Radu-Emil Precup, Stefan Preitl, Emil M. Petriu, Raul-Cristian Roman, Claudia-Adina Bojan-Dragos, Elena-Lorena Hedrea, Alexandra-Iulia Szedlak-Stinean

DOI Number
First page
Last page


The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system.


Center Manifold Theory, Electro-hydraulic Servo-systems, Stability Analysis, State Feedback Takagi-Sugeno-Kang Fuzzy Control Systems

Full Text:



Tanaka, K., Sugeno, M., 1992, Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems, 45(2), pp. 135-156.

Wang, H.O., Tanaka, K., Griffin, M.F., 1996, An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE Transactions on Fuzzy Systems, 4(1), pp. 14-23.

Tanaka, K., Wang, H.O., 2001, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley & Sons, New York, USA.

Wang, Z.-H., Liu, Z., Chen, C.L.P., Zhang, Y., 2019, Fuzzy adaptive compensation control of uncertain stochastic nonlinear systems with actuator failures and input hysteresis, IEEE Transactions on Cybernetics, 49(1), pp. 2-13.

Moodi, H., Farrokhi, M., Guerra, T.-M., Lauber, J., 2019, On stabilization conditions for T-S systems with nonlinear consequent parts, International Journal of Fuzzy Systems, 21(1), pp. 84-94.

Frezzatto, L., Lacerda, M.J., Oliveira, R.C.L.F., Peres, P.L.D., 2019, H2 and H∞ fuzzy filters with memory for Takagi–Sugeno discrete-time systems, Fuzzy Sets and Systems, 371, pp. 78-95.

Gunasekaran, N., Joo, Y.H., 2019, Stochastic sampled-data controller for T-S fuzzy chaotic systems and its applications, IET Control Theory & Applications, 13(12), pp. 1834-1843.

Sakthivel, R., Mohanapriya, S., Kaviarasan, B., Ren, Y., Anthoni, S.M., 2020, Non-fragile control design and state estimation for vehicle dynamics subject to input delay and actuator faults, IET Control Theory & Applications, 14(1), pp. 134-144.

Liu, D., Yang, G.-H., Er, M.J., 2020, Event-triggered control for T–S fuzzy systems under asynchronous network communications, IEEE Transactions on Fuzzy Systems, 28(2), pp. 390-399.

Shamloo, N.F., Kalat, A.A., Chisci, L., 2010, Indirect adaptive fuzzy control of nonlinear descriptor systems, European Journal of Control, 51, pp. 30-38.

Jiang, B.-P., Karimi, H.R., Kao, Y.-G., Gao, C.-C., 2020, Takagi-Sugeno model based event-triggered fuzzy sliding-mode control of networked control systems with semi-Markovian switchings, IEEE Transactions on Fuzzy Systems, 28(4), pp. 673-683.

Gandhi, R.V., and Adhyaru, D.M., 2010, Takagi-Sugeno fuzzy regulator design for nonlinear and unstable systems using negative absolute eigenvalue approach, IEEE/CAA Journal of Automatica Sinica, 7(2), pp. 482-493.

Xia, Y., Wang, J., Meng, B., Chen, X.-Y., 2020, Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems, Applied Mathematics and Computation, 379, 125225, pp. 1-15.

Lam, H.-K., 2018, A review on stability analysis of continuous-time fuzzy-model-based control systems: From membership-function-independent to membership-function-dependent analysis, Engineering Applications of Artificial Intelligence, 67, pp. 390-408.

Yang, X.-Z., Lam, H.-K., Wu, L.-G., 2019, Membership-dependent stability conditions for type-1 and interval type-2 T-S fuzzy systems, Fuzzy Sets and Systems, 356, pp. 44-62.

Pang, B., Liu, X., Jin, Q., Zhang, W., 2016, Exponentially stable guaranteed cost control for continuous and discrete-time Takagi-Sugeno fuzzy systems, Neurocomputing, 205(1), pp. 210-221.

