SENSING MECHANISM AND APPLICATION OF MECHANICAL STRAIN SENSOR: A MINI-REVIEW

Heebo Ha, Nadeem Qaiser, Tae Gwang Yun, Jun Young Cheong, Sooman Lim, Byungil Hwang

DOI Number
https://doi.org/10.22190/FUME230925043H
First page
751
Last page
772

Abstract


This study reviews the potential of flexible strain sensors based on nanomaterials such as carbon nanotubes (CNTs), graphene, and metal nanowires (NWs). These nanomaterials have excellent flexibility, conductivity, and mechanical properties, which enable them to be integrated into clothing or attached to the skin for the real-time monitoring of various activities. However, the main challenge is balancing high stretchability and sensitivity. This paper explains the basic concept of strain sensors that can convert mechanical deformation into electrical signals. Moreover, this paper focuses on simple, flexible, and stretchable resistive and capacitive sensors. It also discusses the important factors in choosing materials and fabrication methods, emphasizing the crucial role of suitable polymers in high-performance strain sensing. This study reviews the fabrication processes, mechanisms, performance, and applications of stretchable strain sensors in detail. It analyzes key aspects, such as sensitivity, stretchability, linearity, response time, and durability. This review provides useful insights into the current status and prospects of stretchable strain sensors in wearable technology and human–machine interfaces.

Keywords

Strain Sensor, Flexible, Nanomaterials, Mechanical Property, Deformation

Full Text:

PDF

References


Dai, J., Ogbeide, O., Macadam, N., Sun, Q., Yu, W., Li, Y., Su, B.L., Hasan, T., Huang, X., Huang, W., 2020, Printed gas sensors, Chemical Society Reviews, 49(6), pp. 1756-1789.

Aftab, S., Al‐Kahtani, A.A., Iqbal, M.Z., Hussain, S., Koyyada, G., 2023, Recent Advances in 2D Wearable Flexible Sensors, Advanced Materials Technologies, 8(14), 2202168.

Qaiser, N., Al‐Modaf, F., Khan, S.M., Shaikh, S.F., El‐Atab, N., Hussain, M.M., 2021, A Robust Wearable Point‐of‐Care CNT‐Based Strain Sensor for Wirelessly Monitoring Throat‐Related Illnesses, Advanced Functional Materials, 31(29), 2103375.

Ha, H., Müller, S., Baumann, R.-P., Hwang, B., 2023, PeakForce Quantitative Nanomechanical Mapping for Surface Energy Characterization on the Nanoscale: A Mini-Review, Facta Universitatis, Series: Mechanical Engineering, 10.22190/FUME221126001H.

Pour Rahmati Khalejan, S.H., Keskin, V., 2022, Effects of Dynamic Shading on Thermal Exergy and Exergy Efficiency of a Photovoltaic Array, Tehnički vjesnik, 29(6), pp. 1889-1895.

El-Atab, N., Mishra, R.B., Al-Modaf, F., Joharji, L., Alsharif, A.A., Alamoudi, H., Diaz, M., Qaiser, N., Hussain, M.M., 2020, Soft Actuators for Soft Robotic Applications: A Review, Advanced Intelligent Systems, 2(10), 2000128.

Gao, Y., Yu, L., Yeo, J.C., Lim, C.T., 2020, Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability, Advanced Materials, 32(15), 1902133.

Won, P., Kim, K.K., Kim, H., Park, J.J., Ha, I., Shin, J., Jung, J., Cho, H., Kwon, J., Lee, H., Ko, S.H., 2021, Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics, Advanced Materials, 33(19), 2002397.

Zheng, Y., Li, Y., Zhou, Y., Dai, K., Zheng, G., Zhang, B., Liu, C., Shen, C., 2020, High-Performance Wearable Strain Sensor Based on Graphene/Cotton Fabric with High Durability and Low Detection Limit, ACS Appl Mater Interfaces, 12(1), pp. 1474-1485.

Chang, X., Chen, L., Chen, J., Zhu, Y., Guo, Z., 2021, Advances in transparent and stretchable strain sensors, Advanced Composites and Hybrid Materials, 4(3), pp. 435-450.

Wu, S., Moody, K., Kollipara, A., Zhu, Y., 2023, Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening, ACS Appl Mater Interfaces, 15(1), pp. 1798-1807.

