Marat A. Ilgamov, Aigul A. Aitbaeva, Igor S. Pavlov, Sergey V. Dmitriev

DOI Number
First page
Last page


The radial dynamics of a single-walled zigzag carbon nanotube under pulsed pressure is studied. Uniform external pressure is applied instantly, then remains constant for a certain time, and then is instantly released. This loading scheme allows one to consider a carbon nanotube under plane strain conditions and replace it with a circular ring formed by one zigzag row of carbon atoms. The bending deformation of the ring in its plane is described by an equation based on the Kirchhoffs hypothesis. An effective parameter is used, including the bending stiffness of the ring and areal density. The regimes of oscillatory motion and exponential growth of radial displacements are investigated depending on the magnitude and duration of the applied pressure. Alternatively, the ring is analyzed in terms of a molecular dynamics model with a reduced number of degrees of freedom, taking into account the plane strain conditions. With the help of molecular dynamics, the limits of the thin shell theory are established. For (n, 0) CNTs with n > 15, in the regime of small-amplitude vibrations, the discrepancy between the continuum model and molecular dynamics calculations does not exceed 5% and decreases with increasing n.


Carbon nanotube, Molecular dynamics, Shell theory, Pulsed pressure, Natural frequencies

Full Text:



Harik, V.M., 2001, Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods, Solid State Communications, 120(7-8), pp. 331-335.

Qian, D., Wagner, G.J., Liu, W.K., Yu, M.-F., Ruoff, R.S., 2002, Mechanics of carbon nanotubes, Applied Mechanics Reviews, 55(6), pp. 495-532.

Yu, M.-F., 2004, Fundamental mechanical properties of carbon nanotubes: Current understanding and the related experimental studies, Journal of Applied Mechanics and Technical Physics, 126(3), pp. 271-278.

Annin, B.D., Baimova, Y.A., Mulyukov, R.R., 2020, Mechanical properties, stability, and buckling of graphene sheets and carbon nanotubes (review), Journal of Applied Mechanics and Technical Physics, 61(5), pp. 834-846.

Khadimallah, M.A., Hussain, M., Taj, M., Ayed, H., Tounsi, A., 2021, Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory, Advances in Nano Research, 10(2), pp. 165-174.

Zhao, Z.S., Zhou, X.-F., Hu, M., Yu, D.L., He, J.L., Wang, H.-T., Tian, Y.J., Xu, B. J., 2012, High-pressure behaviors of carbon nanotubes Superhard, Journal of Superhard Materials, 34(6), pp. 371-385.

Khaniki, H.B., Ghayesh, M.H., Amabili, M., 2021, A review on the statics and dynamics of electrically actuated nano and micro structures, International Journal of Non-Linear Mechanics, 129, 103658.

Peters, M., McNeil, L., Lu, J.P., Kahn D., 2000, Structural phase transition in carbon nanotube bundles under pressure, Physical Review B, 61, pp. 5939-5944.

Teredesai, P.V., Sood, A.K., Muthu, D.V.S., Sen, R., Govindaraj, A., Rao, C.N.R., 2000, Pressure-induced reversible transformation in single-wall carbon nanotube bundles studied by Raman spectroscopy, Chemical Physics, 319 (3-4), pp. 296-302.

Wu, J., Zang, J., Larade, B., Guo, H., Gong, X.G., Liu, F., 2004, Computational design of carbon nanotube electromechanical pressure sensors, Physical Review B, 69, 153406.

Sun, D.Y., Shu, D.J., Ji, M., Liu, F., Wang, M., Gong, X.G., 2004, Pressure-induced hard-to-soft transition of a single carbon nanotube, Physical Review B, 70, 165417.

Merlen, A., Bendiab, N., Toulemonde, P., Aouizerat, A., San Miguel, A., Sauvajol, J.L., Montagnac, G., Cardon, H., Petit P., 2005, Resonant Raman spectroscopy of single-wall carbon nanotubes under pressure, Physical Review B, 72, 035409.

Molodets, A., Golyshev, A., Zhukov, A., Muradyan, V., Pisarev, S., Shulga, Y., Fortov, V., 2008, Structural and morphological changes induced shock waves in carbon nanotubes, Nanotechnologies in Russia, 3(11-12), pp. 697-703.