Li, G.-L., Peng, C., Fei, M.-R., Tian, Y.-C., 2020, Local stability conditions for T-S fuzzy time-delay systems using a homogeneous polynomial approach, Fuzzy Sets and Systems, 385, pp. 111-126.

Xiao, B., Lam, H.-K., Yu, Y., Li, Y.-D., 2020, Sampled-data output-feedback tracking control for interval type-2 polynomial fuzzy systems, IEEE Transactions on Fuzzy Systems, 28(3), pp. 424-433.

Yu, G.-R., Huang, Y.-C., Cheng, C.-Y., 2018, Sum-of-squares-based robust H∞ controller design for discrete-time polynomial fuzzy systems, Journal of the Franklin Institute, 355(1), pp. 177-196.

Pang, B., Zhang, Q.-L., 2018, Interval observers design for polynomial fuzzy singular systems by utilizing sum-of-squares program, IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2018.2790975.

Zhao, Y.-X., He, Y.-X., Feng, Z.-G., Shi. P., Du, X., 2019, Relaxed sum-of-squares based stabilization conditions for polynomial fuzzy-model-based control systems, IEEE Transactions on Fuzzy Systems, 27(9), pp. 1767-1778.

Li, X.-M., Mehran, K., Lam, H.-K., Xiao, B., Bao, Z.-Y., 2020, Stability analysis of discrete-time positive polynomial-fuzzy-model-based control systems through fuzzy co-positive Lyapunov function with bounded control, IET Control Theory & Applications, 14(2), pp. 233-243.

Yoneyama, J., 2017, New conditions for stability and stabilization of Takagi- Sugeno fuzzy systems, Proc. 2017 Asian Control Conference, Gold Coast, Australia, pp. 2154-2159.

Robles, R., Sala, A., Bernal, M., González, T., 2017, Subspace-based Takagi-Sugeno modeling for improved LMI performance, IEEE Transactions on Fuzzy Systems, 25(4), pp. 754-767.

Meda-Campaña, J.A., Grande-Meza, A., de Jesús Rubio, J., Tapia-Herrera, R., Hernández-Cortés, T., Curtidor-López, A.V., Páramo-Carranza, L.A., Cázares-Ramírez, I.O., 2018, Design of stabilizers and observers for a class of multivariable TS fuzzy models on the basis of new interpolation function, IEEE Transactions on Fuzzy Systems, 26(5), pp. 2649-2662.

Guerra, T.M., and Vermeiren, L., 2001, Control laws for Takagi-Sugeno fuzzy models, Fuzzy Sets and Systems, 120(1), pp. 95-108.

Precup, R.-E., Hellendoorn, H., 2011, A survey on industrial applications of fuzzy control, Computers in Industry, 62(3), pp. 213-226.

Wu, H.-N., Feng, S., 2018, Mixed fuzzy/boundary control design for nonlinear coupled systems of ODE and boundary-disturbed uncertain beam, IEEE Transactions on Fuzzy Systems, 26(6), pp. 3379-3390.

Wu, H.-N., Zhang, X.-M., Wang, J.-W., Zhu, H.-Y., 2020, Observer-based output feedback fuzzy control for nonlinear parabolic PDE-ODE coupled systems, Fuzzy Sets and Systems, DOI: 10.1016/j.fss.2020.02.012.

Böhm, R., Bosch, M., 1995, Stabilitätsanalyse von Fuzzy-Mehrgrössenregelungen mit Hilfe der Hyperstabilitätstheorie, Automatisierungstechnik, 43(4), pp. 181-186.

Bindel, T., Mikut, R., 1995, Entwurf, Stabilitätsanalyse und Erprobung von Fuzzy-Reglern am Beispiel einer Durchflussregelung, Automatisierungstechnik, 43(5), pp. 249-255.

