PREDICTION OF TEMPERATURE DISTRIBUTION IN THE WORM GEAR MESHING

Aleksandar Miltenović, Milan Tica, Milan Banić, Đorđe Miltenović

DOI Number
10.22190/FUME180120016M
First page
Last page

Abstract


Worm gear transmissions have number of advantages over other types of transmission, allowing them a wide scope of applications for the transfer of power and movement. One of the important advantages of this transmission is the possibility of obtaining a large transmission ratio. The lack of worm gear transmission means a relatively low efficiency, especially for the extreme operating conditions primarily related to the high frequency of rotation. Between the flanks of worm and worm gears there is considerable slippage, which results in wear at the worm gear flank and considerable significant power losses that are converted into heat. The amount of energy that is converted into heat to a large extent is determined by the friction coefficient between the flanks. It is therefore very important to take into consideration the process of tribo-system mesh of flanks and lubricant. The paper presents FEM calculated distribution of transmission temperature based on the data about power losses obtained analytically. The resulting temperature distribution is compared to the experimental research.

Keywords

Worm Gear Transmission, Temperature Distribution, FEM, Friction

Full Text:

PDF

References


Jain, R., Pal, K.S., Singh, B.S, 2016, A study on the variation of forces and temperature in a friction stirwelding process: A finite element approach, Journal of Manufacturing Processes, 23, pp. 278-286.

Haddad, H., Guessasma, M., Fortin, J., 2016, A DEM–FEM coupling based approach simulating thermomechanical behavior of frictional bodies with interface layer, International Journal of Solids and Structures, 81, pp 1–16.

Ziegltrum, A., Lohner, T., Stahl, K., 2017, TEHL Simulation on the Influence of Lubricants on Load-Dependent Gear Losses, Tribology International, 113, pp. 252-261.

Milošević, M., Miltenović, A., Banić, M., Tomić, M., 2017, Determination of Residual Stress in the Rail Wheel During Quenching Process by FEM Simulation, Facta Universitatis-Series Mechanical Engineering, 15(3), pp. 413-425.

Pech, M., 2011, Tragfähigkeit und Zahnverformung von Schraubradgetrieben der Werkstoffpaarung Stahl/Kunststoff, Dissertation Ruhr-University Bochum

Abukhshim, N.A., Mativenga, P.T., Sheikh, M.A., 2006, Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining, International Journal of Machine Tools and Manufacture, 46(7-8), pp. 782-800.

Taburdagitan, M., Akkok, M., 2006, Determination of surface temperature rise with thermo-elastic analysis of spur gears, Wear 261, pp. 656-665.

Berger, M., Sievers, B., Hermes, J., 2015, Standardized Wear and Temperature Prediction for Worm Gears under Non-Steady Operating Conditions, International Conference Gears. VDI-Society for Product and Process Design, Munich, Germany, VDI Berichte 2255.1, pp.483-492.

SKF, 2014, Hauptkatalog, Das Wälzlager-Handbuch für Studenten Neuwertig,

DIN 3996, 2012, Tragfähigkeitsberechnung von Zylinder¬ Schneckengetrieben mit sich rechtwinklig kreuzenden Achsen.

ANSYS Inc., 2010, ANSYS theory manual, USA.

Böge, A., 2011, Handbuch Maschinenbau: Grundlagen und Anwendungen der Maschinenbau-Technik. Springer Fachmedien Wiesbaden,.

Cerbe, G., Wilhelms, G., 2010, Technische Thermodynamik: Theoretische Grundlagen und praktische Anwendungen. Gebundene Ausgabe – Hanser.

Klübersynth GH 6, 2014, Synthetic gear and high temperature oils based on KlüberComp Lube Technology

Lange, N., 2000, Hoch fresstragfähige Schneckengetriebe mit Rädern aus Sphäroguss, Dissertation TU München.


Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4