Roman Pohrt

DOI Number
First page
Last page


Automotive tires have played an important role in land-based transportation and will probably continue to do so for many years to come. During their service lifetime, parts of the outer protector layer are worn off and discarded into the environment. A typical passenger car emits about 120 micrograms of rubber per meter but the exact current value depends on a multitude of influencing factors and varies greatly. We review available data on the wear rate (or inverse expected lifetime) of automotive rubber tires and extract qualitative estimations on how the most important parameters alter the deposition rate on a given road section. Local hot spots of increased tire wear particle occurrence can be identified from these parameters. It is concluded that generally subjecting tires to milder usage conditions can reduce tire wear by substantial amounts. Reducing vehicle speeds is identified as the most effective general measure.


Tire, Wear rate, Road Particles, Non-exhaust Emissions, Hot-spots

Full Text:



Cinaralp, F., 2017, ETRMA statistics report n.9, Technical report, European Tyre and Rubber Industry.

Kwak, J., Kim, H., Lee, J., Lee, S., 2013, Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements, Science of the Total Environment, 458-460, pp. 273–282.

Kwak, J., Lee, S., Lee, S., 2014, On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions, Atmospheric Environment, 97, pp. 195–205.

Grigoratos, T., Martini, G., 2014, Non-exhaust traffic related emissions. Brake and tyre wear PM, Technical report, European Commission Joint Research Centre Institute of Energy and Transport.

Essel, R., Engel, L., Carus, M., Ahrens, R.H., 2015, Sources of microplastics relevant to marine protection in Germany, Technical report, Umweltbundesamt.

Boulter, P., 2005, Trl report ppr065: A review of emission factors and models for road vehicle non-exhaust particulate matter, Technical report, TRL Limited.

Timmers, V.R., Achten, P.A., 2016, Review article: Non-exhaust PM emissions from electric vehicles, Atmospheric Environment, 134, pp. 10–17.

Fuchs, D.S., Scherer, D.U., Wander, R., Behrendt, D.H., Venohr, D.M., Opitz, D., Hillenbrand, D.T., Marscheider-Weidemann, D.F., Götz, T., 2010, Berechnung von Stoffeinträgen in die Fließgewässer Deutschlands mit dem Modell MONERIS, Technical report, Umweltbundesamt.

Kole, P.J., Löhr, A.J., Belleghem, F.G.A.J.V., Ragas, A.M.J., 2017, Wear and tear of tyres: A stealthy source of microplastics in the environment, Int. J. Environ. Res. Public Health, 14,1265, p. 31.

Dall’Osto, M., Beddows, D.C., Gietl, J.K., Olatunbosun, O.A., Yang, X., Harrison, R.M., 2014, Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (atofms), Atmospheric Environment, 94, pp. 224–230.

Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., Kokot, S., 2012, Source characterisation of road dust based on chemical and mineralogical composition, Chemosphere, 87, pp. 163–170.

Panko, J.M., Chu, J.A., Kreider, M.L., McAtee, B.L., Unice, K.M., 2012, Quantification of tire and road wear particles in the environment, Urban Transport, 128, pp. 59–70.

Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C., Gieré, R., 2018, Tire abrasion as a major source of microplastics in the environment, Aerosol and Air Quality Research, 18, pp. 2014–2028.

Iso/ts 21396:2017: Determination of mass concentration of tire and road wear particles (trwp) in soil and sediments.

Ntziachristos, L., Boulter, P., 2016, EMEP/EEA air pollutant emission inventory guidebook, European Environment Agency, chapter 1.A.3.b.vi Road transport: Automobile tyre and brake wear 1.A.3.b.vii Road transport: Automobile road abrasion.

Lee, S., Kwak, J., Kim, H., Lee, J., 2013, Properties of roadway particles from interaction between the tire and road pavement, International Journal of Automotive Technology, 14(1), pp. 163–173.

Mathissen, M., Scheer, V., Vogt, R., Benter, T., 2011, Investigation on the potential generation of ultrafine particles from the tire-road interface, Atmospheric Environment, 45, pp. 6172–6179.

Panko, J.M., Chu, J., Kreider, M.L., Unice, K.M., 2013, Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States, Atmospheric Environment, 72, pp. 192–199.

Panko, J., Kreider, M., Unice, K., 2018, Non-Exhaust Emissions: An Urban Air Quality Problem for Public Health; Impact and Mitigation Measures, Academic Press, pp. 147–160.

Kreider, M.L., Panko, J.M., McAtee, B.L., Sweet, L.I., Finley, B.L., 2010, Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies, Science of the Total Environment, 408, pp. 652–659.

Continental, ca. 1960, Einflüsse der Fahrpraxis auf die Lebensdauer von fahrzeugreifen - ein Versuchsbericht, Technical report, Continental Gummi-Werke Aktiengesellschaft Hannover.

Gebbe, Hartung, Berthold, 1998, Quantifizierung des Reifenabriebs von Kraftfahrzeugen in Berlin, Technical report, Institut für Straßen- und Schienenverkehr TU Berlin, studie im Auftrag der Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie, Berlin.

Wilde, J., 2014, Rolling resistance measurements at the MnROAD facility, round 2, Technical report, Center for Transportation Research and Implementation Minnesota State University, Mankato.