Precup, R.-E., Preitl, S., 1997, Popov-type stability analysis method for fuzzy control systems, Proc. Fifth European Congress on Intelligent Technologies and Soft Computing, Aachen, Germany, vol. 2, pp. 1306-1310.

Kumbasar, T., 2016, Robust stability analysis and systematic design of single-input interval type-2 fuzzy logic controllers, IEEE Transactions on Fuzzy Systems, 24(3), pp. 675-694.

Precup, R.-E., Preitl, S., Clep, P.A., Ursache, I.-B., Tar, J.K., Fodor, J., 2008, Stable fuzzy control systems with iterative feedback tuning, Proc. 12th International Conference on Intelligent Engineering Systems, Miami, FL, USA, pp. 287-292.

Preitl, S., Precup, R.-E., Radac, M.-B., Dragos, C.-A., Tar, J.K., Fodor, J., 2008, On the stable design of stable fuzzy control systems with iterative learning control, Proc. 9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics, Budapest, Hungary, pp. 345-360.

Radac, M.-B., Precup, R.-E., Preitl, S., Tar, J.K., Burnham, K.J., 2009, Tire slip fuzzy control of a laboratory anti-lock braking system, Proc. 2009 European Control Conference, Budapest, Hungary, pp. 940-945.

Aracil, J., Ollero, A., Garcia-Cerezo, A., 1989, Stability indices for the global analysis of expert control systems, IEEE Transactions on Systems, Man, and Cybernetics, 19(5), pp. 998-1007.

Opitz, H.-P., 1993, Fuzzy control and stability criteria, Proc. First European Congress on Fuzzy and Intelligent Technologies, Aachen, Germany, vol. 1, pp. 130-136.

Ban, X.-J., Gao, X.Z., Huang, X.-L., Vasilakos, A.V., 2007, Stability analysis of the simplest Takagi-Sugeno fuzzy control system using circle criterion, Information Sciences, 177(20), pp. 4387-4409.

Haber Guerra, R.E., Schmitt-Braess, G., Haber Haber, R., Alique, A., Alique, J.R., 2003, Using circle criteria for verifying asymptotic stability in PI-like fuzzy control systems: application to the milling process, IEE Proceedings - Control Theory and Applications, 150(6), pp. 619-627.

Kiendl, H., 1993, Harmonic balance for fuzzy control systems, Proc. First European Congress on Fuzzy and Intelligent Technologies, Aachen, Germany, vol. 1, pp. 127-141

Boll, M., Bornemann, J., Dörrscheidt, F., 1994, Anwendung der harmonischen Balance auf Regelkreise mit unsymmetrischen Fuzzy-Komponenten und konstante Eingangsgrössen, Workshop “Fuzzy Control” des GMA-UA 1.4.2, Dortmund, Forshungsberichte der Fakultät für Elektrotechnik, 0194, pp. 70-84.

Cuesta, F., Gordillo, F., Aracil, J., Ollero, A., 1999, Stability analysis of nonlinear multivariable Takagi-Sugeno fuzzy control systems, IEEE Transactions on Fuzzy Systems, 7(5), pp. 508-520.

Rosales, A., Ibarra, L., Ponce, P., Molina, A., 2019, Fuzzy sliding mode control design based on stability margins, Journal of the Franklin Institute, 356(10), pp. 5260-5273.

Precup, R.-E., Preitl, S., Solyom, S., 1999, Center manifold theory approach to the stability analysis of fuzzy control systems, in Computational Intelligence. Theory and Applications, Reusch, B., Ed., Springer-Verlag, Berlin, Heidelberg, New York, Lecture Notes in Computer Science, vol. 1625, pp. 382-390.

Tomescu, M.L., Preitl, S., Precup, R.-E., Tar, J.K., 2007, Stability analysis method for fuzzy control systems dedicated controlling nonlinear processes, Acta Polytechnica Hungarica, 4(3), pp. 127-141.

