EXCEL VBA-BASED USER DEFINED FUNCTIONS FOR HIGHLY PRECISE COLEBROOK’S PIPE FLOW FRICTION APPROXIMATIONS: A COMPARATIVE OVERVIEW

Dejan Brkić, Zoran Stajić

DOI Number
10.22190/FUME210111044B
First page
253
Last page
269

Abstract


This review paper gives Excel functions for highly precise Colebrook’s pipe flow friction approximations developed by users. All shown codes are implemented as User Defined Functions – UDFs written in Visual Basic for Applications – VBA, a common programming language for MS Excel spreadsheet solver. Accuracy of the friction factor computed using nine to date the most accurate explicit approximations is compared with the sufficiently accurate solution obtained through an iterative scheme which gives satisfying results after sufficient number of iterations. The codes are given for the presented approximations, for the used iterative scheme and for the Colebrook equation expressed through the Lambert W-function (including its cognate Wright ω-function). The developed code for the principal branch of the Lambert W-function has additional and more general application for solving different problems from variety branches of engineering and physics. The approach from this review paper automates computational processes and speeds up manual tasks.

Keywords

Hydraulic resistance, Colebrook flow friction, Lambert W-function, Excel Macro Programming, Visual Basic for Applications (VBA), User Defined Functions (UDFs)

Full Text:

PDF

References


Colebrook, C.F., 1939, Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws, Journal of the Institution of Civil Engineers, 11(4), pp. 133-156.

Colebrook, C.F., White, C.M., 1937, Experiments with fluid friction in roughened pipes, Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 161(906), pp. 367-381.

Moody, L., 1944, Friction factors for pipe flow, Transactions of the A.S.M.E., 66(8), pp. 671–684.

Praks, P., Brkić, D., 2018, Choosing the optimal multi-point iterative method for the Colebrook flow friction equation, Processes, 6(8), 130.

Praks, P., Brkić, D., 2018, Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow friction, Advances in Civil Engineering, 2018, 5451034.

Pimenta, B.D., Robaina, A.D., Peiter, M.X., Mezzomo, W., Kirchner, J.H., Ben, L.H., 2018, Performance of explicit approximations of the coefficient of head loss for pressurized conduits, Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), pp. 301-307.

Winning, H.K., Coole, T., 2013, Explicit friction factor accuracy and computational efficiency for turbulent flow in pipes, Flow, Turbulence and Combustion, 90(1), pp. 1-27.

Brkić, D., 2012, Determining friction factors in turbulent pipe flow, Chemical Engineering (New York), 119, pp. 34-39.

Brkić, D., 2011, Review of explicit approximations to the Colebrook relation for flow friction, Journal of Petroleum Science and Engineering, 77(1), pp. 34-48.

Zigrang, D.J., Sylvester, N.D., 1985, A review of explicit friction factor equations, Journal of Energy Resources Technology, 107(2), pp. 280-283.

Gregory, G.A., Fogarasi, M., 1985, Alternate to standard friction factor equation, Oil & Gas Journal, 83(13), pp. 120-127.

Zeyu, Z., Junrui, C., Zhanbin, L., Zengguang, X., Peng, L., 2020, Approximations of the Darcy–Weisbach friction factor in a vertical pipe with full flow regime, Water Supply, 20(4), pp. 1321-1333.

Niazkar, M., Eryılmaz Türkkan, G., 2021, Application of third-order schemes to improve the convergence of the Hardy Cross method in pipe network analysis, Advances in Mathematical Physics, 2021, 6692067.

Praks, P., Brkić, D., 2020, Suitability for coding of the Colebrook’s flow friction relation expressed through the Wright ω-function, Reports in Mechanical Engineering, 1(1), pp. 174-179.

Brkić, D., 2012, Lambert W function in hydraulic problems, Mathematica Balkanica (New Series), 26(3-4), pp. 285-292.

Viccione, G., Tibullo, V., 2012, An effective approach for designing circular pipes with the Colebrook-White formula, American Institute of Physics Conference Proceedings, 1479(1), pp. 205-208.

Brkić, D., 2011, W solutions of the CW equation for flow friction, Applied Mathematics Letters, 24(8), pp. 1379-1383.

Keady, G., 1998, Colebrook-White formula for pipe flows, Journal of Hydraulic Engineering, 124(1), pp. 96-97.

Hayes, B., 2005, Why W? American Scientist, 93(2), pp. 104-108.

Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E., 1996, On the LambertW function. Advances in Computational mathematics, 5(1), pp. 329-359.

Alfaro-Guerra, M., Guerra-Rojas, R., Olivares-Gallardo, A., 2020. Evaluación de la profundidad de recursión de la solución analítica de la ecuación de Colebrook-White en la exactitud de la predicción del factor de fricción, Ingeniería, Investigación y Tecnología, 21(4), Epub 20-Nov-2020.

Brkić, D., 2017, Solution of the implicit Colebrook equation for flow friction using Excel, Spreadsheets in Education, 10(2). 4663.

