Fujuan Liu, Ting Zhang, Chun-Hui He, Dan Tian

DOI Number
First page
Last page


A building or a bridge might collapse after a heat shock. This paper shows that a porous hierarchy of a coating can effectively prevent a building or a bridge from such damage. A cocoon’s geometrical structure is studied and its resistance to the heat shock is revealed by a thermal oscillator. The theoretical model reveals an extremely low frequency of the thermal oscillator, which is very important for cocoons’ biomechanism, especially in the heat insulation function. At the same time, it shows that the cocoons have the best thickness to protect the pupa from the environment. In addition, surface temperature measurement of hierarchical mulberry leaves is performed. This work provides new insights into biomimetic design of the protective building and coatings.


Silkworm Cocoon, Hierarchical Structure, Heat Conduction, Microporous Capillary, Thermal Oscillation, Freeze-thaw Damage

Full Text:



Fei, D.D., Liu, F.J., Cui, Q.N., He, J., 2013, Fractal approach to heat transfer in silkworm cocoon hierarchy, Thermal Science, 17(5), pp. 1546-1548.

Liu, F.J., Li, Z.B., Zhang, S., Liu, H.Y., 2015, He’s fractional derivative for heat conduction in a fractal medium arising in silkworm cocoon hierarchy, Thermal Science, 19(4), pp. 1155-1159.

Liu, F.J., Wang, P., Zhang, Y., Liu, H.Y., He, J., 2016, A fractional model for insulation clothings with cocoon-like porous structure, Thermal Science, 20(3), pp. 779-784.

Liu, F.J., Liu, H.Y., Li, Z.B., He, J., 2017, A delayed fractional model for cocoon heat-proof property, Thermal Science, 21(4), pp. 1867-1871.

Tao, H., Kaplan, D.L., Omenetto, F.G., 2012, Silk materials—a road to sustainable high technology, Advanced Materials, 24(21), pp. 2824-2837.

Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O., 2015, Bioinspired structural materials, Nature Materials, 14(1), pp. 23–36.

Omenetto, F.G., Kaplan, D.L., 2010, New opportunities for an ancient material, Science, 329(5991), pp. 528–531.

He, C.H., Liu, C., Gepreel, K.A., 2021, Low frequency property of a fractal vibration model for a concrete beam, Fractals, doi: 10.1142/S0218348X21501176.

He, J.H., Kou, S.J., He, C.H., Zhang, Z.W., Gepreel, K.A., 2021, Fractal oscillation and its frequency-amplitude property, Fractals, doi: 10.1142/S0218348X2150105X.

Zuo, Y.T., 2021, A gecko-like fractal receptor of a three-dimensional printing technology: a fractal oscillator, Journal of Mathematical Chemistry, doi: 10.1007/s10910-021-01212-y.

Zuo, Y.T., Liu, H.J., 2021, A fractal rheological model for sic paste using a fractal derivative, Journal of Applied and Computational Mechanics, 7, pp. 13-18.

Zuo, Y.T., Liu, H.J., 2021, Fractal approach to mechanical and electrical properties of graphene/sic composites, Facta Universitatis-Series Mechanical Engineering, doi: 10.22190/FUME201212003Z.

He, J.H., El-Dib, Y.O., 2020, Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation, Results in Physics, 19, pp. 1-6.

He, C.H., He, J., Sedighi, H.M., 2020, Fangzhu((sic)(sic)): an ancient Chinese nanotechnology for water collection from air: history, mathematical insight, promises and challenges, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.6384.

He, J.H., El-Dib, Y.O., 2020, Homotopy perturbation method for Fangzhu oscillator, Journal of Mathematical Chemistry, 58(10), pp. 2245-2253.

Han, C., He, J., 2021, Effect of fabric surface’s cleanliness on its moisture/air permeability, Thermal Science, 25, pp. 1517-1521.

He, J.H., Jin, X., 2020, A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube, Mathematical Methods in the Applied Science,

Jin, X., Liu, M.N., Pan, F., Li, Y.P., Fan, J., 2019, Low frequency of a deforming capillary vibration, part 1: mathematical model, Journal of Low Frequency Noise Vibration and Active Control, 38(3-4), pp. 1676-1680.

Lin, L., Yao, S.W., 2019, Release oscillation in a hollow fiber – part 1: mathematical model and fast estimation of its frequency, Journal of Low Frequency Noise Vibration and Active Control, 38(3-4), pp. 1703-1707.

Lin, L., Li, H.G., Yao, S.W., 2019, Experimental verification of the fractional model for silver ion release from hollow fibers, Journal of Low Frequency Noise Vibration and Active Control, 38(3-4), pp. 1041-1044.

Rhardane, A., Sleiman, S. A., Alam, S.Y., Grondin, F., 2021, A quantitative assessment of the parameters involved in the freeze-thaw damage of cement-based materials through numerical modelling, Construction and Building Materials, 272, 121838.

