### MULTILAYERED PLATE ELEMENTS WITH NODE-DEPENDENT KINEMATICS FOR THE ANALYSIS OF COMPOSITE AND SANDWICH STRUCTURES

**DOI Number**

**First page**

**Last page**

#### Abstract

*.*

#### Keywords

#### Full Text:

PDF#### References

Koiter, W.T., 1970, On the foundations of the linear theory of thin elastic shell, Proc. Kon. Nederl. Akad. Wetensch., 73, pp. 169–195.

Ciarlet, P.G., Gratie, L., 2005, Another approach to linear shell theory and a new proof of Korn’s inequality on a surface, C. R. Acad. Sci. Paris, series I, 340(6), pp.471–478.

Reissner, E., Stavsky, Y., 1961, Bending and stretching of certain types of heterogeneous aelotropic elastic plates, Journal of Applied Mechanics, 28, pp. 402–408.

Reissner, E., 1945, The effect of transverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics, 12(2), pp. 69–77.

Mindlin, R.D., 1951, Influence of rotary inertia and shear flexural motion of isotropic, elastic plates, Journal of Applied Mechanics, 18, pp. 31–38.

Kant, T., Owen, D.R.J., Zienkiewicz, O.C., 1982, Refined higher order C0 plate bending element, Computer and Structures, 15, pp. 177–183.

Kant, T., Kommineni, J.R., 1989, Large amplitude free vibration analysis of cross-ply composite and sandwich laminates with a refined theory and C0 finite elements, Computer and Structures, 50, pp. 123–134.

Reddy, J.N., 1997, Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, CRC Press, New York, London, Tokyo.

Palazotto, A.N., Dennis, S.T., 1992, Nonlinear analysis of shell structures, AIAA Series, Washington.

Noor, A.K., Burton, W.S., 1990, Assessment of computational models for multi-layered composite shells, Applied Mechanics Review, 43, pp.67–97.

Reddy, J.N., 1993, An evaluation of equivalent-single-layer and layerwise theories of composite laminates, Composite Structures, 25, pp. 21–35.

Mawenya A.S., Davies, J.D., 1974, Finite element bending analysis of multilayer plates, Journal for Numerical Methods in Engineering, 8, pp. 215–225.

Rammerstorfer, F.G., Dorninger, K., Starlinger, A., 1992, Composite and sandwich shells, Nonlinear Analysis of Shells by Finite Elements, 328, pp. 131–194

Bank, R.E., 1983, The efficient implementation of local mesh refinement algorithms, in Babuska, I., Chandra, J., Flaherty, J.E. (eds.), Adaptive Computational Methods for Partial Differential Equations, SIAM, Philadelphia.

Szabo, B.A., Babuska, I., 1991, Finite Element Analysis, John Wiley & Sons, New York, Toronto.

Bathe, K.J., 1996, Finite Element Procedures, Prentice Hall, New Jersey.

Thompson, D.M., Griffin, O.H.Jr., 1990, 2-D to 3-D Global/Local Finite Element Analysis of Cross-Ply Composite Laminates, Journal of Reinforced Plastics and Composites, 9, pp. 492–502.

Mao, K.M., Sun, C.T., 1991, A Refined Global-Local Finite Element Analysis Method, International Journal for Numerical Methods in Engineering, 32, pp.29–43, 1991.

Whitcomb, J.D., Woo, K., 1993, Application of iterative global/local finite element analysis. part 1: linear analysis, Communications in Numerical Methods in Engineering, 9(9), pp.745–756.

Whitcomb, J.D., Woo, K., 1993, Application of iterative global/local finite element analysis. part 2: geometrically non-linear analysis, Communications in Numerical Methods in Engineering, 9(9), pp. 757–766.

Wang, A.S.D., Crossman, F.W., 1978, Calculation of Edge Stresses in Multi-Layer by Sub-Structuring, Journal of Composite Materials, 12, pp.76–83.

Pagano, N. J., Soni, S.R., 1983, Global-local laminate variational model, International Journal of Solids and Structures, 19(3), pp. 207–228.

Jones, R., Callinan, R., Teh, K.K., Brown, K.C., 1984, Analysis of Multi-Layer Laminates Using Three-Dimensional Super Elements, International Journal for Numerical Methods in Engineering, 20(3), pp. 583–587.

