IMPROVING CORROSION RESISTANCE OF MAGNESIUM NANOCOMPOSITES BY USING ELECTROLESS NICKEL COATINGS

Sudip Banerjee, Pujan Sarkar, Prasanta Sahoo

DOI Number
10.22190/FUME210714068B
First page
Last page

Abstract


The present study aims at improving corrosion resistance of magnesium nanocomposites through autocatalytic Ni-P coating. Electroless Ni-P coatings with different concentration of sodium hypophosphite are deposited on 2% WC incorporated magnesium nanocomposites (AZ31-2WC) and the coated samples are further heat-treated. Basic characterizations and compositional analyses are done by using scanning electron microscope (SEM), energy dispersive x-ray analysis (EDAX), and X-ray diffraction analysis (XRD). Microhardness values of the developed materials are also evaluated. The attempt is made to improve corrosion resistance of AZ31-2WC by modifying surface roughness. Corrosion characteristics of Ni-P coated AZ31-2WC nanocomposites are examined by performing potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS). Corrosion resistance improves with enhancement of surface quality. Corrosion resistance of AZ31-2WC nanocomposite also improves due to application of Ni-P coating. Finally, corrosion morphologies are scrutinized by SEM micrographs of corroded surface.


Keywords

Corrosion Resistance, Magnesium, Nanocomposite, Ni-P, Coating

Full Text:

PDF

References


Kulekci, M.K., 2008, Magnesium and its alloys applications in automotive industry, The International Journal of Advanced Manufacturing Technology, 39(9-10), pp. 851-865.

Avedesian, M.M., Baker, H. eds., 1999, ASM specialty handbook: magnesium and magnesium alloys, ASM international, 274 p.

Casati, R., Vedani, M., 2014, Metal matrix composites reinforced by nano-particles—a review, Metals, 4(1), pp. 65-83.

Nguyen, Q.B., Sim, Y.H.M., Gupta, M., Lim, C.Y.H., 2015, Tribology characteristics of magnesium alloy AZ31B and its composite, Tribology International, 82, pp. 464-471.

Erman, A., Groza, J., Li, X., Choi, H., Cao, G., 2012, Nanoparticle effects in cast Mg-1 wt% SiC nano-composites, Materials Science and Engineering: A, 558, pp. 39-43.

Meenashisundaram, G.K., Gupta, M., 2014, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium, Journal of Alloys and Compounds, 593, pp. 176-183.

Selvam, B., Marimuthu, P., Narayanasamy, R., Anandakrishnan, V., Tun, K.S., Gupta, M., Kamaraj, M., 2014, Dry Sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites, Materials & Design, 58, pp. 475-481.

Rashad, M., Pan, F., Hu, H., Asif, M., Hussain, S., She, J., 2015, Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets, Materials Science and Engineering: A, 630, pp. 36-44.

Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P., 2019, Dry sliding tribological behavior of AZ31-WC nano-composites, Journal of Magnesium and Alloys, 7(2), pp. 315-327.

Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P., 2019, Tribological behavior of Mg-WC nano-composites at elevated temperature, Materials Research Express, 6(8), 0865c6.

Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P., 2020, Abrasive wear behavior of WC nanoparticle reinforced magnesium metal matrix composites, Surface Topography: Metrology and Properties, 8(2), 025001.

Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P., 2019, Nanoindentation and scratch resistance characteristics of AZ31–WC nanocomposites, Journal of Molecular and Engineering Materials, 7(03n04), 1950007.

Sharma, A.K., Suresh, M.R., Bhojraj, H., Narayanamurthy, H., Sahu, S.P., 1998, ISRO Satellite Centre, Bangalore, India, Metal Finishing, March, pp. 10-18.

Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P., 2019, Corrosion behavior of AZ31-WC nano-composites, Journal of Magnesium and Alloys, 7(4), pp. 681-695.

Gray, J., Luan, B., 2002, Protective coatings on magnesium and its alloys—a critical review, Journal of Alloys and Compounds, 336(1-2), pp. 88-113.

Alvarez, R.B., Martin, H.J., Horstemeyer, M.F., Chandler, M.Q., Williams, N., Wang, P.T., Ruiz, A., 2010, Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy, Corrosion Science, 52(5), pp. 1635-1648.

Walter, R., Kannan, M.B., 2011, Influence of surface roughness on the corrosion behaviour of magnesium alloy, Materials & Design, 32(4), pp. 2350-2354.

Younan, M.M., Shoeib, M., El-Enin, S.A., 2001, Plating-Aufsatze-effect of fluoborate anion on electroless nickel-phosphorus alloy deposition, Galvanotechnik, 92(6), pp. 1531-1540.