Precup, R.-E., Tomescu, M.L., Preitl, S., 2007, Lorenz system stabilization using fuzzy controllers, International Journal of Computers Communication and Control, 2(3), pp. 279-287.

Precup, R.-E., Tomescu, M.L., Preitl, S., Petriu, E.M., Dragos, C.A., 2011, Stability analysis of fuzzy logic control systems for a class of nonlinear SISO discrete-time systems, IFAC Proceedings Volumes, 44(1), pp. 13612-13617.

Precup, R.-E., Tomescu, M.-L., Dragos, C.-A., 2014, Stabilization of Rössler chaotic dynamical system using fuzzy logic control algorithm, International Journal of General Systems, 43(5), pp. 413-433.

Precup, R.-E., Tomescu, M.L., 2015, Stable fuzzy logic control of a general class of chaotic systems, Neural Computing and Applications, 26(3), pp. 541-550.

Navarro, G., Umberger, D.K., Manic, M. 2017, VD-IT2, Virtual Disk cloning on disk arrays using a type-2 fuzzy controller, IEEE Transactions on Fuzzy Systems, 25(6), pp. 1752-1764.

Rubio Solis, A., Melin, P., Martinez-Hernandez, U., Panoutsos, G., 2019, General type-2 radial basis function neural network: a data-driven fuzzy model, IEEE Transactions on Fuzzy Systems, 27(2), pp. 333-347.

Ramírez, E., Melin, P., Prado-Arechiga, G., 2019, Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification, Expert Systems with Applications, 126, pp. 295-307.

Moreno, J.E., Sanchez, M.A., Mendoza, O., Rodríguez Díaz, A., Castillo, O., Melin, P., Castro, J.R. 2020, Design of an interval type-2 fuzzy model with justifiable uncertainty, Information Sciences, 513, pp. 206-221.

Angelov, P., Yager, R., 2010, A simple fuzzy rule-based system through vector membership and kernel-based granulation, Proc. 5th IEEE International Conference on Intelligent Systems, London, UK, pp. 349-354.

Angelov, P., Yager, R., 2011, Simplified fuzzy rule-based systems using non-parametric antecedents and relative data density, Proc. 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems, Paris, France, pp. 62-69.

Angelov, P., Škrjanc, I., Blažič, S., 2013, Robust evolving cloud-based controller for a hydraulic plant, Proc. 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems, Singapore, pp. 1-8.

Škrjanc, I., Blažič, S., Angelov, P., 2014, Robust evolving cloud-based PID control adjusted by gradient learning method, Proc. 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems, Linz, Austria, pp. 1-8.

Blažič, S., Angelov, P., Škrjanc, I., 2015, Comparison of approaches for identification of all-data cloud-based evolving systems, IFAC-PapersOnLine, 48(10), pp. 129-134.

Škrjanc, I., Andonovski, G., Ledezma, A., Sipele, O., Iglesias, J.A., Sanchis, A., 2018, Evolving cloud-based system for the recognition of drivers’ actions, Expert Systems with Applications, 99, pp. 231-238.

Precup, R.-E., Teban, T.-A., Petriu, E.M., Albu, A., Mituletu, I.-C., 2018, Structure and evolving fuzzy models for prosthetic hand myoelectric-based control systems, Proc. 26th Mediterranean Conference on Control and Automation, Zadar, Croatia, pp. 625-630.

Angelov, P., Buswell, R.A., Wright, J.A., Loveday, E.L.,, 2001, Evolving rules-based control, Proc. EUNITE 2001 Symposium, Tenerife, Spain, pp. 36-41.

Angelov, P., Buswell, R.A., 2002, Identification of evolving fuzzy rule-based models, IEEE Transactions on Fuzzy Systems, 10(5), pp. 667-677.

Angelov, P., 2002, Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems, Springer-Verlag, Heidelberg.

Angelov, P., Filev, D., 2002, Flexible models with evolving structure, Proc. 2002 First International IEEE Symposium on Intelligent Systems, Varna, Bulgaria, pp. 28-33.

