.4) prepared by spark plasma sintering (SPS) which have high velocity.  We made an apparatus having three-point curve testing. The comparatively bulk sizes of sample in the current study permitted the creation samples for test with a macro scale cross-section (range of mm) consistent test dimensions, and well-controlled sample sizes. Cutting using a wire saw produced remarkably sharp notches with a radius that was 3 times smaller than in earlier studies. Our three-point bending apparatus allowed us to acquire the 231 GPa and 4.91 MPam1/2 values for notch fracture toughness and young's modulus. Additionally, the results of the Vickers indentation and flexure tests for young's modulus were reliable. Vickers indentation measurements of indentation fracture toughness produced values that were a minimum of 49.9% lower than those obtained flexure using. The method for examine micro scale mechanical properties described in this study and the accompanying scrutinizes are valid to samples with different ones or compositions that are made by further means.


Metallic glass, Three-point bending, Fracture toughness, Vickers indentation, SPS

Full Text:



Tönnies, D., Samwer, K., Derlet, P. M., Volkert, C. A., Maaß, R., 2015, Rate-dependent shear-band initiation in a metallic glass, Appl. Phys. Lett., 106(17), 171907.

Suryanarayana, C., Inoue, A., 2013, Iron-based bulk metallic glasses, Int. Mater. Rev., 58(3), pp. 131-166.

Blink, J., Farmer, J., Choi, J., Saw, C., 2009, Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings, Metall. Mater. Trans. A, 40(6), pp. 1344–1354.

Phan, T. Q., Kelly, J.P., Kassner, M.E., Eliasson, V., Graeve, O.A., Hodge, A.M., 2016, Bulk mechanical properties testing of metallic marginal glass formers, J. Metall., 6508597.

Qiu, K.Q., Pang, J., Ren, Y.L., Zhang, H.B., Ma, C.L. Zhang, T., 2008, Fe-based bulk metallic glasses with a larger supercooled liquid region and high ductility, Mater. Sci. Eng. A, 4981–2), pp. 464-467.

Li, X., Kato, H., Yubuta, K., Makino, A., Inoue, A., 2011, Improved plasticity of iron-based high-strength bulk metallic glasses by copper-induced nanocrystallization, J. Non. Cryst. Solids, 357(15), pp. 3002-3005.

Guo, S. F., Liu, L., Li, N., Li, Y., 2010, Fe-based bulk metallic glass matrix composite with large plasticity, Scr. Mater., 62(6), pp. 329-332.

Hofmann, D. C., Suh, J.-Y., Wiest, A., Lind, M.-L., Demetriou, M. D., Johnson, W.L., 2008, Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility, Proc. Natl. Acad. Sci., 105(51), pp. 20136-20140.

Schuh, C.A., Nieh, T.G., 2004, A survey of instrumented indentation studies on metallic glasses, J. Mater. Res., 19(1), pp. 46-57.

Zhang, C., Liu, L., Chan, K.C., Chen, Q., Tang, C.Y., 2012, Wear behavior of HVOF-sprayed Fe-based amorphous coatings, Intermetallics, 29, pp. 80–85.

Wang, A.P., Chang, X.C., Hou, W.L., Wang, J.Q., 2007, Preparation and corrosion behaviour of amorphous Ni-based alloy coatings, Mater. Sci. Eng. A, 449, pp. 277-280.

Turek, P., 2021, Evaluation of the auto surfacing methods to create a surface body of the mandible model, Reports in Mechanical Engineering, 3(1), pp. 46-54.

Komaki, M., Mimura, T., Kurahasi, R.., Kouzaki, M., Yamasaki, T., 2011, High chromium Fe-Cr-Mo-PC amorphous coating films produced by thermal spraying technique, Mater. Trans., 52(3), pp. 474-480.

Graeve, O.A., Kanakala, R., Kaufman, L., Sinha, K., Wang, E., Pearson, B., Gabriel, R-G, Farmer J.C., 2008, Spark plasma sintering of Fe-based structural amorphous metals (SAM) with Y2O3 nanoparticle additions, Mater. Lett., 62(17–18), pp. 2988-2991.

Graeve, O.A., Saterlie, M.S., Kanakala, R., De La Torre, S.D., Farmer, J.C., 2013, The kinetics of devitrification of amorphous alloys: the time–temperature–crystallinity diagram describing the spark plasma sintering of Fe-based metallic glasses, Scr. Mater., 69(2), pp. 143-148.

Kelly, J.P., Fuller, S.M., Seo, K., Novitskaya, E., Eliasson, V., Hodge, A.M., Graeve, O.A., 2016, Designing in situ and ex situ bulk metallic glass composites via spark plasma sintering in the super cooled liquid state, Mater. Des., 93, pp. 26-38.

Keryvin, V., Hoang, V.H., Shen, J., 2009, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation, Intermetallics, 17(4), pp. 211-217.