Glaeser, K.P., Zöller, M., 2009, Innentrommelprüfstand (IPS), Technical report, Bundesanstalt für Straßenwesen.

Glaeser, K.P., Bartolomaeus, W., 2014, Prüfstand Fahrzeug/Fahrbahn, Technical report, Bundesanst. f. Straßenwesen.

Do, M.T., Kerzreho, J.P., Balay, J.M., Gothie, M., 2003, Full scale tests for the assessment of wear of pavement surfaces, TRB 82nd Annual Meeting (Transportation Research Board), Jan 2003, France.

Lupker, H., 2003, Tyre and road wear prediction, Technical report, TNO Automotive and TROWS consortium (9 partners from 5 EC countries).

Grigoratos, T., Gustafsson, M., Eriksson, O., Martini, G., 2018, Experimental investigation of tread wear and particle emission from tyres with different treadwear marking, Atmospheric Environment, 182, pp. 200–212.

Veith, A.G., 1973, Accelerated tire wear under controlled conditions. I. description of the test system, Rubber Chem. Technol., 46(4), pp. 801–820.

Vieira, T., Ferreira, R., Kuchiishi, A., Bernucci, L., Sinatora, A., 2015, Evaluation of friction mechanisms and wear rates on rubber tire materials by low-cost laboratory tests, wear, 328-329, pp. 556–562.

Grosch, K.A., 2008, Rubber abrasion and tire wear, Rubber Chemistry and Technology, 81(3), pp. 470–505.

Hillenbrand, T., Toussaint, D., Böhm, E., Fuchs, S., Scherer, U., Rudolphi, A., Hoffmann, M., 2005, Einträge von Kupfer, Zink und Blei in Gewässer und Böden - Analyse der Emissionspfade und möglicher Emissionsminderungsmaßnahmen, Technical Report Bericht 20224220/02, Umweltbundesamt.

Le Maître, O., Süssner, M., Zarak, C., 1998, Evaluation of tire wear performance, SAE Technical Papers: International Congress and Exposition, Detroit, Michigan, February 23-26.

Wang, C., Huang, H., Chen, X., Liu, J., 2017, The influence of the contact features on the tyre wear in steady-state conditions, Proc IMechE Part D: J. Automobile Engineering, 231(10), pp. 1326–1339.

Scholz, G.H., 1994, Wie lange lebt ein Reifen?, Reifentechnische Informationen, volume 3, Gummiwerke Fulda.

Veith, A.G., 1992, A review of important factors affecting treadwear, Rubber Chem. Technol., 63(3), pp. 601–658.

Li, Y., Zuo, S., Lei, L., Yang, X., Wu, X., 2011, Analysis of impact factors of tire wear, Journal of Vibration and Control, 18(6), pp. 833–840.

Stalnaker, D., Turner, J., Parekh, D., Whittle, B., Norton, R., 1996, Indoor simulation of tire wear: Some case studies, Tire Science and Technology, 24(2), pp. 94–116.

Luhana, L., Sokhi, R., Warner, L., Mao, H., Boulter, P., McCrae, I., Wright, J., Osborn, D., 2004, Characterisation of exhaust particulate emissions from road vehicles; Deliverable 8: Measurement of non-exhaust particulate matter, Technical report, EU Particulates of Fifth Framework Programme.

Chen, X., Xu, N., Guo, K., 2018, Tire wear estimation based on nonlinear lateral dynamic of multi-axle steering vehicle, International Journal of Automotive Technology, 19(1), pp. 63–75.

Leister, G., 2009, Fahrzeugreifen und Fahrwerkentwicklung, ATZ/MTZ-Fachbuch.

Lupker, H., Montanaro, F., Donadio, D., Gelosa, E., Vis, M., 2002, Truck tyre wear assessment and prediction, 7th International Symposium on Heavv Vehicle Weights & Dimensions, Delft.

Park, I., Kim, H., Lee, S., 2018, Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions, Journal of Aerosol Science, 124, pp. 30–40.

Veith, A.G., 1973, Accelerated tire wear under controlled conditions. II. some factors that influence tire wear, Rubber Chem. Technol., 46(4), pp. 821–842.

Gothie, M., Do, M.T., 2003, Road polishing assessment methodology ’TROWS’, XXIIth PIARC World Road Congress, Oct 2003, South Africa.

Pant, P., Harrison, R.M., 2013, Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements - a review, Atmospheric Environment, 77, pp. 78–97.

Lowne, R.W., 1971, The effect of road surface texture on tire wear, Rubber Chem. Technol., 44(5), pp. 1159–1172.

Grosch, K.A., Schallamach, A., 1961, Tyre wear at controlled slip, wear, 4(5), pp. 356–371.

Sakai, H., 1996, Friction and wear of tire tread rubber, Tire Science and Technology, 24(3), pp. 252–275.

Lupker, H., Cheli, F., Braghin, F., Gelosa, E., Keckman, A., 2004, Numerical prediction of car tire wear, Tire Science and Technology, 32(3), pp. 164–186.

DOI: https://doi.org/10.22190/FUME190104013P


  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4