DISCRETE-TIME MODEL-BASED SLIDING MODE CONTROLLERS FOR TOWER CRANE SYSTEMS

Anamaria-Ioana Borlea, Radu-Emil Precup, Raul-Cristian Roman

DOI Number
https://doi.org/10.22190/FUME230125009B
First page
001
Last page
020

Abstract


This paper applies three classical and very popular discrete-time model-based sliding mode controllers, namely the Furuta controller, the Gao controller, and the quasi-relay controller due to Milosavljević, to the position control of tower crane systems. Three single input-single output (SISO) control systems are considered, for cart position control, arm angular position control and payload position control, and separate SISO controllers are designed in each control system. Experimental results are included to support the comparison of the three plus three plus three sliding mode controllers.

Keywords

Discrete-time model-based sliding mode controllers, Furuta controller, Gao controller, Tower crane systems

Full Text:

PDF

References


Emelyanov, S.V., 1967, Variable Structure Control Systems. Nauka, Moscow.

Utkin, V.I., 1977, Variable structure systems with sliding modes, IEEE Transactions on Automatic Control, 22(2), pp. 212-222.

Yu, X.-H., Kaynak, O., 2009, Sliding-mode control with soft computing: A survey, IEEE Transactions on Industrial Electronics, 56(9), pp. 3275-3285.

Young, K.D., Utkin, V.I., Ozguner, U., 1999, A control engineer’s guide to sliding mode control, IEEE Transactions on Control Systems Technology, 7(3), pp. 328-342.

Aboserre, L.T., El-Badawy, A.A., 2020, Robust integral sliding mode control of tower cranes, Journal of Vibration and Control, 27(9-10), pp. 1171-1183.

Precup, R.-E., Roman, R.-C., Safaei, A., 2021, Data-Driven Model-Free Controllers, 1st edition. CRC Press, Taylor & Francis, Boca Raton, FL.

Xi, Z., Hesketh, T., 2010, Discrete time integral sliding mode control for overhead crane with uncertainties, IET Control Theory & Applications, 4(10), pp. 2071-2081.

Qian, D.-W., Yi, J.-Q., 2013, Design of combining sliding mode controller for overhead crane systems, International Journal of Control and Automation, 6(1), pp. 132-140.

Bartolini, G., Orani, N., Pisano, A., Usai, E., 2000, Load swing damping in overhead cranes by sliding mode technique, Proc. 39th IEEE Conference on Decision and Control, Sydney, NSW, Australia, vol. 2, pp. 1697–1702.

Lee, L.-H., Huang, C.-H., Ku, S.-C., Yang, Z.-H., Chang, C.-Y., 2014, Efficient visual feedback method to control a three-dimensional overhead crane, IEEE Transactions on Industrial Electronics, 61(8), pp. 4073-4083.

Sun, N., Fang, Y.-C., Chen, H., Lu, B., Fu, Y.-M., 2016, Slew/translation positioning and swing suppression for 4-dof tower cranes with parametric uncertainties: Design and hardware experimentation, IEEE Transactions on Industrial Electronics, 63(10), pp. 6407-6418.

Le, T.A., Dang, V.-H, Ko, D.H., An, T.N., Lee, S.-G., 2013, Nonlinear controls of a rotating tower crane in conjunction with trolley motion, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 227(5), pp. 451–460.

Aboserre, L.T., El-Badawy, A.A., 2021, Robust integral sliding mode control of tower cranes, Journal of Vibration and Control, 27(9-10), pp. 1171-1183.

Furuta, K., 1990, Sliding mode control of a discrete system, Systems & Control Letters, 14(2), pp. 145-152.

Gao, W.-B., Wang, Y.-F., Homaifa, A., 1995, Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics, 42(2), pp. 117-122.

Milosavljević, Č., 1985, General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems, Automation and Remote Control, 46(3), pp. 307-314.

Spasić, M.D., 2019, Model predictive control based on sliding mode control, Ph.D. thesis, University of Niš, Niš, Serbia.

Inteco, 2012, Tower Crane, User’s Manual, Inteco Ltd, Krakow.

Buehler, H., 1986, Reglage par mode de glissement. Presses Polytechniques Romandes, Lausanne.

Borlea, A.-I., 2022, Sliding mode controllers. Validation on a laboratory equipment (in Romanian), M.Sc. thesis, Politehnica University of Timisoara, Timisoara, Romania.

Božanić, D., Tešić, D., Marinković, D., Milić, A., 2021, Modeling of neuro-fuzzy system as a support in decision-making processes, Reports in Mechanical Engineering, 2(1), pp. 222-234.

Filip, F.G., 2021, Automation and computers and their contribution to human well-being and resilience, Studies in Informatics and Control, 30(4), pp. 5-18.

Milićević, I., Popović, M., Dučić, N., Vujičić, V., Stepanić, P., Marinković, D., Ćojbašić, Ž., 2022, Improving the mechanical characteristics of the 3D printing objects using hybrid machine learning approach, Facta Universitatis-Series Mechanical Engineering, doi: 10.22190/FUME220429036M.

Yapici Pehlivan, N., Turksen, I.B., 2021, A novel multiplicative fuzzy regression function with a multiplicative fuzzy clustering algorithm, Romanian Journal of Information Science and Technology, 24(1), pp. 79-98.

Kwak, C.-J., Ri, K.-C., Kwak, S.-I., Kim, K.-J., Ryu, U.-S., Kwon, O.-C., Kim, N.-H., 2021, Fuzzy modus ponens and tollens based on moving distance in SISO fuzzy system, Romanian Journal of Information Science and Technology, 24(3), pp. 257-283.

Precup, R.-E., Preitl, S., Balas, M., Balas, V., 2004, Fuzzy controllers for tire slip control in anti-lock braking systems, Proc. 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, vol. 3, pp. 1317-1322.

Preitl, Z., Precup, R.-E., Tar, J.K., Takács, M., 2006, Use of multi-parametric quadratic programming in fuzzy control systems, Acta Polytechnica Hungarica, 3(3), pp. 29-43.

Škrjanc, I., Blažič, S., Angelov, P., 2014, Robust evolving cloud-based PID control adjusted by gradient learning method, Proc. 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems, Linz, Austria, pp. 1-6.

Vaščák, J., Hvizdoš, J., Puheim, M., 2016, Agent-based cloud computing systems for traffic management, Proc. 2016 International Conference on Intelligent Networking and Collaborative Systems, Ostrava, Czech Republic, pp. 73-79.

Boucetta, S.I., Johanyák, Z.C., Pokorádi, L.K., 2017, Survey on software defined VANETs, Gradus, 4(1), pp. 272-283.

Osaba, E., Villar-Rodriguez, E., Oregi, I., Moreno-Fernandez-de-Leceta, A., 2021, Hybrid quantum computing-tabu search algorithm for partitioning problems: preliminary study on the traveling salesman problem, Proc. 2021 IEEE Congress on Evolutionary Computation, Kraków, Poland, pp. 351-358.

Precup, R.-E., Haidegger, T., Preitl, S., Benyó, B., Paul, A.S., Kovács, L., 2012, Fuzzy control solution for telesurgical applications, Applied and Computational Mathematics, 11(3), pp. 378-397.




DOI: https://doi.org/10.22190/FUME230125009B

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4