Angelov, P., Filev, D., 2003, On-line design of Takagi-Sugeno models, in Fuzzy Sets and Systems - IFSA 2003, Bilgiç, T., De Baets, B., Kaynak, O., Eds. Springer-Verlag, Berlin, Heidelberg, Lecture Notes in Computer Science, vol. 2715, pp. 576-584.

Leite, D., Palhares, R.M., Campos, V.C.S., Gomide, F.A.C., 2015, Evolving granular fuzzy model-based control of nonlinear dynamic systems, IEEE Transactions on Fuzzy Systems, 23(4), pp. 923-938.

Lughofer, E., Pratama, M., 2018, Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models, IEEE Transactions on Fuzzy Systems, 26(1), pp. 292-309.

Precup, R.-E., Teban, T.-A., Albu, A., Borlea, A.-B., Zamfirache, I.A., Petriu, E.M., 2020, Evolving fuzzy models for prosthetic hand myoelectric-based control, IEEE Transactions on Instrumentation and Measurement, 69(7), 1-12.

Baranyi, P., Korondi, P., Patton, R.J., Hashimoto, H., 2004, Trade-off between approximation accuracy and complexity for TS fuzzy models, Asian Journal of Control, 6(1), pp. 21-33.

Várkonyi, P., Tikk, D., Korondi, P., Baranyi, P., 2005, A new algorithm for RNO-INO type tensor product model representation, Proc. 9th IEEE International Conference on Intelligent Engineering Systems, Mediterranean Sea, pp. 263-266.

Baranyi, P., Yam, Y., Varlaki, P., 2013, TP Model Transformation in Polytopic Model-Based Control, Taylor & Francis, Boca Raton, FL.

Hedrea, E.-L., Bojan-Dragos, C.-A., Precup, R.-E., Roman, R.-C., Petriu, E.M., Hedrea, C., 2017, Tensor product-based model transformation for position control of magnetic levitation systems, Proc. 2017 IEEE International Symposium on Industrial Electronics, Edinburgh, UK, pp. 1141-1146.

Hedrea, E.-L., Precup, R.-E., Bojan-Dragos, C.-A., Roman, R.-C., Tanasoiu, O., Marinescu, M., 2018, Cascade control solutions for maglev systems, Proc. 2018 22nd International Conference on System Theory, Control and Computing, Sinaia, Romania, pp. 20-26.

Hedrea, E.-L., Precup, R.-E., Bojan-Dragos, C.-A., Petriu, E.M., Roman, R.-C., 2019, Tensor product-based model transformation and sliding mode control of electromagnetic actuated clutch system, Proc. 2019 IEEE International Conference on Systems, Man, and Cybernetics, Bari, Italy, pp. 1418-1423.

Bojan-Dragos, C.-A., Hedrea, E.-L., Precup, R.-E., Szedlak-Stinean, A.-I., Roman, R.-C., 2019, MIMO fuzzy control solutions for the level control of vertical two tank systems, Proc. 16th International Conference on Informatics in Control, Automation and Robotics, Prague, Czech Republic, vol. 1, pp. 810-817.

Hou, Z.-S., Wang, Z., 2013, From model-based control to data-driven control: Survey, classification and perspective, Information Sciences, 235, pp. 3-35.

Formentin, S., Karimi, A., Savaresi, S.M., 2013, Optimal input design for direct data-driven tuning of model-reference controllers, Automatica, 49(6), pp. 1874-1882.

Abouaïssa, H., Fliess, M., Join, C., 2017, On ramp metering: towards a better understanding of ALINEA via model-free control, International Journal of Control, 90(5), pp. 1018-1026.

Hou, Z.-S., Xiong, S.-S., 2019, On model-free adaptive control and its stability analysis, IEEE Transactions on Automatic Control, 64(11), pp. 4555-4569.