Seide, P., Jamjoom, T.M.M., 1974, Large deformations of circular rings under nonuniform normal pressure, Journal of Applied Mechanics, 41(1), pp. 192-196.

Bleich, H.H., Baron, M.L., 1954, Free and forced vibrations of an infinitely long cylindrical shell in an infinite acoustic medium, Journal of Applied Mechanics, 21(2), pp. 167-177.

Sirenko, Y.M., Stroscio, M.A., Kim, K.W., 1996, Elastic vibrations of microtubules in a fluid, Physical Review E, 53, pp. 1003-1010.

Kahn, D., Lu, J.P., 1999, Vibrational modes of carbon nanotubes and nanoropes, Physical Review B, 60, pp. 6535-6540.

Kitt, A.L., Qi, Z., Remi, S., Park, H.S., Swan, A.K., Goldberg, B.B., 2013, How graphene slides: Measurement and theory of strain-dependent frictional forces between graphene and SiO2, Nano Letters, 13, pp. 2605-2610.

Kurti, J., Kresse, G., 1998, First-principles calculations of the radial breathing mode of single-wall carbon nanotubes, Physical Review B, 58, pp. R8869- R8872.

Goupalov, S.V., 2005, Continuum model for long-wavelength phonons in two-dimensional graphite and carbon nanotubes, Physical Review B, 71, 085420.

Shi, J.-X., Lei, X.-W., Natsuki T., 2021, Review on carbon nanomaterials-based nano-mass and nano-force sensors by theoretical analysis of vibration behaviour, Sensors, 21(5), pp. 1-22.

Li, C.-Y., Chou, T.-W., 2004, Strain and pressure sensing using single-walled carbon nanotubes, Nanotechnology, 15, 1493.

Ghaffari, S.S., Ceballes, S., Abdelkefi, A., Nonlinear Dynamics, 2020, Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings, Nonlinear Dynamics, 100, pp. 1013-1035.

Natsuki, T., Urakami, K., 2019, Analysis of vibration frequency of carbon nanotubes used as nano-force sensors considering clamped boundary condition, Electronics, 8(10), 1082.

Menacer, F., Kadr, A., Dibi, Z., 2018, Modeling of a smart nano force sensor using finite elements and neural networks, International Journal of Automation and Computing, 17, pp. 279-291.

Schroeder, V., Savagatrup, S., He, M., Lin, S., Swager, T.M., 2019, Carbon nanotube chemical sensors, Chemical Reviews, 119 (1), pp. 599-663.

Sanaeepour, M., Abedi, A., Sharifi, M.J., 2017, Performance analysis of nanoscale single layer graphene pressure sensors, IEEE Transactions on Electron Devices, 64 (3), pp. 1300-1304.

Ahn, S.I., Jung, J.R., Choi, S.Y., Son, M.H., Hong, Y.J., Park, J.-C., 2017, Ultra-sensitive graphene sensor for measuring high vacuum pressure, Scientific Reports, 7, 12604.

Sorkin, V., Zhang, Y.W., 2011, Graphene-based pressure nano-sensors, Journal of Molecular Modeling volume, 17, pp. 2825-2830.

Cao, G., 2014, Atomistic Studies of Mechanical Properties of Graphene, Polymers, 6(9), pp. 2404-2432.

Wang, S., Gao, E., Xu, Z., 2019, Interfacial failure boosts mechanical energy dissipation in carbon nanotube films under ballistic impact, Carbon, 146, pp. 139-146.

Xiao, K., Lei, X., Chen, Y., An, Q., Hu, D., Wang, C., Wu, X., Huang, C., 2021, Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact, Carbon, 175, pp. 478-489.

Zhao, Y., Miao, L., Hao, W., Zhao, G., Li, J., Jiaxuan, L., Liu, Z., Sui, C., He, X., Wang, C., 2021, Two-dimensional carbon nanotube woven highly-stretchable film with strain-induced tunable impacting performance, Carbon, 189, pp. 539-547.

Galiakhmetova, L.K., Bachurin, D.V., Korznikova, E.A., Bayazitov, A.M., Kudreyko, A.A., Dmitriev, S.V., 2022, Shock loading of carbon nanotube bundle, Mechanics of Materials, 174, 104460.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2020, Twistons in graphene nanoribbons on a substrate, Physical Review B, 102, 245432.