Wang, Y., Gao, S.H., Li, C.H., Han, J.Q., 2021, Energy dissipation and damage evolution for dynamic fracture of marble subjected to freeze-thaw and multiple level compressive fatigue loading, International Journal of Fatigue, 142, 105927.

Zhang, Z.Y., Liu, Q., Wu, Q., Xu, H.N., Liu, P.F., Oeser, M., 2021, Damage evolution of asphalt mixture under freeze-thaw cyclic loading from a mechanical perspective, International Journal of Fatigue, 142, 105923.

Tu, Y.M., Liu, D.Y., Wang, T.F., Yuan, L., 2021, Evaluation on later-age performance of concrete subjected to early-age freeze-thaw damage, Construction and Building Materials, 270, 121491.

Abedi, M., Torshizi, S.E.M., Sarfaraz, R., 2021, Damage mechanisms in glass/epoxy composites subjected to simultaneous humidity and freeze-thaw cycles, Engineering Failure Analysis, 120, 105041.

Deng, X.H., Gao, X.Y., Wang, R., Gao, M.X., Yan, X.X., Cao, W.P., Liu, J.T., 2021, Investigation of microstructural damage in air-entrained recycled concrete under a freeze-thaw environment, Construction and Building Materials, 268, 121219.

Lu, C.F., Zhou, Q.S., Wang, W., Wei, S.H., Wang, C., 2021, Freeze-thaw resistance of recycled aggregate concrete damaged by simulated acid rain, Journal of cleaner production, 280(1), 124396.

Feng, Z.J., Huo, J.W., Hu, H.B., Zhao, R.X., Wang, F.C., Jiang, G., Yao, X.H., Li, T., Song, Z.Y., 2021, Research on Corrosion Damage and Bearing Characteristics of Bridge Pile Foundation Concrete under a Dry-Wet-Freeze-Thaw Cycle, Advances in Civil Engineering, 2021, 8884396.

Yang, X.R., Jiang, A.N., Zhang, F.R., 2021, Research on creep characteristics and variable parameter-based creep damage constitutive model of gneiss subjected to freeze-thaw cycles, Environmental Earth Sciences, 80(1), 7.

Lagerspetz, K.Y.H., 2003, Thermal acclimation without heat shock, and motor responses to a sudden temperature change in Asellus aquaticus, Journal of Thermal Biology, 28(5), pp. 421-427.

Faraj, K., Khaled,M., Faraj, J., Hachem, F., Castelain, C., 2020, Phase change material thermal energy storage systems for cooling, Renewable and Sustainable Energy Reviews, 119, 109579.

Da Cunha, S.R.L., De Aguiar, J.L.B., 2020, Phase change materials and energy efficiency of buildings: A review of knowledge, Journal of Energy Storage, 27, 101083.

Wu, S.F., Yan, T., Kuai, Z.H., Pan, W.G., 2020, Thermal conductivity enhancement on phase change materials for thermal energy storage: A review, Energy Storage Materials, 25, pp. 251-295.

Xiao, Q., Yuan, W., Li, L., Xu, T., 2018, Fabrication and characteristics of composite phase change material based on Ba(OH)(2)⋅8H(2)O for thermal energy storage, Solar Energy Materials and Solar Cells, 179, pp. 339–345.

Gao, H., Wang, J., Chen, X., Wang, G., Huang, X., Li, A., 2018, Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review, Nano Energy, 53, pp. 769–797.

Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., 2019, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chemical Engineering Journal, 356, pp. 641–661.

Agyenim, F., Hewitt, N., Eames, P., Smyth, M., 2010, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renewable & Sustainable Energy Reviews, 14(2), pp. 615–628.

Lin, Y., Jia, Y., Alva, G., Fang, G., 2018, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renewable & Sustainable Energy Reviews, 82(3), pp. 2730–2742.

Song, G., Ma, S., Tang, G., Yin, Z., Wang, X., 2010, Preparation and characterization of flame-retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide, Energy, 35(5), pp. 2179–2183.

Bon, B., Kakac, S., 2008, A review of two-phase flow instability dynamic instabilities in tube boiling systems, International Journal of Heat and Mass Transfer, 51(3-4), pp. 399-433.

Kakac, S., Veziroglu, T.N., Padki, M.M., Fu, L.Q., Chen, X.J., 1990, Investigation of thermal instabilities in a forced convection upward boiling system, Experimental Thermal and Fluid Science, 3(2), pp. 191-201.

Chávez, G.A., Moraga, N.O., Ribatski, G., 2019, Thermal oscillations during flow boiling of hydrocarbon refrigerants in a microchannels array heat sink, Applied Thermal Engineering, 157, 113725.

Megahed, A., 2011, Experimental investigation of flow boiling characteristics in a cross-linked microchannel heat sink, International Journal of Multiphase Flow, 37(4), pp. 380-393.

Kuang, Y.W., Wang, W., Miao, J.Y., Yu, X.G., Zhang, H.X., Zhuan, R., 2017, Flow boiling of ammonia and flow instabilities in mini-channels, Applied Thermal Engineering, 113, pp. 831-842.

