### MULTI-SCALE NUMERICAL APPROACH TO THE POLYMER FILLING PROCESS IN THE WELD LINE REGION

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Fellahi, S., Meddad, A., Fisa, B., Favis, B., 1995, Weldlines in injection-molded parts: A review, Advances in Polymer Technology: Journal of the Polymer Processing Institute, 14(3), pp. 169-195.

Geyer, A., Bonten, C., 2019, Enhancing the weld line strength of injection molded components, AIP Conference Proceedings, AIP Publishing LLC, 2055(1), 070023.

Minh, P.S., Do, T.T., 2017, A study on the welding line strength of composite parts with various venting systems in injection molding process, Key Engineering Materials, 737, pp. 70-76.

Li, J., Yang, S.L., Turng, S., Xie, Z., Jiang, S., 2016, Comparative study of weldline strength in conventional injection molding and rapid heat cycle molding, Materiale Plastice, 53(3), pp. 448-453.

Wang, G., Zhao, G., Wang, X., 2013, Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding, Materials & Design, 46, pp. 457-472.

Mosey, S., Korkees, F., Rees, A., Llewelyn, G., 2019, Investigation into fibre orientation and weldline reduction of injection moulded short glass-fibre/polyamide 6-6 automotive components, Journal of Thermoplastic Composite Materials, 33(12), pp. 1603-1628.

Hashimoto, S., Kitayama, S., Takano, M., Kubo, Y., Aiba, S., 2020, Simultaneous optimization of variable injection velocity profile and process parameters in plastic injection molding for minimizing weldline and cycle time, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 14(3), JAMDSM0029.

Baradi, M.B., Cruz, C., Riedel, T., Régnier, G., 2019, Mechanical and microstructural characterization of flowing weld lines in injection-molded short fiber-reinforced PBT, Polymer Testing, 74, pp. 152-162.

Liao, T., Zhao, X., Yang, X., Whiteside, B.,Coates, P., Jiang, Z., Men, Y., 2019, Predicting the location of weld line in microinjection‐molded polyethylene via molecular orientation distribution, Journal of Polymer Science Part B: Polymer Physics, 57(24), pp. 1705-1715.

Oh, G.H., Jeong, J.H., Park, S.H., Kim, H.S., 2018, Terahertz time-domain spectroscopy of weld line defects formed during an injection moulding process, Composites Science and Technology, 157, pp. 67-77.

Kalus, J., Jørgensen, J.K., 2014, Measuring deformation and mechanical properties of weld lines in short fibre reinforced thermoplastics using digital image correlation, Polymer testing, 36, pp. 44-53.

Wang, W., Li, X., Han, X., 2012, Numerical simulation and experimental verification of the filling stage in injection molding, Polymer Engineering & Science, 52(1), pp. 42-51.

Nguyen Thi, T.B., Yokoyama, A., Ota, K., Kodama, K., Yamashita, K., Isogai, Y., Furuichi, K., Nonomura, C., 2014, Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation, AIP Conference Proceedings, American Institute of Physics, 1593(1), pp. 571-577.

Yang, B., Ouyang, J., Jiang, T., Liu, C., 2010, Modeling and simulation of fiber reinforced polymer mold filling process by Level Set method, CMES - Computer Modeling in Engineering and Sciences, 63(3), pp. 191-222.

Li, X., Ouyang, J., Li, Q., Ren, J., 2012, Simulations of full 3D packing process and flow-induced stresses in injection molding, Journal of Applied Polymer Science, 126(5), pp. 1532-1545.

Cao, W., Min, Z., Zhang, S., Li, H., Wang, Y., Shen, C., 2016, Numerical simulation for flow‐induced stress in injection/compression molding, Polymer Engineering & Science, 56(3), pp. 287-298.

Deng, L., Liang, J., Zhang, Y., Zhou, H., Huang, Z., 2017, Efficient numerical simulation of injection mold filling with the lattice Boltzmann method, Engineering Computations, 34(2), pp. 307-329.

Farahani, S., Yelne, A., Niaki, F.A., Pilla, S., 2019, Numerical simulation for the hybrid process of sheet metal forming and injection molding using smoothed particle hydrodynamics method, SAE Technical Paper, 2019-01-0713.

Zhang, Y., Huang, Z., Zhou, H., Li, D., 2015, A rapid BEM-based method for cooling simulation of injection molding, Engineering Analysis with Boundary Elements, 52, pp. 110-119.

Pashmforoush F., 2020, Finite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites, Journal of applied and computational Mechanics, 6(3), pp. 383-393.

Li, X., He, J.H., 2020, Variational multi-scale finite element method for the two-phase flow of polymer melt filling process, International Journal of Numerical Methods for Heat & Fluid Flow, 30(3), pp. 1407-1426.

Li, X., Zhu, L., Yue, H., 2018, Multiscale Numerical Simulations of Branched Polymer Melt Viscoelastic Flow Based on Double-Equation XPP Model, Advances in Mathematical Physics, 2018, 5838290.

Rapaport, D.C., Rapaport, D.C.R., 2004, The art of molecular dynamics simulation, Cambridge university press, Cambridge, 225 p.

Cocker, T., Peller, D., Yu, P., Yu, P., Repp, J., Hube, R., 2016, Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging, Nature, 539, pp. 263-267.