Pyo, S., Lee, J., Bae, K., Sim, S., Kim, J., 2021, Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications, Advanced Materials, 33(47), 2005902.

Araromi, O.A., Graule, M.A., Dorsey, K.L., Castellanos, S., Foster, J.R., Hsu, W.H., Passy, A.E., Vlassak, J.J., Weaver, J.C., Walsh, C.J., Wood, R.J., 2020, Ultra-sensitive and resilient compliant strain gauges for soft machines, Nature, 587(7833), pp. 219-224.

Yi, J., Xianyu, Y., 2022, Gold Nanomaterials‐Implemented Wearable Sensors for Healthcare Applications, Advanced Functional Materials, 32(19), 2113012.

Guo, R., Fang, Y., Wang, Z., Libanori, A., Xiao, X., Wan, D., Cui, X., Sang, S., Zhang, W., Zhang, H., Chen, J., 2022, Deep Learning Assisted Body Area Triboelectric Hydrogel Sensor Network for Infant Care, Advanced Functional Materials, 32(35), 2204803.

Amjadi, M., Kyung, K.U., Park, I., Sitti, M., 2016, Stretchable, Skin‐Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review, Advanced Functional Materials, 26(11), pp. 1678-1698.

Tan, C., Dong, Z., Li, Y., Zhao, H., Huang, X., Zhou, Z., Jiang, J.W., Long, Y.Z., Jiang, P., Zhang, T.Y., Sun, B., 2020, A high performance wearable strain sensor with advanced thermal management for motion monitoring, Nature Communications, 11(1), 3530.

Yang, H., Li, J., Xiao, X., Wang, J., Li, Y., Li, K., Li, Z., Yang, H., Wang, Q., Yang, J., Ho, J.S., Yeh, P.-L., Mouthaan, K., Wang, X., Shah, S., Chen, P.-Y., 2022, Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction, Nature Communications, 13(1), 5311.

Wu, Y., Zhou, Y., Asghar, W., Liu, Y., Li, F., Sun, D., Hu, C., Wu, Z., Shang, J., Yu, Z., Li, R.-W., Yang, H., 2021, Liquid Metal‐Based Strain Sensor with Ultralow Detection Limit for Human–Machine Interface Applications, Advanced Intelligent Systems, 3(10), 2000235.

Chu, M., Nguyen, T., Pandey, V., Zhou, Y., Pham, H.N., Bar-Yoseph, R., Radom-Aizik, S., Jain, R., Cooper, D.M., Khine, M., 2019, Respiration rate and volume measurements using wearable strain sensors, NPJ Digital Medicine, 2(1), 8.

Li, Y., Zheng, C., Liu, S., Huang, L., Fang, T., Li, J.X., Xu, F., Li, F., 2020, Smart Glove Integrated with Tunable MWNTs/PDMS Fibers Made of a One-Step Extrusion Method for Finger Dexterity, Gesture, and Temperature Recognition, ACS Applied Materials & Interfaces, 12(21), pp. 23764-23773.

Khan, M., Shah, L.A., Rahman, T.U., Yoo, H.-M., Ye, D., Vacharasin, J., 2022, Hydrophobically Associated Functionalized CNT-Reinforced Double-Network Hydrogels as Advanced Flexible Strain Sensors, ACS Applied Polymer Materials, 4(10), pp. 7397-7407.

Yan, T., Wu, Y., Yi, W., Pan, Z., 2021, Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors, Sensors and Actuators A: Physical, 327, 112755.

Tang, J., Wu, Y., Ma, S., Yan, T., Pan, Z., 2022, Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage, Composites Part B: Engineering, 232, 109605.

Liu, Z., Li, C., Zhang, X., Zhou, B., Wen, S., Zhou, Y., Chen, S., Jiang, L., Jerrams, S., Zhou, F., 2022, Biodegradable Polyurethane Fiber-Based Strain Sensor with a Broad Sensing Range and High Sensitivity for Human Motion Monitoring, ACS Sustainable Chemistry & Engineering, 10(27), pp. 8788-8798.

Liu, K., Yang, C., Song, L., Wang, Y., Wei, Q., Alamusi, Deng, Q., Hu, N., 2022, Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite, Composites Science and Technology, 218, 109148.

