GECKO-INSPIRED FRACTAL BUFFER FOR PASSENGER ELEVATOR

Yu-Ting Zuo, Fu-Fang Luo, Shi-Long Zeng

DOI Number
10.22190/FUME240314022Z
First page
Last page

Abstract


Elevator accidents are common occurrences and can cause serious injuries and property damages. If an elevator falls from a tall building and hits the ground at high speed, passengers in the car have little chance of survival. We designed a fractal buffer with hierarchical structure, which is inspired by the gecko’s pad system, to minimize the damage. A fractal-fractional oscillator is established to show the frequency-amplitude relationship of the fractal buffer using He’s frequency formulation. The fractal-structured vibration-absorbing metamaterial in low frequency contributes to the elevator safety. This paper opens a new window for designing safe and reliable buffers, and provides entrepreneurs with new ideas for the next generation of elevators.

Keywords

Metamaterials, Passenger elevator, Elevator crash, Energy absorption, Fractal theory, Hierarchical structure, Duffing oscillator, He’s frequency formulation

Full Text:

PDF

References


Miralbes, R., Cuartero, J., Castejon, L., 2013, Biomechanical response and behavior of users under emergency buffer crash, Advances in Mechanical Engineering, 5, doi: 10.1155/2013/596340.

Yao, W., Jagota, V., Kumar, R., Ather, D., Jain, V., Quraishi, S.J., Osei-Owusu, J., 2022, Study and application of an elevator failure monitoring system based on the internet of things technology, Scientific Programming, 2022, 2517077.

Tome, M., Beirao, P., Roseiro, L., Santos, F., 2022, Automatic velocity measurement system applied to elevator overspeed governors, Building Services Engineering Research & Technology, 43(5), pp. 559-569.

Lozzi, A., Briozzo, P., 2000, Failure of an inclined elevator, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 214(2), pp. 323-333.

Zheng, J.J., Zhao, J.J., Wang, L.L., Li, Z.C., 2022, Dong, W.P., Shiju, E., Optimal control for soft-landing in elevator emergency crash using multiple magnetorheological shock absorbers, Journal of Intelligent Material Systems and Structures, 33(19), pp. 2454-2469.

Li, X.X., Li, Y.Y., Li, Y., He, J.H., 2020, Gecko-like adhesion in the electrospinning process, Results in Physics, 16, 102899.

Li, X.X., He, J.H., 2019, Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning, Results in Physics, 12, pp. 1405-1410.

He, C.H., Liu, C., 2023, Fractal dimensions of a porous concrete and its effect on the concrete’s strength, Facta Universitatis-Series Mechanical Engineering, 21(1), pp. 137-150.

He, J.H., Yang, Q., He, C.H., Abdulrahman, A.A., 2023, Unlocking the plants' distribution in a fractal space, Fractals, 31(9), 2350102.

Zhao, L., Li, Y., He, J.H., 2023, Promises and challenges of fractal thermodynamics, Thermal Science, 27(3), pp. 1735-1740.

Babič, M., Marinkovic, D., Bonfanti, M., Calì, M., 2022, Complexity modeling of steel-laser-hardened surface microstructures, Applied Sciences, 12, 2458.

Zuo, Y.T., 2024, Variational principle for a fractal lubrication problem, Fractals, doi: 10.1142/S0218348X24500804.

Babič, M., Marinković, D., 2023, A new approach to determining the network fractality with application to robot-laser-hardened surfaces of materials, Fractal and Fractional, 7(10), 710.

Babič, M., Marinković, D., Kovačič, M., Šter, B., Calì, M., 2022, A new method of quantifying the complexity of fractal networks, Fractal and Fractional, 6, 282.

Wang, W., Liu, Y., Xie, Z. W., 2021, Gecko-like dry adhesive surfaces and their applications: A review, Journal of Bionic Engineering, 18(5), pp. 1011-1044.

Suresh, S.A., Hajj-Ahmad, A., Hawkes, E.W., Cutkosky, M.R., 2021, Forcing the issue: Testing gecko-inspired adhesives, Journal of the Royal Society Interface, 18, 20200730.

Sikdar, S., Rahman, M.H., Siddaiah, A., Menezes, P.L., 2022, Gecko-inspired adhesive mechanisms and adhesives for robots-A review, Robotics, 11(6), 143.

Olender, J., Perris, J., Xu, Y., Young, C., Mulvihill, D.M., Gadegaard, N., 2023, Gecko-inspired dry adhesives for heritage conservation - tackling the surface roughness with empirical testing and finite element modelling, Journal of Adhesion Science and Technology, 37(6), pp. 1091-1116.

Han, A.K., Hajj-Ahmad, A., Cutkosky, M.R., 2021, Hybrid electrostatic and gecko-inspired gripping pads for manipulating bulky, non-smooth items, Smart Materials and Structures, 30(2), 025010.

Zhang, Y.L., Ma, S.H., Li, B., Yu, B., Lee, H., Cai, M.R., Gorb, S.N., Zhou, F., Liu, W.M., 2021, Gecko's Feet-inspired self-peeling switchable dry/wet adhesive, Chemistry of Materials, 33(8), pp. 2785-2795.

Glick, P., Suresh, S.A., Ruffatto, D., Cutkosky, M., Tolley, M.T., Parness, A., 2018, A soft robotic gripper with gecko-inspired adhesive, IEEE Robotics and Automation Letters, 3(2), pp. 903-910.

Zhang, C.Q., McAdams, D.A., Grunlan, J.C, 2016, Nano/Micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures, Advanced Materials, 28(30), pp. 6292-6321.

Mandelbrot, B.B., 1967, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156(3775), pp. 636-638.

