Evgeny V. Shilko, Aleksandr S. Grigoriev, Alexey Yu. Smolin

DOI Number
First page
Last page


The paper describes an advanced discrete-element based mechanical model, which allows modelling contact interaction of ductile materials with taking into account fracture and surface adhesion by the cold welding mechanism. The model describes these competitive processes from a unified standpoint and uses plastic work of deformation as a criterion of both local fracture and chemical bonding of surfaces in contact spots. Using this model, we carried out a preliminary study of the formation of wear particles and wedges during the friction of rough metal surfaces and the influence of the type of forming third body (interfacial) elements on the dynamics of the friction coefficient. The qualitative difference of friction dynamics in the areas of the contact zone characterized by different degrees of mechanical confinement is shown.


Dry friction, Cold welding, Wear debris, Mechanical confinement, Computer modeling, Discrete element method

Full Text:



Rabinowicz, E., 1995, Friction and Wear of Materials, Wiley-Interscience, New York, 336 p.

Holm, R., 2013, Electric Contacts: Theory and Application, Springer Science & Business Media, Berlin, 484 p.

Wen, S., Huang, P., 2017, Principles of Tribology, Wiley, New York, 608 p.

Schirmeisen, A., 2013, One atom after the other, Nature Nanotechnology, 8, pp. 81-82.

Greenwood J.A., 2020, Metal transfer and wear, Frontiers in Mechanical Engineering, 6, article 62.

Godet, M., 1984, The third-body approach: a mechanical view of wear, Wear, 100, pp. 437-452.

Bethier, Y, 1996, Maurice Godet’s third body, The Third Body Concept: Interpretation of Tribological Fenomena, C.M. Taylor, T.H.C. Childs, Y. Berthier, L. Flamand, G. Dalmaz, D. Dowson, A. Lubrecht, J.M. Georges (Eds.), Elsevier, Amserdam, pp. 21-30.

Denape, J., 2014, Third body concept and wear particle behavior in dry friction sliding conditions, Tribological aspects in modern aircraft industry, M. Karama, K. Delbe, J. Denape (Eds.), Trans Tech Publications, Stafa-Zurich, pp. 1-12.

Hokkirigawa, K., 1991, Wear mode map of ceramics, Wear, 151, pp. 219-228.

Savchenko, N.L., Filippov, A.V., Tarasov, S.Yu., Dmitriev, A.I., Shilko, E.V., Grigoriev, A.S., 2018, Acoustic emission characterization of sliding wear under condition of direct and inverse transformations in low temperature degradation (LTD) aged Y-TZP AND Y-TZP-AL2O3, Friction, 6, pp. 323-340.

de Rooij, M.B., Schipper, D.J., 2001, Analysis of material transfer from a soft workpiece to a hard tool: Part II – experimental verification, ASME Journal of Tribology, 123, pp. 474-478.

de Rooij, M.B., van der Linde, G., Schipper, D.J., 2013, Modelling material transfer on a single asperity scale, Wear, 307, pp. 198-208.

Tarasov, S.Y., Filippov, A.V., Kolubaev, E.A., Kalashnikova, T.A., 2017, Adhesion transfer in sliding a steel ball against an aluminum alloy, Tribology International, 115, pp. 191-198.

Hokkirigawa, K., Kato, K., 1988, An experimental and theoretical investigation of ploughing, cutting and wedge formation during abrasive wear, Tribology International, 21(1), pp. 51-57.

Mahato, A., Guo, Y., Sundaram, N.K., Chandrasekar, S., 2014, Surface folding in metals: a mechanism for delamination wear in sliding, Proceedings of the Royal Society A, 470, article 20140297.

Iordanoff, I., Berthier, Y., Descartes, S., Heshmat, H., 2002, A review of recent approaches for modeling solid third bodies, ASME Journal of Tribology, 124, pp. 725-735.

Vakis, A.I., Yastrebov, V.A., Scheibert, K., Nicola, L., Dini, D., Minfray, C., Almqvist, A., Paggi, M., Lee, S., Limbert, G., Molinari, J.-F., Anciaux, G., Aghababaei, R., Echeverri Restrepo, S., Papangelo, A., Cammarata, A., Nicolini, P., Putignano, C., Carbone, G., Stupkiewicz, S., Lengiewicz, J., Costagliola, G., Bosia, F., Guarino, R., Pugno, N.M., Müser, M.H., Ciavarella, M., 2018, Modeling and simulation in tribology across scales: An overview, Tribology International, 125, pp. 169-199.