Zhu, W.-B., Xue, S.-S., Zhang, H., Wang, Y.-Y., Huang, P., Tang, Z.-H., Li, Y.-Q., Fu, S.-Y., 2022, Direct ink writing of a graphene/CNT/silicone composite strain sensor with a near-zero temperature coefficient of resistance, Journal of Materials Chemistry C, 10(21), pp. 8226-8233.

Liu, L., Zhang, X., Xiang, D., Wu, Y., Sun, D., Shen, J., Wang, M., Zhao, C., Li, H., Li, Z., Wang, P., Li, Y., 2022, Highly stretchable, sensitive and wide linear responsive fabric-based strain sensors with a self-segregated carbon nanotube (CNT)/Polydimethylsiloxane (PDMS) coating, Progress in Natural Science: Materials International, 32(1), pp. 34-42.

Sun, X., Qin, Z., Ye, L., Zhang, H., Yu, Q., Wu, X., Li, J., Yao, F., 2020, Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness, Chemical Engineering Journal, 382, 122832.

Lee, J., Pyo, S., Kwon, D.S., Jo, E., Kim, W., Kim, J., 2019, Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes, Small, 15(12), 1805120.

Yue, X., Yang, J., Gao, J., Xu, X., Jing, Y., Wang, X., Li, W., Li, X., 2022, Wearable hydroxylated MWCNTs/ecoflex composite strain sensor with high comprehensive performance based on electron irradiation, Composites Science and Technology, 226, 109537.

Wu, J., Huang, W., Wu, Z., Yang, X., Kottapalli, A.G.P., Xie, X., Zhou, Y., Tao, K., 2022, Hydrophobic and Stable Graphene-Modified Organohydrogel Based Sensitive, Stretchable, and Self-Healable Strain Sensors for Human-Motion Detection in Various Scenarios, ACS Materials Letters, 4(9), pp. 1616-1629.

Iqra, M., Anwar, F., Jan, R., Mohammad, M.A., 2022, A flexible piezoresistive strain sensor based on laser scribed graphene oxide on polydimethylsiloxane, Scientific Reports, 12(1), 4882.

Hu, Q., Nag, A., Zhang, L., Wang, K., 2022, Reduced graphene oxide-based composites for wearable strain-sensing applications, Sensors and Actuators A: Physical, 345, 113767.

Zhu, S., Lu, Y., Wang, S., Sun, H., Yue, Y., Xu, X., Mei, C., Xiao, H., Fu, Q., Han, J., 2023, Interface design of stretchable and environment-tolerant strain sensors with hierarchical nanocellulose-supported graphene nanocomplexes, Composites Part A: Applied Science and Manufacturing, 164, 107313.

Zhang, M., Yang, H., Li, H., Tong, L., Su, C., Feng, K., Wang, Q., Yan, H., Yin, S., 2023, Transparent single crystal graphene flexible strain sensor with high sensitivity for wearable human motion monitoring, Journal of Alloys and Compounds, 967, 171724.

Qi, X., Ha, H., Hwang, B., Lim, S., 2020, Printability of the Screen-Printed Strain Sensor with Carbon Black/Silver Paste for Sensitive Wearable Electronics, Applied Sciences, 10(19), 6983.

Tran, N.-H., Tran, P., Lee, J.-H., 2022, Copper Nanowire-Sealed Titanium Dioxide/Poly(dimethylsiloxane) Electrode with an In-Plane Wavy Structure for a Stretchable Capacitive Strain Sensor, ACS Applied Nano Materials, 5(5), pp. 7150-7160.

Asad, U., K, Muhammad, Hwan, C., Seung, 2023, Characterization of highly linear stretchable sensor made of Gr-PEDOT:PSS/MnO2 nanowires/Ecoflex composite, Composite Structures, 311, 116824.

Kong, W.-W., Zhou, C.-G., Dai, K., Jia, L.-C., Yan, D.-X., Li, Z.-M., 2021, Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics, Composites Part B: Engineering, 225, 109275.

Yang, Y., Duan, S., Xiao, W., Zhao, H., 2022, Silver nanowire-based stretchable strain sensors with hierarchical wrinkled structures, Sensors and Actuators A: Physical, 343, 113653.

Madhavan, R., 2022, Flexible and stretchable strain sensors fabricated by inkjet printing of silver nanowire-ecoflex composites, Journal of Materials Science: Materials in Electronics, 33(7), pp. 3465-3484.