Prajapati, Y.K., Pathak, M., Khan, M.K., 2017, Bubble dynamics and flow boiling characteristics in three different microchannel configurations, International Journal of Thermal Science, 112, pp. 371-382.

Kim, Y.B., Song, H.W., Sung, J., 2018, Flow behavior of rapid thermal oscillation inside an asymmetric micro pulsating heat exchanger, 120, International Journal of Heat and Mass Transfer, pp. 923-929.

Demir, M., Salman, H., 2017, Resonance in the response of the bacterial flagellar-motor to thermal oscillations, Physical Review E, 95(2), 022419.

Fan, J., Zhang, Y.R., Liu, Y., Wang, Y.H., Cao, F.Y., Yang, Q.Q., Tian, F.M., 2019, Explanation of the cell orientation in a nanofiber membrane by the geometric potential theory, Results in Physics, 15, pp. 1-4.

Lin, L., Li, H.G., Liu, Y.P., 2019, Release oscillation in a hollow fiber Part 2: the effect of its frequency on ions release and experimental verification, Journal of Low Frequency Noise, Vibration and Active Control, doi: 10.1177/1461348419874973.

He, J.H., El-Dib, Y.O., 2020, The reducing rank method to solve third-order duffing equation with the homotopy perturbation, Numerical Methods for Partial Differential Equations, 37(2), pp. 1800-1808.

He, J.H., El-Dib, Y.O., 2021, Homotopy perturbation method with three expansions, Journal of Mathematical Chemistry, doi: 10.1007/s10910-021-01237-3.

Yu, D.N., He, J., Garcia, A.G., 2019, Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38(3-4), pp. 1540-1554.

He, J.H., 2006, Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B, 20(10), pp. 1141–1199.

He, J.H., Latifizadeh, H., 2020, A general numerical algorithm for nonlinear differential equations by the variational iteration method, International Journal of Numerical Methods for Heat and Fluid Flow, 30(11), pp. 4797-4810.

He, J.H., Nurakhmetov, D., Skrzypacz, P., Wei, D.M., 2019, Dynamic pull-in for micro-electromechanical device with a current-carrying conductor, Journal of Low Frequency Noise Vibration and Active Control, doi: 10.1177/1461348419847298.

He, J.H., Skrzypacz, P.S., Zhang, Y.N., Pang, J., 2020, Approximate periodic solutions to microelectromechanical system oscillator subject to magnetostatic excitation, Mathematical Methods in the Applied Sciences, doi: 10.1002/mma.7018.

He, J.H., 2019, The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38(3-4), pp. 1252-1260.

He, J.H., 2019, The simplest approach to nonlinear oscillators, Results in Physics, 15, pp. 1-2.

He, C.H., Wang, J.H., Yao, S.W., 2019, A complement to period/frequency estimation of a nonlinear oscillator, Journal of Low Frequency Noise Vibration and Active Control, 38, pp. 992-995.

Qie, N., Hou, W.F., He, J., 2020, The fastest insight into the large amplitude vibration of a string, Reports in Mechanical Engineering, 2(1), pp. 1-5.

He, J.H., 2020, Taylor series solution for a third order boundary value problem arising in architectural engineering, Ain Shams Engineering Journal, 11(4), pp. 1411-1414.

He, C.H., Shen, Y., Ji, F.Y., He, J., 2020, Taylor series solution for fractal bratu-type equation arising in electrospinning process, Fractals, 28(1), pp. 1-8.

He, J.H., 2019, A simple approach to one-dimensional convection-diffusion equation and its fractional modification for ereaction arising in rotating disk electrodes, Journal of Electroanalytical Chemistry, 854, pp. 1-2.

Liu, L.G., Liu, Y.Q., Li, Y.Y., Shen, Y., He, J., 2021, Dropping in electrospinning process: a general strategy for fabrication of microspheres, Thermal Science, doi: 10.2298/TSCI191228025L.

Xin, Q.P., Li, X., Hou, H.L., Liang, Q.Q., Guo, J.P., Wang, S.F., Zhang, L., Lin, L.G., Ye, H., Zhang, Y.Z., 2021, Superhydrophobic Surface-Constructed Membrane Contactor with Hierarchical Lotus-Leaf-Like Interfaces for Efficient SO2 Capture, ACS Applied Materials & Interfaces, 13(1), pp. 1827-1837.

Cheng, S.A., Yu, Z., Lin, Z.F., Li, L.X., Li, Y.H., Mao, Z.Z., 2020, A lotus leaf like vertical hierarchical solar vapor generator for stable and efficient evaporation of high-salinity brine, Chemical Engineering Journal, 401, 126108.

Chen, L.H., 2020, Hierarchically porous materials and green chemistry-an interview with Ming-Yuan He, National Science Review, 7(11), pp. 1759-1761.



  • There are currently no refbacks.

ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4