Pagani, A., Valvano, S., Carrera, E., 2017, Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements, Journal of Sandwich Structures and Materials, doi: 10.1177/1099636216650988.

Carrera, E., Pagani, A., Valvano, S., 2017, Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures, Composites Part B, 111, pp. 294–314.

Carrera, E., Valvano, S., 2017, A variable kinematic shell formulation applied to thermal stress of laminated structures, Journal of Thermal Stresses, doi: 10.1080/01495739.2016.1253439.

Brezzi F., Marini, L.D., 2005, The three-field formulation for elasticity problems, GAMM Mitteilungen, 28, pp. 124–153.

Carrera, E., Pagani, A., Petrolo, M., 2013, Use of Lagrange multipliers to combine 1D variable kinematic finite elements, Computers and Structures, 129, pp. 194–206.

Carrera, E., Pagani, A., 2013, Analysis of reinforced and thin-walled structures by multi-line refined 1D/beam models, International Journal of Mechanical Sciences, 75, pp. 278–287.

Carrera E., Pagani, A., 2014, Multi-line enhanced beam model for the analysis of laminated composite structures, Composites Part B, 57, pp. 112–119.

Dhia, H.B., 1998, Multiscale mechanical problems: the Arlequin method, Comptes Rendus de l’Academie des Sciences Series IIB Mechanics Physics Astronomy, 326(12), pp. 899–904.

Dhia, H.B., 1999, Numerical modelling of multiscale problems: the Arlequin method, CD Proceedings of ECCM’99, Munchen.

Dhia, H.B., 2008, Further insights by theoretical investigations of the multiscale Arlequin method, International Journal for Multiscale Computational Engineering, 6(3), pp. 215–232.

Dhia, H.B., The Arlequin method as a flexible engineering tool, International Journal for Numerical Methods in Engineering, 62(11), pp. 1442–1462.

Hu, H., Belouettar, S., Potier-Ferry, M., Daya, E.M., 2008, Multi-scale modelling of sandwich structures using the Arlequin method. Part I: linear modelling. Finite Elements in Analysis and Design, 45(1), pp. 37–51.

Hu, H., Belouettar, S., Potier-Ferry, M., Daya, E.M., Makradi, A., 2010, Multi-scale nonlinear modelling of sandwich structures using the Arlequin method, Finite Elements in Analysis and Design, 92(2), pp. 515–522.

Biscani, F., Giunta, G., Belouettar, S., Carrera, E., Hu, H., 2011, Variable kinematic beam elements coupled via Arlequin method, Composite Structures, 93(2), pp. 697–708.

Biscani, F., Giunta, G., Belouettar, S., Carrera, E., Hu, H., 2012, Variable kinematic plate elements coupled via Arlequin method, International Journal for Numerical Methods in Engineering, 91, pp.1264–1290.

Reddy, J.N., Robbins, D.H., 1994, Theories and computational models for composite laminates, Applied Mechanics Review, 47, pp. 147–165.

Reddy, J.N., 1997, Mechanics of Laminated Composite Plates – Theory and Analysis, CRC Press, Boca Raton.

Fish, J., 1992, The s-version of the finite element method, Computers and Structures, 43(3), pp. 539–547.

Fish, J., Markolefas, S., 1993, Adaptive s-method for linear elastostatics, Computer Methods in Applied Mechanics and Engineering, 103, pp. 363–396.

Wenzel, C., Vidal, P., D’Ottavio, M., Polit, O., 2014, Coupling of heterogeneous kinematics and Finite Element approximations applied to composite beam structures, Composite Structures, 116, pp. 177-192.

Carrera, E., Pagani, A., Valvano, S., 2017, Multilayered plate elements accounting for refined theories and node-dependent kinematics. Composites Part B, 114:189–210, 2017.

Bathe, K.J., Dvorkin, E., 1986, A formulation of general shell elements - the use of mixed interpolation of tensorial components, International Journal for Numerical Methods in Engineering, 22, pp. 697–722.