Zhang, X., Li, Z., Liu, C., Shan, J., Guo, X., Zhao, X., Ding, J., Yang, H., 2022, Silver Nanowire/Silver/Poly(dimethylsiloxane) as Strain Sensors for Motion Monitoring, ACS Applied Nano Materials, 5(10), pp. 15797-15807.

Azadi, S., Peng, S., Moshizi, S.A., Asadnia, M., Xu, J., Park, I., Wang, C.H., Wu, S., 2020, Biocompatible and Highly Stretchable PVA/AgNWs Hydrogel Strain Sensors for Human Motion Detection, Advanced Materials Technologies, 5(11), 2000426.

Hwang, B., Han, Y., Matteini, P., 2022, Bending Fatigue Behavior of Ag Nanowire/Cu Thin-Film Hybrid Interconnects for Wearable Electronics, Facta Universitatis, Series: Mechanical Engineering, 20, pp. 553-560.

Kang, D., Pikhitsa, P.V., Choi, Y.W., Lee, C., Shin, S.S., Piao, L., Park, B., Suh, K.Y., Kim, T.I., Choi, M., 2014, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system, Nature, 516(7530), pp. 222-6.

Shiratsuchi, T., Imai, T., 2021, Development of fiber Bragg grating strain sensor with temperature compensation for measurement of cryogenic structures, Cryogenics, 113, 103233.

Huo, Z., Wang, X., Zhang, Y., Wan, B., Wu, W., Xi, J., Yang, Z., Hu, G., Li, X., Pan, C., 2020, High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors, Nano Energy, 73, 104744.

Yu, Q., Ge, R., Wen, J., Du, T., Zhai, J., Liu, S., Wang, L., Qin, Y., 2022, Highly sensitive strain sensors based on piezotronic tunneling junction, Nature Communications, 13(1), 778.

Afsarimanesh, N., Nag, A., Sarkar, S., Sabet, G.S., Han, T., Mukhopadhyay, S.C., 2020, A review on fabrication, characterization and implementation of wearable strain sensors, Sensors and Actuators A: Physical, 315, 112355.

Wang, Y., Wang, L., Yang, T., Li, X., Zang, X., Zhu, M., Wang, K., Wu, D., Zhu, H., 2014, Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring, Advanced Functional Materials, 24(29), pp. 4666-4670.

Yan, T., Wu, Y., Yi, W., Pan, Z., 2021, Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors, Sensors Actuators A: Physical, 327, 112755.

Qin, J., Yin, L.J., Hao, Y.N., Zhong, S.L., Zhang, D.L., Bi, K., Zhang, Y.X., Zhao, Y., Dang, Z.M., 2021, Flexible and Stretchable Capacitive Sensors with Different Microstructures, Advanced Materials, 33(34), 2008267.

Wang, X., Liu, X., Schubert, D.W., 2021, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks, Nano-micro letters, 13, 64.

Hu, M., Gao, Y., Jiang, Y., Zeng, H., Zeng, S., Zhu, M., Xu, G., Sun, L., 2021, High-performance strain sensors based on bilayer carbon black/PDMS hybrids, Advanced Composites Hybrid Materials, 4, pp. 514-520.

Chen, Y., Wang, L., Wu, Z., Luo, J., Li, B., Huang, X., Xue, H., Gao, J., 2019, Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors, Composites Part B: Engineering, Composites Part B: Engineering, 176, 107358.

Huang, C.B., Yao, Y., Montes‐García, V., Stoeckel, M.A., Von Holst, M., Ciesielski, A., Samori, P., 2021, Highly Sensitive Strain Sensors Based on Molecules–Gold Nanoparticles Networks for High‐Resolution Human Pulse Analysis, Small, 17(8), 2007593.

Yang, Y., Shi, L., Cao, Z., Wang, R., Sun, J., 2019, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle–nanosheet hybrid network, Advanced Functional Materials, 29(14), 1807882.

Xu, X., Chen, Y., He, P., Wang, S., Ling, K., Liu, L., Lei, P., Huang, X., Zhao, H., Cao, J., 2021, Wearable CNT/Ti3C2T x MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring, Nano Research, 14(8), pp. 2875-2883.

Chen, J., Zhu, Y., Jiang, W., Technology, 2020, A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer, Composites Science, 186, 107938.