Van Waarde, H.J., Eising, J., Trentelman, H.L., Camlibel, M.K., 2020, Data informativity: a new perspective on data-driven analysis and control, IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2020.2966717.

Preitl, S., Precup, R.-E., Fodor, J., Bede, B., 2006, Iterative feedback tuning in fuzzy control systems. Theory and applications, Acta Polytechnica Hungarica, 3(3), pp. 81-96.

Preitl, S., Precup, R.-E., Preitl, Z., Vaivoda, S., Kilyeni, S., Tar, J.K., 2007, Iterative feedback and learning control. Servo systems applications, IFAC Proceedings Volumes, 40(8), pp. 16-27.

Precup, R.-E., Preitl, S., Rudas, I.J., Tomescu, M.L., Tar, J.K., 2008, Design and experiments for a class of fuzzy controlled servo systems, IEEE/ASME Transactions on Mechatronics, 13(1), pp. 22-35.

Roman, R.-C., Precup, R.-E., David, R.-C., 2018, Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems, Procedia Computer Science, 139, pp. 372-380.

Roman, R.-C., Precup, R.-E., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., 2019, Combined model-free adaptive control with fuzzy component by virtual reference feedback tuning for tower crane systems, Procedia Computer Science, 162, pp. 267-274.

Roman, R.-C., Precup, R.-E., Petriu, E.M., Dragan, F., 2019, Combination of data-driven active disturbance rejection and Takagi-Sugeno fuzzy control with experimental validation on tower crane systems, Energies, 12(8), 1548, pp. 1-19.

Nijmeijer, H., van der Schaft, A., 1990, Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin, Heidelberg, New York.

Isidori, A., 1989, Nonlinear Control Systems, Springer-Verlag, Berlin, Heidelberg, New York.

Gartner, H., Astolfi, A., 1995, Stability Study of a Fuzzy Controlled Mobile Robot, Technical Report, Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland.

Purcaru, C., Precup, R.-E., Iercan, D., Fedorovici, L.-O., David, R.-C., Dragan, F., 2013, Optimal robot path planning using gravitational search algorithm, International Journal of Artificial Intelligence, 10(S13), pp. 1-20.

Precup, R.-E., David, R.-C., Petriu, E.M., Szedlak-Stinean, A.-I., Bojan-Dragos, C.-A., 2016, Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity, IFAC-PapersOnLine, 49(5), pp. 55-60.

Precup, R.-E., David, R.-C., Szedlak-Stinean, A.-I., Petriu, E.M., Dragan, F., 2017, An easily understandable grey wolf optimizer and its application to fuzzy controller tuning, Algorithms, 10(2), 68, pp. 1-15.

Stavrou, D., Timotheou, S., Panayiotou, C.G., Polycarpou, M.M., 2018, Optimizing container loading with autonomous robots, IEEE Transactions on Automation Science and Engineering, 15(2), pp. 717-731.

Alvarez Gil, R.P., Johanyák, Z.C., Kovács, T., 2018, Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation, International Journal of Artificial Intelligence, 16(1), pp. 20-40.

Goli, A., Aazami, A., Jabbarzadeh, A., 2018, Accelerated cuckoo optimization algorithm for capacitated vehicle routing problem in competitive conditions, International Journal of Artificial Intelligence, 16(1), pp. 88-112.

Precup, R.-E., David, R.-C., 2019, Nature-inspired Optimization Algorithms for Fuzzy Controlled Servo Systems, Butterworth-Heinemann, Elsevier, Oxford, UK.

Osaba, E., Del Ser, J., Camacho, D., Bilbao, M.N., Yang, X.S., 2020, Community detection in networks using bio-inspired optimization: Latest developments, new results and perspectives with a selection of recent meta-heuristics, Applied Soft Computing, 87, 106010.

