EVOLUTION OF THE CARBON NANOTUBE BUNDLE STRUCTURE UNDER BIAXIAL AND SHEAR STRAINS

Leysan Kh. Rysaeva, Dmitry V. Bachurin, Ramil T. Murzaev, Dina U. Abdullina, Elena A. Korznikova, Radik R. Mulyukov, Sergey V. Dmitriev

DOI Number
10.22190/FUME201005043R
First page
525
Last page
536

Abstract


Close packed carbon nanotube bundles are materials with highly deformable elements, for which unusual deformation mechanisms are expected. Structural evolution of the zigzag carbon nanotube bundle subjected to biaxial lateral compression with the subsequent shear straining is studied under plane strain conditions using the chain model with a reduced number of degrees of freedom. Biaxial compression results in bending of carbon nanotubes walls and formation of the characteristic pattern, when nanotube cross-sections are inclined in the opposite directions alternatively in the parallel close-packed rows. Subsequent shearing up to a certain shear strain leads to an appearance of shear bands and vortex-like displacements. Stress components and potential energy as the functions of shear strain for different values of the biaxial volumetric strain are analyzed in detail. A new mechanism of carbon nanotube bundle shear deformation through cooperative, vortex-like displacements of nanotube cross sections is reported.

Keywords

Carbon Nanotube Bundle, Plane Strain Conditions, Lateral Compression, Shear Deformation, Deformation Mechanisms

Full Text:

PDF

References


Tersoff, J., Ruoff, R.S., 1994, Structural properties of a carbon-nanotube crystal, Phys. Rev. Lett., 73, pp. 676-679.

Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., 1996, Crystalline ropes of metallic carbon nanotubes, Science, 273, pp. 483-487.

Saether, E., Frankland, S.J.V., Pipes, R.B., 2003, Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: Determination of elastic moduli, Compos. Sci. Technol., 63, pp. 1543-1550.

Rakov, E.G., 2013, Materials made of carbon nanotubes. The carbon nanotube forest, Russ. Chem. Rev., 82, pp. 538-566.

Samsonidze, G.G., Samsonidze, G.G., Yakobson, B.I., 2002, Kinetic theory of symmetry-dependent strength in carbon nanotubes, Phys. Rev. Lett., 88, 065501.

Shenderova, O.A., Zhirnov, V.V., Brenner, D.W., 2002, Carbon nanostructures, Crit. Rev. Solid State, 27, pp. 227-356.

Yu, M.-F., 2004, Fundamental mechanical properties of carbon nanotubes: Current understanding and the related experimental studies, J. Eng. Mater. T. ASME, 126, pp. 271-278.

Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., 2000, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, pp. 637-640.

Yu, M.-F., Files, B.S., Arepalli, S., Ruoff, R.S., 2000, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., 84, pp. 5552-5555.

Dhanabalan, S.C., Dhanabalan, B., Chen, X., Ponraj, J.S., Zhang, H., 2019, Hybrid carbon nanostructured fibers: Stepping stone for intelligent textile-based electronics, Nanoscale, 11, pp. 3046-3101.

Bai, Y.,, Zhang, R., Ye, X., Zhu, Z., Xie, H., Shen, B., Cai, D., Liu, B., Zhang, C., Jia, Z., Zhang, S., Li, X., Wei, F., 2018, Carbon nanotube bundles with tensile strength over 80 GPa, Nat. Nanotechnol., 13, pp. 589-595.

Qiu, L., Wang, X., Tang, D., Zheng, X., Norris, P.M., Wen, D., Zhao, J., Zhang, X., Li, Q., 2016, Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers, Carbon, 105, pp. 248-259.

Cho, H., Lee, H., Oh, E., Lee, S.-H., Park, J., Park, H.J., Yoon, S.-B., Lee, C.-H., Kwak, G.-H., Lee, W.J., Kim, J., Kim, J.E., Lee, K.-H., 2018, Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching, Carbon, 136, pp. 409-416.

Fernández-Toribio, J.C., Alemán, B., Ridruejo, Á., Vilatela, J.J., 2018, Tensile properties of carbon nanotube fibres described by the fibrillar crystallite model, Carbon, 133, pp. 44-52.

Dang, Z.-M., Yuan, J.-K., Zha, J.-W., Zhou, T., Li, S.-T., Hu, G.-H., 2012, Fundamentals, processes and applications of high-permittivity polymer-matrix composites, Prog. Mater. Sci., 57, pp. 660-723.

Bakshi, S.R., Lahiri, D., Agarwal, A., 2010, Carbon nanotube reinforced metal matrix composites - A review, Int. Mater. Rev., 55, pp. 41-64.