Li, Q., Pohrt, R., Lyashenko. I.A., Popov, V.L., 2020, Boundary element method for nonadhesive and adhesive contacts of a coated elastic half-space, Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology, 234(1), pp. 73-83.

Li, Q., Popov. V.L., 2018, Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials, Computational Mechanics, 61, pp. 319-329.

Bazrafshan, M., de Rooij, M.B., Schipper, D.J., 2018, On the role of adhesion and roughness in stick-slip transition at the contact of two bodies: A numerical study, Tribology International, 121, pp. 381-388.

Woldman, M., van der Heide, E., Tinga, T., Masen, M.A., 2017, A finite element approach to modeling abrasive wear modes, Tribology Transactions, 60(4), pp. 711-718.

Bochkareva, S.A., Panin, S.V., Lyukshin, B.A., Lyukshin, P.A., Grishaeva, N.Yu., Matolygina, N.Yu., Aleksenko, V.O., 2020, Simulation of frictional wear with account of temperature for polymer composites, Physical Mesomechanics, 23, pp. 147-159.

Aghababaei, R., Warner, D.H., Molinari, J.-F., 2017, Critical length scale controls adhesive wear mechanisms, Nature Communications, 7, article 11816.

Molinari, J.-F., Aghababaei, R., Brink, T., Frerot, L., Milanese, E., 2018, Adhesive wear mechanisms uncovered by atomistic simulations, Friction, 6, pp. 245-259.

von Lautz, J., Pastewka, L., Gumbsch, P., Moseler, M., 2016, Molecular dynamic simulation of collision-induced third-body formation in hydrogen-free diamond-like carbon asperities, Tribology Letters, 63, article 26.

Vargonen, M., Yang, Y., Huang, L., Shi, Y., 2013, Molecular simulation of tip wear in a single asperity sliding contact, Wear, 307, pp. 150-154.

Yang, Y., Huang, L., Shi, Y., 2016, Adhesion suppresses atomic wear in single-asperity sliding, Wear, 352-353, pp. 31-41.

Dmitriev, A.I., Nikonov, A.Yu., Osterle, W., Jim, B.C., 2019, Verification of Rabinowicz’ criterion by direct molecular dynamics modeling, Facta Univesitatis-Series Mechanical Engineering, 17(2), pp. 207-215.

Milanese, E., Molinari, J.-F., 2020, A mechanistic model for the growth of cylindrical debris particles in the presence of adhesion, International Journal of Solids and Structures, 203, pp. 1-16.

Mishra, T., de Rooij, M., Shisode, M., Hazrati, J., Schipper, D.J., 2020, A material point method based ploughing model to study the effect of asperity geometry on the ploughing behaviour of an elliptical asperity, Tribology International, 142, article 106017.

Mamalis, A.G., Vortselas, A.K., Panagopoulos, C.N., 2013, Analytical and numerical wear modeling of metallic interfaces: A statistical asperity approach, Tribology Transactions, 56(1), pp. 121-129.

Burbidge, D.R., Braun, J., 2002, Numerical models of the evolution of accretionary wedges and fold-and-thrust belts using the distinct-element method, Geophysical Journal International, 148, pp. 542-561.

Miyakawa, A., Kinoshita, M., Hamada, Y., Otsubo, M., 2019, Thermal maturity structures in an accretionary wedge by a numerical simulation, Progress in Earth and Planetary Science, 6, article 8.

Shilko, E.V., Psakhie, S.G., Schmauder, S., Popov, V.L., Astafurov, S.V., Smolin, A.Yu., 2015, Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure, Computational Materials Science, 102, pp. 267-285.

Shilko, E.V., Smolin, A.Yu., Dimaki, A.V., Eremina, G.M., 2021, Particle-based approach for simulation of nonlinear material behavior in contact zones, in: G.-P. Ostermeyer, V.L. Popov, E.V. Shilko, O.S. Vasiljeva (Eds.), Multiscale Biomechanics and Tribology of Organic and Inorganic Systems, Springer, Berlin, pp. 67-89.