Precup, R.-E., Preitl, S., 2005, On the stability and sensitivity analysis of fuzzy control systems for servo-systems, in Fuzzy Systems Engineering, Theory and Practice, Nedjah, N., Macedo Mourelle, L., Eds., Springer-Verlag, Berlin, Heidelberg, New York, Studies in Fuzziness and Soft Computing, vol. 181, pp. 131-161.

Preitl, S., Precup, R.-E., 1997, Introducere in conducerea fuzzy a proceselor, Editura Tehnica, Bucharest, Romania.

Galichet, S., Foulloy, L., 1995, Fuzzy controllers: synthesis and equivalences, IEEE Transactions on Fuzzy Systems, 3(2), pp. 140-148.

Preitl, S., Precup, R.-E., Kilyeni, S., 2000, State space approach to the stability analysis of a class of fuzzy control systems meant for third-order plants, IFAC Proceedings Volumes, 33(28), pp. 259-264.

Haber-Haber, R., Haber, R., Schmittdiel, M., del Toro, R.M., 2007, A classic solution for the control of a high-performance drilling process, International Journal of Machine Tools and Manufacture, 47(15), pp. 2290-2297.

Costin, H., Rotariu, C., Alexa, I., Constantinescu, G., Cehan, V., Dionisie, B., Andruseac, G., Felea, V., Crauciuc, E., Scutariu, M., 2009, TELEMON - A complex system for real time medical telemonitoring, Proc. 11th International Congress of the IUPESM/World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, pp. 92-95.

Pozna, C., Precup, R.-E., 2014, Applications of signatures to expert systems modeling, Acta Polytechnica Hungarica, 11(2), pp. 21-39.

Vaščák, J., Hvizdoš, J., Puheim, M., 2016, Agent-based cloud computing systems for traffic management, Proc. 2016 International Conference on Intelligent Networking and Collaborative Systems, Ostrava, Czech Republic, pp. 73-79.

Albu, A., Precup, R.-E., Teban, T.-A., 2019, Results and challenges of artificial neural networks used for decision-making in medical applications, Facta Universitatis-Series Mechanical Engineering, 17(4), pp. 285-308.

Wang, X.-X., Xu, Z.-S., Gou, X.-J., Trajkovic, L., 2020, Tracking a maneuvering target by multiple sensors using extended Kalman filter with nested probabilistic-numerical linguistic information, IEEE Transactions on Fuzzy Systems, 28(2), pp. 346-360.

Precup, R.-E., Preitl, S., 2003, Development of fuzzy controllers with non-homogeneous dynamics for integral-type plants, Electrical Engineering, 85(3), pp. 155-168.

Precup, R.-E., Preitl, S., Balas, M., Balas, V., 2004, Fuzzy controllers for tire slip control in anti-lock braking systems, Proc. 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 3, pp. 1317-1322.

Anh, H.P.H., Ahn, K.K., 2011, Hybrid control of a pneumatic artificial muscle (PAM) robot arm using an inverse NARX fuzzy model, Engineering Applications of Artificial Intelligence, 24(4), pp. 697-716.

Michail, K., Deliparaschos, K.M., Tzafestas, S.G., Zolotas, A.C., 2016, AI-based actuator/sensor fault detection with low computational cost for industrial applications, IEEE Transactions on Control Systems Technology, 24(1), pp. 239-301.

Dzitac, I., Filip, F.-G., Manolescu, M.-J., 2017, Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, International Journal of Computers Communications and Control, 12(6), pp. 748-789.

Andoga, R., Főző, L., Judičák, J., Bréda, R., Szabo, S., Rozenberg, R., Džunda, M., 2018, Intelligent situational control of small turbojet engines, International Journal of Aerospace Engineering, 2018, 8328792, pp. 1-16.

Hedrea, E.-L., Precup, R.-E., Bojan-Dragos, C.-A., 2019, Results on tensor product-based model transformation of magnetic levitation systems, Acta Polytechnica Hungarica, 16(9), pp. 93-111.

DOI: https://doi.org/10.22190/FUME200421022P


  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4