Dorri-Moghadam, A., Omrani, E., Menezes, P.L., Rohatgi, P.K., 2015, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene - A review, Compos. Part B: Eng., 77, pp. 402-420.

Gondane, S., Singh, A.K., Sinha, N., Vijayakumar, R.P., 2020, Experimental study on steady dynamic friction of MWCNTs mixed lubricants, Surf. Rev. Lett., 27(7), 1950172.

Reinert, L., Lasserre, F., Gachot, C., Grützmacher, P., Maclucas, T., Souza, N., Mücklich, F., Suarez, S., 2017, Long-lasting solid lubrication by CNT-coated patterned surfaces, Sci. Rep., 7, 42873.

Singh, H., Bhowmick, H., 2020, Lubrication characteristics and wear mechanism mapping for hybrid aluminium metal matrix composite sliding under surfactant functionalized MWCNT-oil, Tribol. Int., 145, 106152.

Cao, A.Y., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., Ajayan, P.M., 2005, Super-compressible foamlike carbon nanotube films, Science, 310, pp. 1307-1310.

Pathak, S., Kalidindi, S.R., 2015, Spherical nanoindentation stress-strain curves, Materials Science and Engineering R: Reports, 91, pp. 1-36.

Pathak, S., Cambaz, Z.G., Kalidindi, S.R., Swadener, J.G., Gogotsi, Y., 2009, Viscoelasticity and high buckling stress of dense carbon nanotube brushes, Carbon, 47, pp. 1969-1976.

Maschmann, M.R., Zhang, Q., Du, F., Dai, L., Baur, J., 2011, Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays. Carbon, 49, pp. 386-397.

Cao, C., Reiner, A., Chung, C., Chang, S.-H., Kao, I., Kukta, R.V., Korach, C.S., 2011, Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays, Carbon, 49, pp. 3190-3199.

Liang, X., Shin, J., Magagnosc, D., Jiang, Y., Jin Park, S., John Hart, A., Turner, K., Gianola, D.S., Purohit, P.K., 2017, Compression and recovery of carbon nanotube forests described as a phase transition, Int. J. Solids Struct., 122-123, pp. 196-209.

Koumoulos, E.P., Charitidis, C.A., 2017, Surface analysis and mechanical behaviour mapping of vertically aligned CNT forest array through nanoindentation, Appl. Surf. Sci., 396, pp. 681-687.

Pour Shahid Saeed Abadi, P., Hutchens, S.B., Greer, J.R., Cola, B.A., Graham, S., 2013, Buckling-driven delamination of carbon nanotube forests, Appl. Phys. Lett., 102, 223103.

Silva-Santos, S.D., Alencar, R.S., Aguiar, A.L., Kim, Y.A., Muramatsu, H., Endo, M., Blanchard, N.P., San-Miguel, A., Souza Filho, A.G., 2019, From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes, Carbon, 141, pp. 568-579.

Tangney, P., Capaz, R.B., Spataru, C.D., Cohen, M.L., Louie, S.G., 2005, Structural transformations of carbon nanotubes under hydrostatic pressure, Nano Lett., 5, pp. 2268-2273.

Zhang, S., Khare, R., Belytschko, T., Hsia, K.J., Mielke, S.L., Schatz, G.C., 2006, Transition states and minimum energy pathways for the collapse of carbon nanotubes, Phys. Rev. B, 73, 075423.

Shima, H., Sato, M., 2008, Multiple radial corrugations in multiwalled carbon nanotubes under pressure, Nanotechnology, 19, 495705.

Zhao, Z.S., Zhou, X.-F., Hu, M., Yu, D.L., He, J.L., Wang, H.-T., Tian, Y.J., Xu, B., 2012, High-pressure behaviors of carbon nanotubes, J. Superhard Mater., 34, pp. 371-385.

Islam, S., Saleh, T., Asyraf, M.R.M., Mohamed Ali, M.S., 2019, An ex-situ method to convert vertically aligned carbon nanotubes array to horizontally aligned carbon nanotubes mat, Mater. Res. Express, 6, 025019.

Zhang, R., Zhang, Y., Wei, F., 2017, Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications, Chem. Soc. Rev., 46, pp. 3661-3715.

Nam, T.H., Goto, K., Yamaguchi, Y., Premalal, E.V.A., Shimamura, Y., Inoue, Y., Naito, K., Ogihara, S., 2015, Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites, Compos. Part A: Appl. S., 76, pp. 289-298.

Qiu, L., Wang, X., Su, G., Tang, D., Zheng, X., Zhu, J., Wang, Z., Norris, P.M., Bradford, P.D., Zhu, Y., 2016, Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film, Sci. Rep., 6, 21014.

Tang, J., Sasaki, T., Yudasaka, M., Matsushita, A., Iijima, S., 2000, Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. Lett., 85, pp. 1887-1889.