Keryvin, V., Vu, X.D., Hoang, V.H., Shen, J., 2010, On the deformation morphology of bulk metallic glasses underneath a Vickers indentation, J. Alloys Compd., 504, pp. S41-S44.

Liu, C.Y., Zhang, Y.X., Yuan, G., Zhang, C.Y., Misra, R.D.K., 2022, Microstructure and properties of ultra-thick Fe-based metallic glass by twin-roll strip casting versus a traditional process, Mater. Res. Bull., 153, 111878.

Shamimi Nouri, A., Gu, X.J., Poon, S.J., Shiflet, G.J., Lewandowski, J.J., 2008, Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses, Philos. Mag. Lett., 88(11), pp. 853-861.

Chen, W., Ketkaew, J., Liu, Z., Mota, R., Bien, K.O., sene da silva, C., Schroers, J., 2015, Does the fracture toughness of bulk metallic glasses scatter?, Scr. Mater., 107, pp. 1-4.

Kawashima, A., Kurishita, H., Kimura, H., Zhang, T., Inoue, A., 2005, Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing, Mater. Trans., 46(7), pp. 1725-1732.

Narayan, R.L., Tandaiya, P., Garrett, G.R., Demetriou, M.D., Ramamurty, U., 2015, On the variability in fracture toughness of ‘ductile’ bulk metallic glasses, Scr. Mater, 102, pp. 75-78.

Eberl, C., Gianola, D. S., Hemker, K.J., 2010, Mechanical characterization of coatings using microbeam bending and digital image correlation techniques, Exp. Mech., 50(1), pp. 85-97.

Ast, J., Ghidelli, M., Durst, K., Göken, M., Sebastiani, M., Korsunsky, A.M., 2019, A review of experimental approaches to fracture toughness evaluation at the micro-scale, Mater. Des., 173, 107762.

Das, M., Mishra, D., Mahapatra, T. R., 2019, Machinability of metal matrix composites, Materials Today: Proceedings, 18, 5373-5381.

Wang, W.H., 2012, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci., 57(3), pp. 487-656.

Sudharshan Phani, P., Oliver, W.C., Pharr, G.M., 2021, Measurement of hardness and elastic modulus by load and depth sensing indentation: Improvements to the technique based on continuous stiffness measurement, J. Mater. Res., 36(11), pp. 2137-2153.

Farmer, J.C., Haslam, J., Day, S., Lian, T., Saw, C., Hailey, P., Lavernia, E.J., Ajdelsztajn, L., Branagan, D.J., Buffa, E.J., Aprigliano, L., 2007, Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4, J. Mater. Res., 22(8), pp. 2297-2311.

Guo, S. F., Qiu, J. L., Yu, P., Xie, S. H., Chen, W., 2014, Fe-based bulk metallic glasses: brittle or ductile?, Appl. Phys. Lett., 105(16), 161901.

Quinn, G.D., Bradt, R.C., 2007, On the Vickers indentation fracture toughness test, J. Am. Ceram. Soc., 90(3), pp. 673–680.

Kruzic, J.J., Kim, D.K., Koester, K.J., Ritchie, R.O., 2009, Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues, J. Mech. Behav. Biomed. Mater., 2(4), pp. 384-395.

Yang, X., Liu, X., Huang, Z., Yao, X., Liu, G., 2013, Vickers indentation crack analysis of solid-phase-sintered silicon carbide ceramics, Ceram. Int., 39(1), pp. 841-845.

Conner, R.D., Li, Y., Nix, W.D., Johnson, W.L., 2004, Shear band spacing under bending of Zr-based metallic glass plates, Acta Mater., 52(8), pp. 2429–2434.

Conner, R.D., Johnson, W.L., Paton, N.E., Nix, W.D., 2003, Shear bands and cracking of metallic glass plates in bending, J. Appl. Phys., 94(2), pp. 904–911.

Lewandowski, J.J., Thurston, A.K., Lowhaphandu, P., 2002, Fracture toughness of amorphous metals and composites, MRS Online Proc. Libr., 754, 93.

Hashemi, K. S. H., 2021, Nonlinear vibration response of piezoelectric nanosensor: influences of surface/interface effects, Facta Universitatis-Series Mechanical Engineering, doi: 10.22190/FUME210612064K

Gu, X.J., Poon, S.J., Shiflet, G.J., Lewandowski, J.J., 2010, Compressive plasticity and toughness of a Ti-based bulk metallic glass, Acta Mater., 58(5), pp. 1708–1720.

Singh, D., Rao, P. V. A., 2007, A surface roughness prediction model for hard turning process, Int. J., Adv, Manuf, Technol., 32, pp. 1115-1124.

Li, J., Tang, X., 2023, Research on Anti-Wear Properties of Nano-Lubricated High-Speed Rolling Bearings under Various Working Conditions, Tehnički Vjesnik, 30(1), pp. 61-67.


  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4