### NOVEL METHODOLOGY FOR REAL-TIME STRUCTURAL ANALYSIS ASSISTANCE IN CUSTOM PRODUCT DESIGN

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Da Silveira, G., Borenstein, D., Fogliatto, F.S., 2001, Mass customization: literature review and research directions, International Journal of Production Economics, 72(1), pp. 1–13.

Simatupang, T.M., Sridharan, R., 2005, The collaboration index: a measure for supply chain collaboration, International Journal of Physical Distribution & Logistics Management, 35(1), pp. 44–62.

Vandermerwe, S., Rada, J., 1988, Servitization of business: adding value by adding services, European Management Journal, 6(4), pp. 314–324.

Kwong, C.K., Jiang, H., Luo, X.G., 2016, AI-based methodology of integrating affective design, engineering, and marketing for defining design specifications of new products, Engineering Applications of Artificial Intelligence, 47, pp. 49–60.

Ghoreishi, M., Happonen, A., 2020, New promises AI brings into circular economy accelerated product design: a review on supporting literature, E3S Web Conf., 158, 06002.

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F., 2018, Digital twin-driven product design, manufacturing and service with big data, The International Journal of Advanced Manufacturing Technology, 94(9), pp. 3563–3576.

Cook, R.D., 2007, Concepts and applications of finite element analysis, 4th ed., Wiley: New York, NY, 2001.

Marinkovic, D., Zehn, M., 2019, Survey of finite element method-based real-time simulations, Applied Sciences, 9(14), 2775.

Marinkovic, D., Zehn, M., Rama, G., 2018, Towards real-time simulation of deformable structures by means of co-rotational finite element formulation, Meccanica, 53(11), pp. 3123–3136.

Michie, D., 1968, “Memo” functions and machine learning, Nature, 218(5136), pp. 19–22.

Marler, R.T., Arora, J. S., 2004, Survey of multi-objective optimization methods for engineering, Structural and Multidisciplinary Optimization, 26(6), pp. 369–395.

Korunovic, N., Marinkovic, D., Trajanovic, M., Zehn, M., Mitkovic, M., Affatato, S., 2019, In silico optimization of femoral fixator position and configuration by parametric CAD model, Materials, 12(14), pp. 2326.

Korunović, N., Zdravković, M., 2019, Real-time structural analysis assistance in customized product design, In ICIST 2019 Proceedings; Vol. 1, pp. 217–220.

Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002, Gene selection for cancer classification using support vector machines, Machine Learning, 46(1/3), pp. 389–422.

Altman, N.S., 1992, An introduction to kernel and nearest-neighbor nonparametric Regression, The American Statistician, 46(3), pp. 175–185.

Cortes, C., Vapnik, V., 1995, Support-vector networks, Machine Learning, 20(3), pp. 273–297.

Ho, T.K., 1995, Random decision forests, In Proceedings of 3rd International Conference on Document Analysis and Recognition; IEEE Comput. Soc. Press: Montreal, Que., Canada, 1995; Vol. 1, pp. 278–282.

Friedman, J.H., 2001, Greedy function approximation: a gradient boosting machine, The Annals of Statistics, 29(5), pp. 1189–1232.

Breiman, L., 1997, Arcing the edge, Technical Report 486. Statistics Department, University of California, Berkeley.

Lerman, P.M., 1980, Fitting segmented regression models by grid search, Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(1), pp. 77–84.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., 2011, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12(85), pp. 2825–2830.

Korunović, N., Zdravković, M., 2020, Geometry and physical properties of fixator, Dataset. https://doi.org/10.34740/KAGGLE/DSV/1114146.

### Refbacks

- There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4