Kim, H., Qaiser, N., Hwang, B., 2023, Electro-Mechanical Response of Stretchable PDMS Composites with a Hybrid Filler System, Facta Universitatis, Series: Mechanical Engineering, pp. 51-61.

Yue, X., Jia, Y., Wang, X., Zhou, K., Zhai, W., Zheng, G., Dai, K., Mi, L., Liu, C., Shen, C., 2020, Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring, Composites Science and Technology, 189, 108038.

Li, H., Chen, J., Chang, X., Xu, Y., Zhao, G., Zhu, Y., Li, Y., 2021, A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range, Journal of Materials Chemistry A, 9(3), pp. 1795-1802.

Wang, H., Zhou, R., Li, D., Zhang, L., Ren, G., Wang, L., Liu, J., Wang, D., Tang, Z., Lu, G., Sun, G., Yu, H.D., Huang, W., 2021, High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti(3)C(2)T(x) MXene for the Monitoring of Human Activities, ACS Nano, 15(6), pp. 9690-9700.

Zhao, Y., Ren, M., Shang, Y., Li, J., Wang, S., Zhai, W., Zheng, G., Dai, K., Liu, C., Shen, C., 2020, Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins, Composites Science Technology, 200, 108448.

Fan, M., Wu, L., Hu, Y., Qu, M., Yang, S., Tang, P., Pan, L., Wang, H., Bin, Y., Materials, H., 2021, A highly stretchable natural rubber/buckypaper/natural rubber (NR/N-BP/NR) sandwich strain sensor with ultrahigh sensitivity, Advanced Composites, 4, pp. 1039-1047.

Sang, Z., Ke, K., Manas-Zloczower, I., 2019, Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors, Composites Part A: Applied Science Manufacturing, 121, pp. 207-212.

Seyedin, S., Uzun, S., Levitt, A., Anasori, B., Dion, G., Gogotsi, Y., Razal, J.M., 2020, MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles, Advanced Functional Materials, 30(12), 1910504.

Chen, Y., Wang, L., Wu, Z., Luo, J., Li, B., Huang, X., Xue, H., Gao, J., 2019, Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors, Composites Part B: Engineering, 176, 107358.

Shen, Y., Yang, W., Hu, F., Zheng, X., Zheng, Y., Liu, H., Algadi, H., Chen, K., 2022, Ultrasensitive wearable strain sensor for promising application in cardiac rehabilitation, Advanced Composites and Hybrid Materials, 6(1), 21.

Ma, J., Wang, P., Chen, H., Bao, S., Chen, W., Lu, H., 2019, Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection, ACS Applied Materials & Interfaces, 11(8), pp. 8527-8536.

Luo, C., Tian, B., Liu, Q., Feng, Y., Wu, W., 2020, One‐Step‐Printed, Highly Sensitive, Textile‐Based, Tunable Performance Strain Sensors for Human Motion Detection, Advanced Materials Technologies, 5(2), 1900925.

Duan, S., Wang, Z., Zhang, L., Liu, J., Li, C., 2018, A Highly Stretchable, Sensitive, and Transparent Strain Sensor Based on Binary Hybrid Network Consisting of Hierarchical Multiscale Metal Nanowires, Advanced Materials Technologies, 3(6), 1800020.

Ren, H., Zheng, L., Wang, G., Gao, X., Tan, Z., Shan, J., Cui, L., Li, K., Jian, M., Zhu, L., Zhang, Y., Peng, H., Wei, D., Liu, Z., 2019, Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors, ACS Nano, 13(5), pp. 5541-5548.

Qu, M., Qin, Y., Sun, Y., Xu, H., Schubert, D.W., Zheng, K., Xu, W., Nilsson, F., 2020, Biocompatible, flexible strain sensor fabricated with polydopamine-coated nanocomposites of nitrile rubber and carbon black, ACS Applied Materials & Interfaces, 12(37), pp. 42140-42152.

Xu, X., Wu, S., Cui, J., Yang, L., Wu, K., Chen, X., Sun, D., 2021, Highly stretchable and sensitive strain sensor based on polypyrrole coated bacterial cellulose fibrous network for human motion detection, Composites Part B: Engineering, 211, 108665.

Liu, W., Huang, Y., Peng, Y., Walczak, M., Wang, D., Chen, Q., Liu, Z., Li, L., 2020, Stable wearable strain sensors on textiles by direct laser writing of graphene, ACS Applied Nano Materials, 3(1), pp. 283-293.

