Andrzej Perec, Aleksandra Radomska-Zalas, Anna Fajdek-Bieda

DOI Number
First page
Last page


The article presents research on the erosion of the metamorphic rock - marble by the Abrasive Water Jet (AWJ). The fragmentation of abrasive grains during the erosion process is demonstrated. The effect of the cutting process's most important parameters as traverse speed, nozzle ID, and abrasive mass flow rate, on the maximum cutting depth, is shown. To create a mathematical-statistic model of the erosion process, the methodology of the response surface (RSM) was used for modeling. The polynomial equation of the second degree is chosen for developing the regression model. Studies have shown the optimal parameters of the process, to reach the highest depth of the cut. Additionally, the erosion wear of a focusing tube under different process conditions is presented.


AWJ, Abrasive Waterjet Machining, Modeling, Erosion wear, Marble

Full Text:



Kukiełka, K., 2016, Ecological aspects of the implementation of new technologies processing for machinery parts, Rocznik Ochrona Srodowiska - Annual Set the Environmental Protection, 18(1), pp. 137–157.

Perec, A., 2018, Environmental aspects of abrasive water jet cutting, Annual Set the Environment Protection - RocznikOchronaSrodowiska, 20(1), pp. 258-274.

Wessels, V., Grigoryev, A., Dold, C., Wyen, C.-F., Roth, R., Weingaertner, E., Pude, F., Wegener, K., Loeffler, J.F., 2012, Abrasive waterjet machining of three-dimensional structures from bulk metallic glasses and comparison with other techniques, J. Mater. Res., 27(8), pp. 1187-1192.

Haj Mohammad Jafar, R., Nouraei, H., Emamifar, M., Papini, M., Spelt, J.K., 2015, Erosion modeling in abrasive slurry jet micro-machining of brittle materials, Journal of Manufacturing Processes, 17, pp. 127-140.

Hashish, M., 2010, A Study on AWJ Trimming of Composite Aircraft Stringers, Amer Soc Mechanical Engineers, New York.

Schwartzentruber, J., Papini, M., Spelt, J.K., 2018, Characterizing and modelling delamination of carbon-fiber epoxy laminates during abrasive waterjet cutting, Composites Part A: Applied Science and Manufacturing, 112, pp. 299-314.

Bankowski, D., Spadlo, S., 2019, The use of abrasive waterjet cutting to remove flash from castings, Archives of Foundry Engineering 19(3), pp. 94–98.

Alberts, D.G., Hashish, M., 1996, Evaluation of submerged high-pressure waterjets for deep ocean applications, Proceedings of the Sixth International Offshore and Polar Engineering Conference, Vol I, 1996, Chung, J.S., Das, B.M., Roesset, J. (Eds.), International Society Offshore& Polar Engineers, Cupertino, pp. 46-50.

Hreha, P., Radvanská, A., Hloch, S., Peržel, V., Królczyk, G., Monková, K., 2015, Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting, The International Journal of Advanced Manufacturing Technology, 77(1-4), pp. 763-774.

Perzel, V., Flimel, M., Krolczyk, J., Sedmak, A., Ruggiero, A., Kozak, D., Stoic, A., Krolczyk, G., Hloch, S., 2017, Measurement of Thermal emission during cutting of materials using abrasive water jet, Thermal Science, 21(5), pp. 2197-2203.

Valíček, J., Držík, M., Hloch, S., Ohlídal, M., Miloslav, L., Gombár, M., Radvanská, A., Hlaváček, P., Páleníková, K., 2007, Experimental analysis of irregularities of metallic surfaces generated by abrasive waterjet, International Journal of Machine Tools and Manufacture, 47(11), pp. 1786-1790.

Cenac, F., Zitoune, R., Collombet, F., Deleris, M., 2015, Abrasive water-jet milling of aeronautic aluminum 2024-T3, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 229(1), pp. 29-37.

Hreha, P., Radvanska, A., Knapcikova, L., Krolczyk, G. M., Legutko, S., Krolczyk, J.B., Hloch, S., Monka, P., 2015, Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material, Metrol. Meas. Syst., 22(2), pp. 315-326.

Nag, A., Scucka, J., Hlavacek, P., Klichova, D., Srivastava, A.K., Hloch, S., Dixit, A.R., Foldyna, J., Zelenak, M., 2018, Hybrid aluminium matrix composite AWJ turning using olivine and barton garnet, Int. J. Adv. Manuf. Technol., 94(5–8), pp. 2293-2300.

Perec, A., 2017, Disintegration and recycling possibility of selected abrasives for water jet cutting, DYNA, 84(203), pp. 249-256.

Perec, A., Pude, F., Grigoriev, A., Kaufeld, M., Wegener, K., 2019, A study of wear on focusing tubes exposed to corundum based abrasives in the waterjet cutting Process, Int. J. Adv. Manuf. Technol., 103(5-9), pp. 2415-2427.

Martin, G.R., Lauand, C.T., Hennies, W.T., Ciccu, R., 2000, Abrasives in Water Jet Cutting Systems, Balkema Publishers, Leiden.

Radomska-Zalas, A., Perec, A., Fajdek-Bieda, A., 2019, IT Support for optimisation of abrasive water cutting process using the TOPSIS method, IOP Conference Series: Materials Science and Engineering, 710,012008.

Karakurt, I., Aydin, G., Aydiner, K., 2014, An investigation on the kerf width in abrasive waterjet cutting of granitic rocks, Arabian Journal of Geosciences, 7(7), pp. 2923-2932.

Aydin, G., Kaya, S., Karakurt, I., 2019, Effect of abrasive type on marble cutting performance of abrasive waterjet, Arabian Journal Geosciences, 12(11), 357.

