SOLUTION OF ADHESIVE CONTACT PROBLEM ON THE BASIS OF THE KNOWN SOLUTION FOR NON-ADHESIVE ONE

Valentin L. Popov

DOI Number
10.22190/FUME180105009P
First page
93
Last page
98

Abstract


The well-known procedure of reducing an adhesive contact problem to the corresponding non-adhesive one is generalized in this short communication to contacts with an arbitrary contact shape and arbitrary material properties (e.g. non homogeneous or gradient media). The only additional assumption is that the sequence of contact configurations in an adhesive contact should be exactly the same as that of contact configurations in a non-adhesive one. This assumption restricts the applicability of the present method. Nonetheless, the method can be applied to many classes of contact problems exactly and also be used for approximate analyses.


Keywords

Adhesion, Normal Contact, Heterogeneous Media, Effective Surface Energy

Full Text:

PDF

References


Argatov, I., Li, Q., Pohrt, R., Popov, V.L., 2016, Johnson–Kendall–Roberts adhesive contact for a toroidal indenter, Proc. R. Soc. A 472, 20160218.

Willert, E., Li, Q., Popov, V.L., 2016, The JKR-adhesive normal contact problem of axisymmetric rigid punches with a flat annular shape or concave profiles, Facta Universitatis-Series Mechanical Engineering, 14(3), pp. 281-292.

Popov, V.L., Heß, M., Willert, E., 2017, Handbuch der Kontaktmechanik: Exakte Lösungen axialsymmetrischer Kontaktprobleme, Springer, Berlin, 341 p.

Popov, V.L., 2017, Contact mechanics and friction. Physical principles and applications. Springer, Berlin.

Hess, M., 2011, Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit niedrigerer räumlicher Dimension, Cuvillier, Berlin, Germany

Popov, V.L., Pohrt, R., Heß, M., General procedure for solution of contact problems under dynamic normal and tangential loading based on the known solution of normal contact problem, The Journal of Strain Analysis for Engineering Design, 51(4), pp. 247-255.

Popov, V.L., Pohrt, R., Li, Q., 2017, Strength of adhesive contacts: Influence of contact geometry and material gradients, Friction, 5(3), pp. 308–325.

Ciavarella, M. , 2017, An approximate JKR solution for a general contact, including rough contacts, arXiv preprint arXiv:1712.05844

Afferrante, L., Ciavarella, M., Demelio, G., 2015, Adhesive contact of the Weierstrass profile, Proc. R. Soc. A, 471, (2182), 20150248.

Ciavarella, M., 2017, A note on the possibility of roughness enhancement of adhesion in Persson’s theory, International Journal of Mechanical Sciences, 121, pp. 119-122.

Johnson, K.L., 1995, The adhesion of two elastic bodies with slightly wavy surfaces, Int. J. Solids Structures, 32(3/4), pp. 423-430.

Ciavarella, M., Papangelo, A., 2018, A generalized Johnson parameter for pull-off decay in the adhesion of rough surfaces, Phys Mes., 21(1), pp. 57-75.

Ciavarella, M., Papangelo, A., 2017, Discussion of Measuring and Understanding Contact Area at the Nanoscale: A Review (Jacobs, TDB, and Ashlie Martini, A., 2017, ASME Appl. Mech. Rev., 69 (6), p. 060802), Applied Mechanics Reviews, 69(6), 065502. doi: 10.1115/1.4038188

Ciavarella, M., Papangelo, A., 2018, A modified form of Pastewka–Robbins criterion for adhesion, The Journal of Adhesion, 94(2), pp. 155-165.

Papangelo, A., Ciavarella, M., 2017, A Maugis–Dugdale cohesive solution for adhesion of a surface with a dimple, Journal of The Royal Society Interface, 14(127), 20160996.




DOI: https://doi.org/10.22190/FUME180105009P

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4