Karmakar, S., Sharma, S.M., Teredesai, P.V., Muthu, D.V.S., Govindaraj, A., Sikka, S.K., Sood, A.K., 2003, Structural changes in single-walled carbon nanotubes under non-hydrostatic pressures: X-ray and Raman studies, New J. Phys., 5, pp. 143.1-143.11.

Wittmaack, B.K., Volkov, A.N., Zhigilei, L.V., 2019, Phase transformation as the mechanism of mechanical deformation of vertically aligned carbon nanotube arrays: Insights from mesoscopic modeling, Carbon, 143, pp. 587-597.

Wittmaack, B.K., Volkov, A.N., Zhigilei, L.V., 2018, Mesoscopic modeling of the uniaxial compression and recovery of vertically aligned carbon, Compos. Sci. Technol., 166, pp. 66-85.

Yakobson, B.I., Brabec, C.J., Bernholc, J., 1996, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett., 76, pp. 2511-2514.

Impellizzeri, A., Briddon, P., Ewels, C.P., 2019, Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study, Phys. Rev. B, 100, 115410.

Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A., 1995, Fully collapsed carbon nanotubes, Nature, 377, pp. 135-138.

Chang, T., 2008, Dominoes in carbon nanotubes, Phys. Rev. Lett., 101, 175501.

Ji, J., Zhao, J., Guo, W., 2019, Novel nonlinear coarse-grained potentials of carbon nanotubes, J. Mech. Phys. Solids, 128, pp. 79-104.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2015, Scroll configurations of carbon nanoribbons, Phys. Rev. B, 92, 035412.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2015, Simulation of folded and scrolled packings of carbon nanoribbons, Phys. Solid State, 57, pp. 2348-2355.

Savin, A.V., Korznikova, E.A., Lobzenko, I.P., Baimova, Y.A., Dmitriev, S.V., 2016, Symmetric scrolled packings of multilayered carbon nanoribbons, Phys. Solid State, 58, pp. 1278-1284.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., Soboleva, E.G., 2017, Graphene nanoribbon winding around carbon nanotube, Comp. Mater. Sci., 135, pp. 99-108.

Savin, A.V., Mazo, M.A., 2019, 2D chain models of nanoribbon scrolls, Adv. Struct. Mat., 94, pp. 241-262.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2019, Dynamics of surface graphene ripplocations on a flat graphite substrate, Phys. Rev. B, 99, 235411.

Korznikova, E.A., Rysaeva, L.K., Savin, A.V., Soboleva, E.G., Ekomasov, E.G., Ilgamov, M.A., Dmitriev, S.V., 2019, Chain model for carbon nanotube bundle under plane strain conditions, Materials, 12(23), 3951.

Rysaeva, L.K., Korznikova, E.A., Murzaev, R.T., Abdullina, D.U., Kudreyko, A.A., Baimova, J.A., Lisovenko, D.S., Dmitriev, S.V., 2020, Elastic damper based on the carbon nanotube bundle, Facta Universitatis-Series Mechanical Engineering, 18(1), pp. 1-12.

Abdullina, D.U., Korznikova, E.A., Dubinko, V.I., Laptev, D.V., Kudreyko, A.A., Soboleva, E.G., Dmitriev, S.V., Zhou, K., 2020, Mechanical response of carbon nanotube bundle to lateral compression, Computation, 8(2), 27.

Savin, A.V., Kivshar, Y.S., Hu, B., 2010, Suppression of thermal conductivity in graphene nanoribbons with rough edges, Phys. Rev. B, 82, 195422.

Savin, A.V., Korznikova, E.A., Krivtsov, A.M., Dmitriev, S.V., 2020, Longitudinal stiffness and thermal conductivity of twisted carbon nanoribbons, Eur. J. Mech. A-Solid., 80, 103920.

Savin, A.V., 2019, Thermal rectifiers based on asymmetric interaction of molecular chains, carbon nanoribbons, and nanotubes with thermostats, Phys. Rev. B, 10, 245415.

Shcherbinin, S.A., Semenova, M.N., Semenov, A.S., Korznikova, E.A., Chechin, G.M., Dmitriev, S.V., 2019, Dynamics of a three-component delocalized nonlinear vibrational mode in graphene, Phys. Solid State, 61, pp. 2139-2144.

Abdullina, D.U., Semenova, M.N., Semenov, A.S., Korznikova, E.A., Dmitriev, S.V., 2019, Stability of delocalized nonlinear vibrational modes in graphene lattice, Eur. Phys. J. B, 92, 249.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2019, Improving bending rigidity of graphene nanoribbons by twisting, Mech. Mater., 137, 103123.




DOI: https://doi.org/10.22190/FUME201005043R

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4