Xu, X.Y., Song, H.Y., Wang, L.J., 2023, Cushioning performance of Hilbert fractal sandwich packaging structures under quasi-static compressions, CMES-Computer Modeling in Engineering & Sciences, 135(1), pp. 275-292.

Kai, Y., Dhulipala, S., Sun, R., Lem, J., DeLima, W., Pezeril, T., Portela, C.M., 2023, Dynamic diagnosis of metamaterials through laser-induced vibrational signatures, Nature, 623(7987), pp. 514-521.

He, C., Li, Z.Y., Wu, G.H., Tao, M., 2024, Fractal acoustic metamaterials with near-zero index and negative properties, Applied Acoustics, 217, 109825.

Peng, Y.P., Wang, Q., Xu, Y.C., Shan, D.Y., He, L.H., Cao, Y.M., 2023, Optically transparent and mechanically stretchable fractal-structured wave-absorbing metamaterial in low frequency range, Journal of Alloys and Compounds, 961, 171100.

Zhang, W.J., Neville, R., Zhang, D.Y., Yuan, J., Scarpa, F., Lakes, R., 2023, Bending of kerf chiral fractal lattice metamaterials, Composite Structures, 318, 117068.

Alam, M.N., Rahim, M.A., Hossain, M.N., Tunç, C., 2024, Dynamics of damped and undamped wave natures of the fractional Kraenkel-Manna-Merle system in ferromagnetic materials, Journal of Applied and Computational Mechanics, 10(2), pp. 317-329.

Shah, S.S., Singh, D., Saini, J.S., Garg, N., 2024, Sound absorption advancements: exploring 3D printing in the development of tetrakaidecahedron cell-based acoustic metamaterials, Rapid Prototyping Journal, 30(3), pp. 609-619.

Montazeri, A., Naderinejad, M., Mahnama, M., Hasani, A., 2024, 3D-Printed Twisting Tubular Metamaterials with Tunable Mechanical and Torsional Characteristics, International Journal of Mechanical Sciences, 262, 108719.

Zhou, X.L., Ren, L.Q., Song, Z.Y., Li, G.W., Zhang, J.F., Li, B.Q., Wu, Q., Li, W.X., Ren, L., Liu, Q.P., 2023, Advances in 3D/4D printing of mechanical metamaterials: From manufacturing to applications, Composites Part B: Engineering, 254, 110585.

Ravandi, M.R.M., Dezianian, S., Ahmad, M.T., Ghoddosian, A., Azadi, M., 2023, Compressive strength of metamaterial bones fabricated by 3D printing with different porosities in cubic cells, Materials Chemistry and Physics, 299, 127515.

Zuo, Y.T., Liu, H.J., 2022, Is the spider a weaving master or a printing expert? Thermal Science, 26(3), pp. 2471-2475.

Liu, R., Zhong, Y.F., Wang, S.W., Irakoze, A.E., Miao, S.Q., 2024, VAM-based equivalent-homogenization model for 3D re-entrant auxetic honeycomb structures, International Journal of Mechanical Sciences, 268, 109013.

Mahinzare, M., Rastgoo, A., Ebrahimi, F., 2024, Nonlinear vibration of FG graphene origami auxetic sandwich plate including smart hybrid nanocomposite sheets, Journal of Engineering Mechanics, 150(4), 04024007.

He, J.H., Jiao, M.L., He, C.H., 2022, Homotopy perturbation method for fractal Duffing oscillator with arbitrary conditions, Fractals, 30(9), 2250165.

He, C.H., Liu, C., 2022, A modified frequency-amplitude formulation for fractal vibration systems, Fractals, 30(3), 2250046.

Khan, W.A., 2022, Numerical simulation of Chun-Hui He's iteration method with applications in engineering, International Journal of Numerical Methods for Heat & Fluid Flow, 32(3), pp. 944-955.

Khan, W.A., Arif, M., Mohammed, M., Farooq, U., Farooq, F.B., Elbashir, M.K., Rahman, J.U., AlHussain, Z.A., 2022, Numerical and Theoretical Investigation to Estimate Darcy Friction Factor in Water Network Problem Based on Modified Chun-Hui He's Algorithm and Applications, Mathematical Problems in Engineering, 8116282.

He, C.H., 2016, An introduction to an ancient Chinese algorithm and its modification, International Journal of Numerical Methods for Heat & Fluid Flow, 26 (8), pp. 2486-2491.

Zuo, Y.T., 2021, A gecko-like fractal receptor of a three-dimensional printing technology: A fractal oscillator, Journal of Mathematical Chemistry, 59(3), pp. 735-744.

He, C.H., Amer, T.S., Tian, D., Abolila, A.F., Galal, A.A., 2022, Controlling the kinematics of a spring-pendulum system using an energy harvesting device, Journal of Low Frequency Noise, Vibration & Active Control, 41(3), pp. 1234-1257.

Li, Y., Meng, S.N., Zhang, X., Si, Y., Yu, J.Y., Ding, B., 2023, Preparation and structure regulation of flexible mullite fiber by centrifugal spinning, Journal of Donghua University (Natural Science), 49(4), pp. 16-22.

Chen, J.J., Meng, S.N., Liu, H.L., Si, Y. Yu, J.Y., Ding, B., 2023, Preparation and X-ray shielding properties of bismuth oxide/polyacrylonitrilecomposite nanofiber film by electrospinning, Journal of Donghua University(Natural Science), 49(6), pp. 26-32.

He, J.H., Kou, S.J., He, C.H., Zhang, Z.W., Gepreel, K.A., 2021, Fractal oscillation and its frequency-amplitude property, Fractals, 29(4), 2150105.


Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4