BERGSTRÖM-BOYCE VS. HYPERELASTIC RUBBER MODELS IN STRUCTURAL ANALYSIS OF TIRES
Abstract
Keywords
Full Text:
PDFReferences
Charlton, D., Yang, J., Teh, K., 1994, A review of methods to characterize rubber elastic behavior for use in finite element analysis, Rubber chemistry and technology, 67(3), pp. 481-503.
Boyce, M.C., Arruda, E.M., 2000, Constitutive models of rubber elasticity: a review, Rubber chemistry and technology, 73(3), pp. 504-523.
Korunović, N., Fragassa, C., Marinković, D., Vitković, N., Trajanović, M., 2019, Performance evaluation of cord material models applied to structural analysis of tires, Composite Structures, 224, pp. 111006.
Ghoreishy, M.H.R., 2008, A state of the art review of the finite element modelling of rolling tyres, Iranian Polymer Journal, 18(8), pp. 571-597.
Marckmann, G., Verron, E., 2006, Comparison of hyperelastic models for rubber-like materials, Rubber chemistry and technology, 79(5), pp. 835-858.
Yeoh, O.H., 1990, Characterization of elastic properties of carbon-black-filled rubber vulcanizates, Rubber chemistry and technology, 63(5), pp. 792-805.
Yeoh, O.H., Fleming, P., 1997, A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity, Journal of Polymer Science Part B: Polymer Physics, 35(12), pp. 1919-1931.
Bergstrom, J.S., Boyce, M.C., 1999, Mechanical behavior of particle filled elastomers, Rubber chemistry and technology, 72(4), pp. 633-656.
Bergström, J., Boyce, M., 1998, Constitutive modeling of the large strain time-dependent behavior of elastomers, Journal of the Mechanics and Physics of Solids, 46(5), pp. 931-954.
Bergstrom, J., 2008, Dynamic finite element modeling of elastomers, Presented at 2008 Abaqus User Conference, Newport, RI, USA.
Bergström, J., Boyce, M., 2000, Large strain time-dependent behavior of filled elastomers, Mechanics of materials, 32(11), pp. 627-644.
Bergström, J., 2005, Constitutive modeling of elastomers—accuracy of predictions and numerical efficiency, PolymerFEM. com.
Dal, H., Kaliske, M., 2009, Bergström–Boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the FE method, Computational Mechanics, 44(6), pp. 809-823.
Banić, M.S., Stamenković, D.S., Miltenović, V.D., Milošević, M.S., Miltenović, A.V., Djekić, P.S., Rackov, M.J., 2012, Prediction of heat generation in rubber or rubber-metal springs, Thermal Science, 16, pp. 527-539.
Ghoreishy, M.H.R., Firouzbakht, M., Naderi, G., 2014, Parameter determination and experimental verification of Bergström–Boyce hysteresis model for rubber compounds reinforced by carbon black blends, Materials & Design, 53(0), pp. 457-465.
Ghoreishy, M., Alimardani, M., Mehrabian, R., Gangali, S., 2013, Modeling the hyperviscoelastic behavior of a tire tread compound reinforced by silica and carbon black, Journal of Applied Polymer Science, 128(3), pp. 1725-1731.
Korunović, N., Trajanović, M., Stojković, M., 2008, Finite element model for steady-state rolling tire analysis, Journal of Serbian Society for Computational Mechanics, 2(1), pp. 63-79.
Kabe, K., Koishi, M., 2000, Tire cornering simulation using finite element analysis, Journal of Applied Polymer Science, 78(8), pp. 1566-1572.
Korunović, N., Trajanović, M., Stojković, M., Vitković, N., Trifunović, M., Milovanović, J., 2012, Detailed vs. simplified tread tire model for steady-state rolling analysis, Strojarstvo: časopis za teoriju i praksu u strojarstvu, 54(2), pp. 153-160.
DOI: https://doi.org/10.22190/FUME191124002K
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4