Bathe, K.J., Brezzi, F., 1987, A simplified analysis of two plate bending elements-the MITC4 and MITC9 elements, in Pande,G.N. et al. (eds.), Numerical Methods in Engineering: Theory and Applications, Martinus Nijhoff Publishers, Dordrecht.

Bathe, K.J., Brezzi, F., Cho, S.W., 1989, The MITC7 and MITC9 plate bending elements, Computers and Structures, 32(3-4), pp. 797–814.

Bucalem, M.L., Dvorkin, E., 1993, Higher-order MITC general shell elements, International Journal for Numerical Methods in Engineering, 36, pp. 3729–3754.

Carrera, E., Cinefra, M., Petrolo M, Zappino, E., 2014, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, United Kingdom.

Carrera, E., Brischetto, S., 2008, Analysis of thickness locking in classical, refined and mixed multilayered plate theories, Composite Structures, 82, pp. 549–562.

Carrera, E., 2003, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, Archives of Computational Methods in Engineering, 10(3), pp. 215–296.

Carrera, E., 1999, Multilayered shell theories accounting for layerwise mixed description, Part 1: governing equations, AIAA Journal, 37(9), pp. 1107–1116, 1999.

Carrera, E., 1999, Multilayered shell theories accounting for layerwise mixed description, Part 2: numerical evaluations. AIAA Journal, 37(9), pp. 1117–1124, 1999.

Cinefra, M., Valvano, S., Carrera, E., 2015, Heat conduction and Thermal Stress Analysis of laminated composites by a variable kinematic MITC9 shell element. Curved and Layered Structures, 1, pp. 301– 320.

Cinefra, M., S. Valvano, Carrera, E., 2016, Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element. Journal of Thermal Stresses, 39(2), pp. 121–141.

Cinefra, M., Carrera, E., Valvano, S., 2015, Variable kinematic shell elements for the analysis of electro-mechanical problems, Mechanics of Advanced Materials and Structures, 22(1-2), pp. 77–106.

Cinefra, M., Valvano, S., Carrera, E., 2015, A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches, International Journal of Smart and Nano Materials, 6(2), pp. 85– 104.

Carrera, E., 2003, Historical review of zig-zag theories for multilayered plates and shells, Applied Mechanics Reviews, 56, pp. 287–308.

Carrera, E., On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells. Computers and Structures, 82, pp. 541–554.

Carrera, E., 1998, Mixed layer-wise models for multilayered plates analysis, Composite Structures, 43, pp. 57– 70.

Carrera, E., 1998, Evaluation of Layerwise Mixed Theories for Laminated Plates Analysis, Applied Mechanics Reviews, 36(5), pp. 830–839.

Lekhnitskii, S.G., 1968, Anisotropic Plates, Gordon & Branch, New York.

Nguyen, S.H., Surana, K.S., 1990, Two-dimensional curved beam element with higher-order hierarchical transverse approximation for laminated composites, Computers & Structures, 36, pp. 499–511.

Davalos, J.F. Kim, Y., Barbero, E.J., 1994, Analysis of laminated beams with a layerwise constant shear theory, Computers and Structures, 28, pp. 241–253.

Xiaoshan Lin, Y.Z., 2011, A novel one-dimensional two-node shear-flexible layered composite beam element, Finite Elements in Analysis and Design, 47, pp. 676–682.

Vo, T.P., Thai, H.T., 2012, Static behavior of composite beams using various refined shear deformation theories, Computers and Structures, 94, pp. 2513–2522.

Meyer-Piening, H.R., 2000, Experiences with ’exact’ linear sandwich beam and plate analyses regarding bending, instability and frequency investigations, In Meyer-Piening, H.R., Zenkert, D. (eds.), Proceedings of the Fifth International Conference on Sandwich Constructions, vol. 1, pp 37–48, EMAS Publishing, Zurich.

Carrera, E, Ciuffreda, A, 2005, Bending of composites and sandwich plates subjected to localized lateral loadings: a comparison of various theories, Composite Structures, 68, pp. 185–202.

Carrera, E., Demasi, L., 2003, Two benchmarks to assess two-dimensional theories of sandwich, composite plates, AIAA Journal, 41(7), pp. 1356–1362.

DOI: https://doi.org/10.22190/FUME170315001V

### Refbacks

- There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4