Hempel, M., Nezich, D., Kong, J., Hofmann, M., 2012, A novel class of strain gauges based on layered percolative films of 2D materials, Nano Letters, 12(11), pp. 5714-5718.

Zhao, H., O’brien, K., Li, S., Shepherd, R.F., 2016, Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides, Science robotics, 1(1), eaai7529.

Cao, J., Wang, Q., Dai, H., 2003, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching, Physical Review Letters, 90(15), 157601.

Marinković, D., Marinković, Z., 2012, On FEM modeling of piezoelectric actuators and sensors for thin-walled structures, Smart Structures and Systems, 9(5), pp. 411-426.

Marinković, D., Rama, G., Zehn, M., 2019, Abaqus Implementation of a Corotational Piezoelectric 3-Node Shell Element with Drilling Degree of Freedom, Facta Universitatis-Series Mechanical Engineering, 17(2), pp. 269-283.

Tomašević, Dž., Konjić, T., Kasapović, S., 2022, Impact Assessment of the Power Line Channel Characteristics in Real Topology, Tehnički vjesnik, 29(2), pp. 386-394.

Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S., 2014, Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors, Advanced Materials, 26(13), pp. 2022-2027.

Luo, S., Liu, T., 2013, Structure–property–processing relationships of single-wall carbon nanotube thin film piezoresistive sensors, Carbon, 59, pp. 315-324.

Zhao, J., He, C., Yang, R., Shi, Z., Cheng, M., Yang, W., Xie, G., Wang, D., Shi, D., Zhang, G., 2012, Ultra-sensitive strain sensors based on piezoresistive nanographene films, Applied Physics Letters, 101(6), 063112.

Wu, S., Peng, S., Yu, Y., Wang, C.H., 2020, Strategies for designing stretchable strain sensors and conductors, Advanced Materials Technologies, 5(2), 1900908.

Lu, Y., Biswas, M.C., Guo, Z., Jeon, J.-W., Wujcik, E.K., 2019, Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors, Biosensors bioelectronics, 123, pp. 167-177.

Qi, X., Li, X., Jo, H., Bhat, K.S., Kim, S., An, J., Kang, J.-W., Lim, S., 2020, Mulberry paper-based graphene strain sensor for wearable electronics with high mechanical strength, Sensors Actuators A: Physical, 301, 111697.

Zhang, L., Kou, H., Tan, Q., Liu, G., Zhang, W., Xiong, J., 2019, High-performance strain sensor based on a 3D conductive structure for wearable electronics, Journal of Physics D: Applied Physics, 52(39), 395401.

Niu, S., Chang, X., Zhu, Z., Qin, Z., Li, J., Jiang, Y., Wang, D., Yang, C., Gao, Y., Sun, S., 2021, Low-Temperature Wearable Strain Sensor Based on a Silver Nanowires/Graphene Composite with a Near-Zero Temperature Coefficient of Resistance, ACS Applied Materials & Interfaces, 13(46), pp. 55307-55318.

Esmaeili, A., Sbarufatti, C., Ma, D., Manes, A., Jiménez-Suárez, A., Ureña, A., Dellasega, D., Hamouda, A., 2020, Strain and crack growth sensing capability of SWCNT reinforced epoxy in tensile and mode I fracture tests, Composites Science Technology, 186, 107918.

Wang, G., Yang, P., Chen, B., Liu, G., Qiu, J., 2020, A novel combination of graphene and silver nanowires for entirely stretchable and ultrasensitive strain sensors: Sandwich-based sensing films, Nanotechnology, 31(13), 135501.

Pan, S., Pei, Z., Jing, Z., Song, J., Zhang, W., Zhang, Q., Sang, S., 2020, A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS, RSC advances, 10(19), pp. 11225-11232.

Sui, X., Downing, J.R., Hersam, M.C., Chen, J., 2021, Additive manufacturing and applications of nanomaterial-based sensors, Materials Today, 48, pp. 135-154.

Zhai, J., Zhang, Y., Cui, C., Li, A., Wang, W., Guo, R., Qin, W., Ren, E., Xiao, H., Zhou, M., 2021, Flexible waterborne polyurethane/cellulose nanocrystal composite aerogels by integrating graphene and carbon nanotubes for a highly sensitive pressure sensor, ACS Sustainable Chemistry Engineering, 9(42), pp. 14029-14039.