Dimaki, A.V., Shilko, E.V., Dudkin, I.V., Psakhie, S.G., Popov, V.L., 2020, Role of adhesion stress in controlling transition between plastic, grinding and breakaway regimes of adhesive wear, Scientific Reports, 10, article 1585.

Dimaki, A.V., Dudkin, I.V., Popov, V.L., Shilko, E.V., 2019, Influence of adhesion force and strain hardening coefficient of the material on the rate of adhesive wear in a dry tangential frictional contact, Russian Physics Journal, 62 (8), pp. 1398-1408.

Bay, N., 1979, Cold pressure welding – the mechanisms governing bonding, Journal of Engineering for Industry, 101(2), pp. 121-127.

Bay, N., 1983, Mechanisms producing metallic bonds in cold welding, Welding Journal, 62, pp. 137-142.

Zhang, W., Bay, N., 1996, A numerical model for cold welding of metals, Annals of the CIRP, 45(1), pp. 215-220.

Jing, L., Stephansson, O., 2007, Fundamentals of discrete element method for rock engineering: theory and applications, Elsevier, Amsterdam, 562 p.

Bicanic, N., 2017, Discrete element methods, Encyclopaedia of Computational Mechanics, Stein E, de Borst R, Hughes TJR (Eds.), Wiley, New York, pp. 1-38.

Potyondy, D.O., Cundall, P.A., 2004, A bonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences, 41, pp. 1329-1364.

Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., Cindall, P.A., 2011, The synthetic rock mass approach for jointed rock mass modelling, International Journal of Rock Mechanics and Mining Sciences, 48, pp. 219-244.

Psakhie, S., Shilko, E., Smolin, A., Astafurov, S., Ovcharenko V., 2013, Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials, Frattura ed Integrita Strutturale, 24, pp. 26-59.

Psakhie, S.G., Shilko, E.V., Grigoriev, A.S., Astafurov, S.V., Dimaki, A.V., Smolin, A.Yu., 2014, A mathematical model of particle–particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic–plastic materials, Engineering Fracture Mechanics, 130, pp. 96-115.

Budakian, R., Putterman, S.J., 2002, Time scales for cold welding and the origins of stick-slip friction, Physical Review B., 65, article 235429.

Alcantar, N.A., Park, C., Pan, J.M., Israelachvili, J.N., 2003, Adhesion and coalescence of ductile metal surfaces and nanoparticles, Acta Materialia, 51, pp. 31-47.

Cha, S.-H., Park, Y., Han, J.W., Kim, K., Kim, H.-S., Jang, H.-L., Cho, S., 2016, Cold welding of gold nanoparticles on mica substrate: Self-adjustment and enhanced diffusion, Scientific Reports, 6, article 32951.

Wagle, D.V., Baker, G.A., 2015, Cold welding: a phenomenon for spontaneous selfhealing and shape genesis at the nanoscale, Materials Horizons, 2, pp. 157-167.

Singh, R., Gupta, P., Yedla, N., 2019, Single-crystal Al–Cu50Zr50 metallic glass cold welds: tensile and creep behavior, Molecular Simulation, 45, 1549-1562.

Singh, R., Sharma, V., 2020, Molecular dynamics study of tensile behaviour for cold and linear friction welded single crystal tungsten, Journal of Molecular Graphics and Modelling, 99, article 107655.

Dimaki, A.V., Shilko, E.V., Popov, V.L., Psakhie, S.G., 2018, Simulation of fracture using a mesh-dependent fracture criterion in a discrete element method, Facta Univesitatis-Series Mechanical Engineering, 16(1), pp. 41-50.

Yin, Z., Sun, L., Yang, J., Gong, Y., Zhu, X., 2016, Mechanical behavior and deformation kinetics of gradient structured Cu-Al alloys with varying stacking fault energy, Journal of Alloys and Compounds, 687, pp. 152-160.

Huang, C.X., Hu, W., Yang, G., Zhang, Z. F., Wu, S.D., Wang, Q.Y., Gottstein, G., 2012, The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper–aluminum alloys processed by equal channel angular pressing, Materials Science and Engineering A, 556, pp. 638-647.


  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4