Zhang, L., Bailey, J.B., Subramanian, R.H., Groisman, A., Tezcan, F.A, 2018, Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks, Nature, 557, pp. 86-91.

Rabhi, F., Cheng, G., Barriere, T., Aït Hocine, N., 2020, Influence of elastic-viscoplastic behaviour on the filling efficiency of amorphous thermoplastic polymer during the micro hot embossing process, Journal of Manufacturing Processes, 59, pp. 487-499.

Yasuda, M., Araki, K., Taga, A., Horiba, A., Kawata, H., Hirai, Y., 2011, Computational study on polymer filling process in nanoimprint lithography, Microelectronic Engineering, 88(8), pp. 2188-2191.

Valiullin, R., Naumov, S., Galvosas, P., Kärger, J., Woo, H.J., Porcheron, F., Monson, P.A., 2006, Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials, Nature, 443, pp. 965-968.

Zhao, G., Perilla, J., Yufenyuy, E., 2013, Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics, Nature, 497, pp. 643-646.

Zepeda-Ruiz, L., Stukowski, A., Oppelstrup, T., Bulatov, V.V., 2017, Probing the limits of metal plasticity with molecular dynamics simulations, Nature, 550, pp. 492-495.

Sussman, M., Fatemi, E., Smereka, P., Osher, S., 1998, An improved level set method of incompressible two-phase flows, Computers & Fluids, 27(5-6), pp. 663-680.

Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., 2001, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides, The Journal of Physical Chemistry B, 105(28), pp. 6474-6487.

Nie, X.B., Chen, S.Y., E., W.N., Robbins, M.O., 2004, A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow, Journal of Fluid Mechanics, 500, pp. 55-64.

Castillo, E., Codina, R., 2014, Stabilized stress–velocity–pressure finite element formulations of the Navier–Stokes problem for fluids with non-linear viscosity, Computer methods in applied mechanics and engineering, 279, pp. 554-578.

Groot, R.D., Warren, P.B., 1997, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, The Journal of chemical physics, 107(11), pp. 4423-4435.

Zheng, S., Ouyang, J., Zhao, Z., 2012, An adaptive method to capture weldlines during the injection mold filling, Computers & Mathematics with Applications, 64(9), pp. 2860-2870.

He, J.H., Ain, Q.T., 2020, New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle, Thermal Science, 24(2A), pp. 659-681.

Ain, Q.T., He, J.H., 2019, On two-scale dimension and its applications, Thermal Science, 23(3), pp. 1707-1712.

He, J.H., 2018, Fractal calculus and its geometrical explanation, Results in Physics, 10, pp. 272-276.

He, J.-H., 2021, Seeing with a Single Scale is Always Unbelieving: From magic to two-scale fractal, Thermal Science, 25(2B), pp. 1217-1219.

Zuo, Y.T., Liu. H.J. ,2020, A Fractal Rheological Model for SiC Paste using a Fractal Derivative, Journal of Applied and Computational Mechanics, 6(SI), pp. 1434-1439.

Zuo, Y.T, 2021, Effect of SiC particles on viscosity of 3D print paste: A Fractal rheological model and experimental verification, Thermal Science, 25(3B), pp. 2405-2409.

Liu, F.J., Zhang, X.J., Li, X., 2019, Silkworm (Bombyx mori) cocoon vs. wild cocoon multi-layer structure and performance characterization, Thermal Science, 23(4), pp. 2135-2142.

Wang, Y., Yao, S.W., Yang, H.W., 2019, A fractal derivative model for snow's thermal insulation property, Thermal Science, 23(4), pp. 2351-2354.

He, J.-H., Kou, S.-J., He, C.-H., Zhang, Z.-W., Khaled, A.G., 2021, Fractal oscillation and its frequency-amplitude property, Fractals, 29(4), 2150105.

Li, X.J., Liu, Z., He, J.H., 2020, A fractal two-phase flow model for the fiber motion in a polymer filling process, Fractals, 28(5), 2050093.

Zhou, C.J., Tian, D., He, J.H., 2019, Highly selective penetration of red ink in a saline water, Thermal Science, 23(4), pp. 2265-2270.

He, J.H., 2020, Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation, Results in Physics, 17, 103031.

He, J.H., 2021, On the fractal variational principle for the Telegraph equation, Fractals, 29(1), 2150022.

He, J.H., 2020, Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves, Journal Applied Computational Mechanics, 6(4), pp. 735-740.

He, J.-H., Hou, W.-F., Qie, N., Gepreel, K.A., Sedighi, A.H., Mohammad-Sedighi, H., 2021, Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators, Facta Universitatis-Series Mechanical Engineering, 19(2), pp. 199-208.

He, J.H., Latifizadeh, H., 2020, A general numerical algorithm for nonlinear differential equations by the variational iteration method, International Journal of Numerical Methods for Heat and Fluid Flow, 30(11), pp. 4797-4810.

He, J.H., El–Dib, Y.O., 2021, The reducing rank method to solve third-order Duffing equation with the homotopy perturbation, Numerical Methods for Partial Differential Equations, 37(2), pp. 1800-1808.

DOI: https://doi.org/10.22190/FUME220131021L

### Refbacks

- There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4