### ABAQUS IMPLEMENTATION OF A COROTATIONAL PIEZOELECTRIC 3-NODE SHELL ELEMENT WITH DRILLING DEGREE OF FREEDOM

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Gandhi, M.V., Thompson, B.S., 1992, Smart Materials and Structures, Chapman & Hall, London.

Bendine, K., Satla, Z., Boukhoulda, F.B., Nouari, M., 2018, Active vibration damping of smart composite beams based on system identification technique, Curved and Layered Structures, 5(1), pp. 43-48.

Gabbert, U., Duvigneau, F., Ringwelski, S., 2017, Noise control of vehicle systems, Facta Universitatis-Series Mechanical Engineering, 15(2), pp. 183-200.

Goyal, D., Pabla, B.S., 2016, The vibration monitoring methods and signal processing techniques for structural health monitoring: a review, Archives of Computational Methods in Engineering, 23(4), pp. 585-594.

Susheel, C.K., Kumar, R., Chauhan, V.S., 2017, Active shape and vibration control of functionally graded thin plate using functionally graded piezoelectric material, Journal of Intelligent Material Systems and Structures, 28(13), pp. 1782-1802.

Benjeddou, A., 2000, Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, Computers and Structures, 76(1-3), pp.347-363.

Gabbert, U., Köppe, H., Seeger, F., Berger, H. 2002, Modeling of smart composite shell structures, Journal of Theoretical and Applied Mechanics, 3(40), pp. 575-593.

Jrad, H., Mallek, H., Wali, M., Dammak, F., 2018, Finite element formulation for active functionally graded thin-walled structures, Comptes Rendus Mécanique, 346(12), pp. 1159-1178.

Marinkovic, D, Köppe, H., Gabbert, U., 2006, Numerically efficient finite element formulation for modeling active composite laminates, Mechanics of Advanced Materials and Structures, 13(5), pp. 379–392.

Rama, G., Marinkovic, D., Zehn, M.W., 2017, Linear shell elements for active piezoelectric laminates, Smart Structures and Systems, 20(6), pp. 729-737.

Cinefra, M., Valvano, S., Carrera, E., 2015, A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches, International Journal of Smart and Nano Materials, 6(2), pp. 84–104.

Carrera, E., Zappino, E., Li, G., 2018, Analysis of beams with piezo-patches by node-dependent kinematic finite element method models, Journal of Intelligent Material Systems and Structures, 29(7), pp. 1379-1393.

Carrera, E., Valvano, S., Kulikov, G.M., 2018, Multilayered plate elements with node-dependent kinematics for electro-mechanical problems, International Journal of Smart and Nano Materials, 9(4), pp. 279-317.

Marinkovic, D, Köppe, H, Gabbert, U., 2008, Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures, Smart Materials and Structures, 17(1), pp. 1-10.

Rama, G., Marinkovic, D., Zehn, M.W., 2018, Efficient three-node finite shell element for linear and geometrically nonlinear analyses of piezoelectric laminated structures, Journal of Intelligent Material Systems and Structures, 29(3), pp. 345-357.

Mallek, H., Jrad, H., Wali, M., Dammak, F., 2019, Geometrically nonlinear finite element simulation of smart laminated shells using a modified first-order shear deformation theory, Journal of Intelligent Material Systems and Structures, 30(4), pp. 517-535.

Rao, M.N., Schmidt, R., Schröder, K.U., 2018, Static and dynamic FE analysis of piezolaminated composite shells considering electric field nonlinearity under thermo-electro-mechanical loads, Acta Mechanica, 229(12), pp. 5093-5120.

Nestorovic, T., Marinkovic, D., Chandrashekar, G., Marinkovic, Z., Trajkov, M., 2012, Implementation of a user defined piezoelectric shell element for analysis of active structures, Finite Elements in Analysis and Design, 52, pp. 11-22.

Nestorovic, T, Shabadi, S, Marinkovic, D., Trajkov, M., 2014, User defined finite element for modeling and analysis of active piezoelectric shell structures, Meccanica, 49(8), pp. 1763-1774.

Rama, G., Marinkovic, D., Zehn, M.W., 2018, A three-node shell element based on the discrete shear gap and assumed natural deviatoric strain approaches, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(7), 356.

Rama, G., Marinkovic, D., Zehn, M.W., 2018, High performance 3-node shell element for linear and geometrically nonlinear analysis of composite laminates, Composites Part B: Engineering, 151, pp. 118-126.

Marinkovic, D., Rama, G., 2017, Co-rotational shell element for numerical analysis of laminated piezoelectric composite structure, Composites part B: Engineering, 125, pp. 144-156.

Bletzinger, K.U., Bischoff, M., Ramm, E., 2000, A unified approach for shear-locking-free triangular and rectangular shell finite elements, Computers & Structures, 75(3), pp. 321–334.

Nguyen-Thoi, T., Phung-Van, P.,Nguyen-Xuan, H., Thai-Hoang, C., 2013, A cell-based smoothed discrete shear gap method (CSDSG3) using triangular elements for static and free vibration analyses of shell structures, International Journal of Mechanical Sciences, 74, pp. 32–45.

Felippa, C.A., Militello, C., 1992, Membrane triangles with corner drilling freedoms ii. The ANDES element, Finite Elements in Analysis and Design, 12, pp. 189–201.

Bergan, P., Nygard, M., 1984, Finite elements with increased freedom in choosing shape functions, International Journal for Numerical Methods in Engineering, 20(4), pp. 643–663.

Park, K., Stanley, G., 1988, Strain interpolations for a 4-node ANS shell element, In: Atluri, S.N., Yagawa, G. (Eds.), Computational Mechanics ‘88, pp. 747–750, Springer, Berlin, Heidelberg.

Marinkovic, D., Köppe, H., Gabbert, U., 2007, Accurate modeling of the electric field within piezoelectric layers for active composite structures, Journal of Intelligent Material Systems and Structures, 18(5), pp. 503–513.

Felippa, C. A., Haugen, B., 2005, Unifield formulation of small-strain corotational finite elements: I. Theory, Center for aerospace structures, College of engineering, University of Colorado.

Bathe, K.J., 1996, Finite Element Procedures, Prentice Hall, New York.

Marinkovic, D., Zehn, M.W., Rama, G., 2018, Towards real-time simulation of deformable structures by means of co-rotational finite element formulation, Meccanica, 53(11-12), pp. 3123-3136.

Kim, M., Im, S., 2017, A plate model for multilayer graphene sheets and its finite element implementation via corotational formulation, Computer Methods in Applied Mechanics and Engineering, 325, pp. 102-138.

Tzou, H.S., 1993, Piezoelectric Shells: Distributed Sensing and Control of Continua, Kluwer Academic Publishers, Amsterdam.

Zhang, S., 2014, Nonlinear FE Simulation and Active Vibration Control of Piezoelectric Laminated Thin-Walled Smart Structures, PhD thesis, Institute of General Mechanics, RWTH Aachen University.

Saravanos, D.A., Heyliger, P.R, Hopkins, D.A., 1997, Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates, International Journal of Solids and Structures, 34(3), pp. 359–378.

DOI: https://doi.org/10.22190/FUME190530030M

### Refbacks

- There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4