Jeong, Y.R., Park, H., Jin, S.W., Hong, S.Y., Lee, S.S., Ha, J.S., 2015, Highly stretchable and sensitive strain sensors using fragmentized graphene foam, Advanced Functional Materials, 25(27), pp. 4228-4236.

Yang, H., Yao, X., Zheng, Z., Gong, L., Yuan, L., Yuan, Y., Liu, Y., 2018, Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing, Composites Science Technology, 167, pp. 371-378.

Gan, D., Shuai, T., Wang, X., Huang, Z., Ren, F., Fang, L., Wang, K., Xie, C., Lu, X., 2020, Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics, Nano-micro letters, 12, 169.

Shi, G., Zhao, Z., Pai, J.-H., Lee, I., Zhang, L., Stevenson, C., Ishara, K., Zhang, R., Zhu, H., Ma, J., 2016, Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using Graphene/Silicon Rubber Composites, Advanced Functional Materials, 26(42), pp. 7614-7625.

Mo, F., Huang, Y., Li, Q., Wang, Z., Jiang, R., Gai, W., Zhi, C., 2021, A highly stable and durable capacitive strain sensor based on dynamically super‐tough hydro/organo‐gels, Advanced Functional Materials, 31(28), 2010830.

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A.A., Park, I., Sitti, M., Amjadi, M., 2020, Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications, Advanced Intelligent Systems, 2(8), 2000039.

Shen, Z., Zhang, Z., Zhang, N., Li, J., Zhou, P., Hu, F., Rong, Y., Lu, B., Gu, G., 2022, High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines, Advanced Materials, 34(32), 2203650.

Chen, S., Guo, X., 2015, Improving the sensitivity of elastic capacitive pressure sensors using silver nanowire mesh electrodes, IEEE Transactions on nanotechnology, 14(4), pp. 619-623.

Qin, R., Hu, M., Li, X., Liang, T., Tan, H., Liu, J., Shan, G., 2021, A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor, Microsystems nanoengineering, 7(1), 100.

Shi, R., Lou, Z., Chen, S., Shen, G., 2018, Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application, Science China Materials, 61(12), pp. 1587-1595.

Lo, L.W., Shi, H., Wan, H., Xu, Z., Tan, X., Wang, C., 2020, Inkjet‐printed soft resistive pressure sensor patch for wearable electronics applications, Advanced Materials Technologies, 5(1), 1900717.

Tas, M.O., Baker, M.A., Masteghin, M.G., Bentz, J., Boxshall, K., Stolojan, V., 2019, Highly stretchable, directionally oriented carbon nanotube/PDMS conductive films with enhanced sensitivity as wearable strain sensors, ACS Applied Materials & Interfaces, 11(43), pp. 39560-39573.

Hu, X., Yang, F., Wu, M., Sui, Y., Guo, D., Li, M., Kang, Z., Sun, J., Liu, J., 2022, A Super‐Stretchable and Highly Sensitive Carbon Nanotube Capacitive Strain Sensor for Wearable Applications and Soft Robotics, Advanced Materials Technologies, 7(3), 2100769.

Wang, K., Yap, L.W., Gong, S., Wang, R., Wang, S.J., Cheng, W., 2021, Nanowire‐Based Soft Wearable Human–Machine Interfaces for Future Virtual and Augmented Reality Applications, Advanced Functional Materials, 31(39), 2008347.

Lee, K.T., Chee, P.S., Lim, E.H., Kam, Y.H., 2023, Data Glove with Integrated Polyethylene-Carbon Composite-Based Strain Sensor for Virtual Reality Applications, Chemical Engineering & Technology, 46, 10.1002/ceat.202200569.

Li, X., Koh, K.H., Farhan, M., Lai, K.W.C., 2020, An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles, Nanoscale, 12(6), pp. 4110-4118.

Chen, S., Peng, S., Sun, W., Gu, G., Zhang, Q., Guo, X., 2019, Scalable Processing Ultrathin Polymer Dielectric Films with a Generic Solution Based Approach for Wearable Soft Electronics, Advanced Materials Technologies, 4(7), 1800681.




DOI: https://doi.org/10.22190/FUME230925043H

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4