Shah, R.V., Patel, D.M., 2012, Astudy of abrasive water jet machining process on granite material, International Journal of Engineering Research and Applications (IJERA), 2(4), pp. 2031–2033.

Khanna, R., Gupta, R., Gupta, V., 2011, Measuring Material Removal Rate of Marble by Using Abrasive Water Jet Machining, IOSR Journal of Mechanical and Civil Engineering, pp. 45-49.

Mlynarczuk, M., Skiba, M., Sitek, L., Hlaváček, P., Kozusnikova, A., 2014, The research into the quality of rock surfaces obtained by abrasive water jet cutting, Archives of Mining Sciences, 59(4), pp. 925-940.

Bruno Arab, P., Barreto Celestino, T., 2020, A microscopic study on kerfs in rocks subjected to abrasive waterjet cutting, Wear, 448-449, 203210.

Hlaváček, P., Cárach, J., Hloch, S., Vasilko, K., Klichová, D., Klich, J., Lehocká, D., 2015, Sandstone turning by abrasive waterjet, rock mechanics and rock engineering, 48(6), pp. 2489-2493.

Cha, Y., Oh, T.-M., Cho, G.-C., 2019, Waterjet Erosion Model for Rock-Like Material Considering Properties of Abrasive and Target Materials, Applied Sciences, 9(20), 4234.

Oh, T. M., Cho, G. C., 2016, Rock cutting depth model based on kinetic energy of abrasive waterjet, Rock Mechanics and Rock Engineering, 49(3), pp. 1059-1072

Martinec, P., Foldyna, J., Sitek, L., Ščučka, J., Vašek, J., 2002, Abrasives for AWJ Cutting, INCO-COPERNICUS, Institute of Geonics, Ostrava, 2002.

GMA Garnet, 2019, Producing GMA in Australia, GMA Garnet Australia, [Online]. Available: https://www.gmagarnet.com/en-gb/about-gma/producing-gma-australia. [Accessed: 18-Mar-2020].

Perec, A., 2004, Some aspects of hydroabrasive suspensive jet cutting of syenite, 17th International Conference on Water Jetting: Advances and Future Needs., BHR Group Ltd. Fluid Engineering Centre Cranfield, United Kingdom, Mainz, Germany, pp. 295–306.

Perec, A., 2019, Investigation of limestone cutting efficiency by the abrasive water suspension jet, in: Hloch, S., Klichová, D., Krolczyk, G.M., Chattopadhyaya, S., Ruppenthalová, L. (Eds.), Advances in Manufacturing Engineering and Materials, Springer International Publishing, Cham, pp. 124-134.

Aydin, G., Kaya, S., Karakurt, I., 2017, Utilization of solid-cutting waste of granite as an alternative abrasive in abrasive waterjet cutting of marble, Journal of Cleaner Production, 159, pp. 241-247.

Jandačka, P., Ščučka, J., Martinec, P., Lupták, M., Janeček, I., Mahdi Niktabar, S. M., Zeleňák, M., Hlaváček, P., 2021, Optimal abrasive mass flow rate for rock erosion in AWJ machining, in:Klichová,D.,Sitek, L., Hloch, S., Valentinčič, J. (Eds.), Advances in Water Jetting, Springer International Publishing, Cham, pp. 81-90.

Perec, A., Pude, F., Kaufeld, M., Wegener, K., 2017, Obtaining the selected surface roughness by means of mathematical model based parameter optimization in abrasive waterjet cutting, SV-Journal of Mechanical Engineering, 63(10), pp. 606-613.

Perec, A., Musial, W., Prazmo, J., Sobczak, R., Radomska-Zalas, A., Fajdek-Bieda, A., Nagnajewicz, S., Pude, F., 2021, Multi-criteria optimization of the abrasive waterjet cutting process for the high-strength and wear-resistant steel Hardox®500, in:Klichová,D.,Sitek, L., Hloch, S., Valentinčič, J. (Eds.), Advances in Water Jetting, Springer International Publishing, Cham, pp. 145-154.

Wojciechowski, S., Maruda, R.W., Królczyk, G.M., 2017, The application of response surface method to optimization of precision ball end milling, MATEC Web Conf., 112, 01004.

Perec, A., Radomska-Zalas, A., 2019, Modeling of abrasive water suspension jet cutting process using response surface method, AIP Conference Proceedings 2078, 020051 (2019), pp. 200511-200518.

Perec, A., 2018, Experimental research into alternative abrasive material for the abrasive water jet cutting of titanium, Int. J. Adv. Manuf. Technol., 97(1-4), pp. 1529-1540.

Perec, A., 2012, Comparison of abrasive grain disintegration during the formation abrasive water jet and abrasive slurry injection jet, BHR Group - 21st International Conference on Water Jetting: Looking to the Future, Learning from the Past, pp. 319-327.

Sidhu, A.S., 2021, Surface texturing of non-toxic, biocompatible titanium alloys via electro-discharge,Reports in Mechanical Engineering. 2(1), pp. 51-56.

Barlić, J., Nedić, B., Marušić, V., 2008, Focusing tube wear and quality of the machined surface of the abrasive water jet machining, Tribology in Industry, 30(3 4), pp. 55-58.

Hreha, P., Radvanská, A., Cárach, J., Lehocká, D., Monková, K., Krolczyk, G., Ruggiero, A., Samardzić, I., Kozak, D., Hloch, S., 2014, Monitoring of focusing tube wear during abrasive waterjet (AWJ) cutting of AISI 309, Metalurgija, 53(4), pp. 533-536.

DOI: https://doi.org/10.22190/FUME210203037P


  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4