Savin, A.V., Korznikova, E.A., Krivtsov, A.M., Dmitriev, S.V., 2020, Longitudinal stiffness and thermal conductivity of twisted carbon nanoribbons, European Journal of Mechanics - A/Solids, 80, 103920.

Abdullina, D.U., Korznikova, E.A., Dubinko, V.I., Laptev, D.V., Kudreyko, A.A., Soboleva, E.G., Dmitriev, S.V., Zhou K., 2020, Mechanical response of carbon nanotube bundle to lateral compression, Computation, 8(2), 27.

Dmitriev, S. V., Ilgamov, M. A., 2021, The radial response of a carbon nanotube to dynamic pressure, Doklady Physics, 66, pp. 336-340.

Bakhvalov, N. S., 1977, Numerical methods: analysis, algebra, ordinary differential equations, MIR Publishers, Moscow, 663 p.

Dmitriev, S.V., Semenov, A.S., Savin, A.V., Ilgamov, M.A., Bachurin D.V., 2021, Rotobreather in a carbon nanotube bundle, Journal of Micromechanics and Molecular Physics, 5, 2050010.

Dmitriev, S.V., Sunagatova, I.R., Ilgamov, M.A., Pavlov, I.S., 2021, Natural frequencies of bending vibrations of carbon nanotubes, Technical Physics, 91(11), pp. 1732-1737.

Savin, A.V., Kivshar Yu.S., 2022, Modeling of second sound in carbon nanostructures, Physical Review B, 105(20), 205414.

Rysaeva, L.K., Bachurin, D.V., Murzaev, R.T., Abdullina, D.U., Korznikova, E.A., Mulyukov, R.R., Dmitriev, S.V., 2020, Evolution of the carbon nanotube bundle structure under biaxial and shear strains, Facta Universitatis-Series Mechanical Engineering, 18(4), pp. 525-536.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2022, Plane vibrational modes and localized nonlinear excitations in carbon nanotube bundle, Journal of Sound and Vibration, 520, 116627.

Savin, A.V., Korznikova, E.A., Dmitriev S.V., 2019, Dynamics of surface graphene ripplocations on a flat graphite substrate, Physical Review B, 99, 235411.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2015, Simulation of folded and scrolled packings of carbon nanoribbons, Physics of the Solid State, 57, pp. 2348-2355.

Baimova, J. A., Liu, B., Dmitriev, S. V., Zhou, K., 2015, Mechanical properties of crumpled graphene under hydrostatic and uniaxial compression, Journal of Physics D Applied Physics, 48(9), 095302.

Kosarev, I.V., Dmitriev, S.V., Semenov, A.S., Korznikova, E.A., 2022, Stability of strained stanene compared to that of graphene, Materials, 15(17), 5900.

Kosarev, I.V., Kistanov, A.A., Babicheva, R.I., Korznikova, E.A., Baimova, J.A., Dmitriev S.V., 2023, Topological defects in silicene, Europhysics Letters, 141(6), 66001.

Boumia L., Zidour M., Benzair A., Tounsi A., 2014, A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes, Physica E, 59, pp. 186-191.

Hsu, J.-C., Chang, R.-P., Chang, W.-J., 2008, Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory, Physics Letters A, 372(16), pp. 2757-2759.

Erofeev, V.I., Pavlov, I.S., Porubov, A.V., Vasiliev, A.A., 2018, Dispersion properties of a closed-packed lattice consisting of round particles, Advanced Structured Materials, 90, pp. 101–117.

Erofeev, V.I., Pavlov, I.S., Leontiev, N.V., 2013, A mathematical model for investigation of nonlinear wave processes in a 2D granular medium consisting of spherical particles, Composites: Mechanics, Computations, Applications, 4(3), pp. 239–255.

Pavlov, I.S., Dmitriev, S.V., Vasiliev, A.A., Muravieva, A.V., 2022, Models and auxetic characteristics of a simple cubic lattice of spherical particles, Continuum Mechanics and Thermodynamics, 34(6), pp. 1669–1685.


  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4