Praks, P., Brkić, D., 2020, Review of new flow friction equations: Constructing Colebrook explicit correlations accurately, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 36(3), 41.

Lamri, A.A., 2020, Discussion of “Approximate analytical solutions for the Colebrook equation”, Journal of Hydraulic Engineering, 146(2), 07019012.

Vatankhah, A.R., 2018, Approximate analytical solutions for the Colebrook equation, Journal of Hydraulic Engineering, 144(5), 06018007.

Offor, U.H., Alabi, S.B., 2016, An accurate and computationally efficient explicit friction factor model, Advances in Chemical Engineering and Science, 6(3), pp. 237-245.

Buzzelli, D., 2008, Calculating friction in one step, Machine Design 80(12), pp. 54–55.

Romeo, E., Royo, C., Monzón, A., 2002, Improved explicit equations for estimation of the friction factor in rough and smooth pipes, Chemical Engineering Journal, 86(3), pp. 369-374.

Serghides, T.K., 1984, Estimate friction factor accurately, Chemical Engineering (New York), 91(5), pp. 63–64.

Schorle, B.J., Churchill, S.W., Shacham, M., 1980, Comments on: “An explicit equation for friction factor in pipe”, Industrial & Engineering Chemistry Fundamentals, 19(2), pp. 228–230.

Gross, C.J., Campbell, J., Becker, A.J., Russo, C.V. Microsoft Technology Licensing LLC, 2020, Automatically creating lambda functions in spreadsheet applications, U.S. Patent Appl. 16/024,580.

Sonnad, J.R., Goudar, C.T., 2004, Constraints for using Lambert W function-based explicit Colebrook–White equation, Journal of Hydraulic Engineering, 130(9), pp. 929-931.

Brkić, D., 2012, Comparison of the Lambert W‐function based solutions to the Colebrook equation, Engineering Computations, 29(6), pp. 617–630.

Barry, D.A., Parlange, J.Y., Li, L., Prommer, H., Cunningham, C.J., Stagnitti, F., 2000, Analytical approximations for real values of the Lambert W-function, Mathematics and Computers in Simulation, 53(1-2), pp. 95-103.

Brkić, D., Ćojbašić, Ž., 2017, Evolutionary optimization of Colebrook’s turbulent flow friction approximations, Fluids, 2(2), 15.

Brkić, D., Praks, P., 2019, Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright ω-function. Mathematics, 7(1), 34.

Olivares, A., Guerra, R., Alfaro, M., Notte-Cuello, E., Puentes, L., 2019, Evaluación experimental de correlaciones para el cálculo del factor de fricción para flujo turbulento en tuberías cilíndricas, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 35(1), 15.

Mileikovskyi V., Tkachenko T., 2020, Precise explicit approximations of the Colebrook-White equation for engineering systems, Proceedings of EcoComfort, Lecture Notes in Civil Engineering

Muzzo L.E., Pinho D., Lima L.E.M., Ribeiro L.F. 2019, Accuracy/speed analysis of pipe friction factor correlations, Proceedings of INCREaSE 2019

Biberg, D., 2017, Fast and accurate approximations for the Colebrook equation, Journal of Fluids Engineering, 139(3), 031401.

Clamond, D., 2009. Efficient resolution of the Colebrook equation, Industrial & Engineering Chemistry Research, 48(7), pp. 3665-3671.

Winning, H.K., Coole, T., 2015, Improved method of determining friction factor in pipes, International Journal of Numerical Methods for Heat & Fluid Flow, 25(4), pp. 941–949.

Pérez-Pupo, J.R., Navarro-Ojeda, M.N., Pérez-Guerrero, J.N., Batista-Zaldívar, M.A., 2020, On the explicit expressions for the determination of the friction factor in turbulent regime, Revista Mexicana de Ingeniería Química, 19(1), pp. 313-334.

Brkić, D., Praks, P., 2019, What can students learn while solving Colebrook’s flow friction equation? Fluids, 4(3), 114.

Ćojbašić, Ž., Brkić, D., 2013, Very accurate explicit approximations for calculation of the Colebrook friction factor, International Journal of Mechanical Sciences, 67, pp. 10-13.

Petrović, G., Mihajlović, J., Ćojbašić, Ž., Madić, M., Marinković, D., 2019, Comparison of three fuzzy MCDM methods for solving the supplier selection problem, Facta Universitatis-Series Mechanical Engineering, 17(3), pp. 455-469.

Sonnad, J.R., Goudar, C.T., 2006, Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook–White equation, Journal of Hydraulic Engineering, 132(8), pp. 863-867.

Mikata, Y., Walczak, W.S., 2016, Exact analytical solutions of the Colebrook-White equation, Journal of Hydraulic Engineering, 142(2), 04015050.

Zigrang, D.J., Sylvester, N.D., 1982, Explicit approximations to the solution of Colebrook's friction factor equation, AIChE Journal, 28(3), pp. 514-515.

Kesisoglou, I., Singh, G., Nikolaou, M., 2021, The Lambert function should be in the engineering mathematical toolbox, Computers & Chemical Engineering, 148, 107259.


Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4