Singh Raman, R.K., Birbilis, N., Efthimiadis, J., 2004, Corrosion of Mg Alloy AZ91–the role of microstructure, Corrosion Engineering Science and Technology, 39(4), pp. 346-350.

El Mahallawy, N., Bakkar, A., Shoeib, M., Palkowski, H., Neubert, V., 2008, Electroless Ni–P coating of different magnesium alloys, Surface and Coatings Technology, 202(21), pp. 5151-5157.

Elsentriecy, H.H., Azumi, K., 2008, Electroless Ni–P Deposition on AZ91D magnesium alloy prepared by molybdate chemical conversion coatings, Journal of the Electrochemical Society, 156(2), D70.

Wang, C.M., Wang, J.Q., Zhang, B., Niu, R.B., Yu, J.K., Jing, Q., 2013, Ni–P coating on AZ31 magnesium alloy and its crystallization, Rare Metals, 32(5), pp. 465-468.

Abdi-Alghanab, K., Seifzadeh, D., Rajabalizadeh, Z., Habibi-Yangjeh, A., 2020, High corrosion protection performance of the LDH/Ni-P composite coating on AM60B magnesium alloy, Surface and Coatings Technology, 397, 125979.

Buchtík, M., Kosár, P., Wasserbauer, J., Tkacz, J., Doležal, P., 2018, Characterization of electroless Ni–P coating prepared on a wrought ZE10 magnesium alloy, Coatings, 8(3), 96.

Srinivasan, A., Shin, K.S., Rajendran, N., 2014. Dynamic electrochemical impedance spectroscopy (DEIS) studies of AZ31 magnesium alloy in simulated body fluid solution, RSC Advances, 4(53), pp. 27791-27795.

Rashad, M., Pan, F., Asif, M., Chen, X., 2017, Corrosion behavior of magnesium-graphene composites in sodium chloride solutions, Journal of Magnesium and Alloys, 5(3), pp. 271-276.

Diegle, R.B., Sorensen, N.R., Clayton, C.R., Helfand, M.A., Yu, Y.C., 1988, An XPS investigation into the passivity of an amorphous Ni‐20P alloy, Journal of the Electrochemical Society, 135(5), pp. 1085-1092.

Sun, R., Yu, G., Xie, Z., Hu, B., Zhang, J., He, X., Zhang, X., 2015, Influence of hypophosphite on efficiency and coating qualities of electroless Ni-P deposits on magnesium alloy AZ91D, International Journal Electrochemical Science, 10, pp. 7893-7904.

Wu, L., Wang, C., Pokharel, D.B., Etim, I.I.N., Zhao, L., Dong, J., Ke, W., Chen, N., 2018, Effect of applied potential on the microstructure, composition and corrosion resistance evolution of fluoride conversion film on AZ31 magnesium alloy, Journal of Materials Science & Technology, 34(11), pp. 2084-2090.

Zhang, S., Cao, F., Chang, L., Zheng, J., Zhang, Z., Zhang, J., Cao, C., 2011, Electrodeposition of high corrosion resistance Cu/Ni–P coating on AZ91D magnesium alloy, Applied Surface Science, 257(21), pp. 9213-9220.

Rabizadeh, T., Allahkaram, S.R., Zarebidaki, A., 2010, An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatings, Materials & Design, 31(7), pp. 3174-3179.

Ascencio, M., Pekguleryuz, M., Omanovic, S.J.C.S., 2014, An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: the influence of immersion time, Corrosion Science, 87, pp. 489-503.

Bakhsheshi-Rad, H.R., Hamzah, E., Tok, H.Y., Kasiri-Asgarani, M., Jabbarzare, S., Medraj, M., 2017, Microstructure, in vitro corrosion behavior and cytotoxicity of biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi alloys, Journal of Materials Engineering and Performance, 26(2), pp. 653-666.

Sahoo, P., Das, S.K., 2011, Tribology of electroless nickel coatings-a review, Materials & Design, 32(4), pp. 1760-1775.

Gomez da Silva, F.J., Gouveia, R.M., 2020, Practices on cleaner production and sustainability. In: Cleaner production: toward a better future. Cham: Springer International Publishing, pp. 247-280.

Navinšek, B., Panjan, P., Milošev, I., 1999, PVD coatings as an environmentally clean alternative to electroplating and electroless processes, Surface and Coatings Technology, 116, pp. 476-487.

Bonin, L., Vitry, V., Delaunois, F., 2020, Replacement of lead stabilizer in electroless nickel-boron baths: synthesis and characterization of coatings from bismuth stabilized bath, Sustainable Materials and Technologies, 23, e00130.


Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4