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Abstract. In the long-term period after kidney transplantation, a certain level of tissue inflammation and therefore the 

production of proinflammatory cytokines, including TNF-α, IL-1β, IL-18 and IL-2 can be found. The aim of our study was 

to determine the concentrations of TNF-α, IL-1β, IL-18, IL-2 and its soluble receptor (IL-2R) in renal transplant patients, 

regarding the length of the postoperative period. The study involved 65 patients, transplanted at least 12 months prior to 

our investigation, divided into three groups, regarding the time passed since the transplantation (12-24, 24-48, and >48 

months consecutively). Concentrations of the cytokines in the plasma of the subjects were measured using ELISA method. 

Group I showed significantly higher concentrations of IL-1b compared to the III (p<0.05), IL-18 compared to the II and 

III (p<0.05) and TNF-a compared to the II (p<0.05). Cytokine concentrations correlated with the time passed since the 

transplantation (p<0.05), except for TNF-a. Interleukin-2 correlated negatively with IL-18 and immunosuppressant dosage 

(p<0.05). Interleukin-1b, IL-18 and TNF-α measurements should be considered for monitoring and detecting potentially 

subclinical allograft damage in the second year after surgery. However, the dynamics of the change of cytokine 

concentration may also have been altered by the components of the immunosuppressive protocols used, such as tacrolimus, 

which is a link that is yet to be examined. 
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Introduction 

Kidney transplantation, as a method for the treatment of 

end-stage chronic kidney disease (CKD) patients, re-

quires a careful modulation of the natural immune re-

sponse. The transplanted allograft is susceptible to vari-

ous mechanisms of damage, and even after years of ex-

perience in this procedure of treatment, reports state that 

10-year allograft survival is around 65%  [1]. The 10-year 

graft survival rate has not changed much since 2005 [2] 

and the newest Organ Procurement and Transplantation 

Network report does not state the current percentage for 

adult recipients [3]. 

Immunosuppressive protocols for kidney transplant 

recipients usually include calcineurin inhibitor agents, 

such as cyclosporine A (CSA) and tacrolimus (TAC), 

alongside with antiproliferative drug mycophenolate mo-

fetil (MMF) and corticosteroid therapy [4]. Both CSA 

and TAC inhibit the activation and proliferation of T-
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cells. Cyclosporine A binds to cyclophilin protein within 

T-cells [5], while TAC binds to immunophilin FKBP12. 

The further effect of the complexes that formed is a cas-

cade of blocking calcineurin and an inhibition of several 

cytokine gene transcriptions, including interleukin 2 (IL-

2) [6].  

Chronic allograft disfunction and rejection, as a con-

sequence of constant immune damage to the graft, is 

mainly the result of failure to maintain the level of im-

munosuppression, necessary to control the reaction of the 

immune system to allogeneic tissue. Non-immunological 

factors (factors related to the donor, duration of ischemia, 

nephrotoxicity of immunosuppressive therapy, arterial 

hypertension, infections, recurrent or newly occurring 

glomerular disease, smoking) contribute to the allograft 

damage as well [7, 8]. A progressive decline in renal 

function occurs, as well as the invasion of the renal paren-

chyma by the T-cells. Immunohistology examination of 

the interstitial tissue shows a predominance of mononu-
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clear cells that are positive for MHC class II molecules 

and interleukin-2 receptor (IL-2R) [9]. Smooth muscle 

cell proliferation can also be detected, with the signs of 

hyperplasia in blood vessels, neointima formation, de-

struction of the internal elastic lamina, and finally, vas-

cular occlusion [9]. 

Pathophysiological mechanisms of  ongoing graft in-

jury are various. Although the damage caused by ische-

mia and reperfusion of the graft is usually associated with 

acute injuries, mostly early after the transplantation, it 

does play a role in the processes that affect the trans-

planted organ in the long term as well. Namely, as a result 

of a reaction of the endothelium to such damage, higher 

P-selectin expression, causes the binding of polymorpho-

nuclear cells and monocytes to the intima of blood ves-

sels [10]. A similar mechanism of non-specific immune 

reaction is present in the case of graft damage of another 

nature, which triggers local production of interleukin 1 

beta (IL-1β) and tumor necrosis factor alpha (TNF-α) by 

leukocytes. This activation of non-specific immunity is 

of cascade type and constantly increases leukocyte adher-

ence and infiltration of damaged tissue [11]. 

Apart from the role of circulating cells of the immune 

system, the role of renal tubular epithelial cells (TEC) as 

possible immunoregulators is emphasized in the litera-

ture [12, 13]. Namely, TEC produce various cytokines 

(IL-6, IL-18, IL-15, TNF-α, TGF-β, chemokines), some 

of which are pro-inflammatory and some anti-inflamma-

tory [14]. 

Tumor necrosis factor alpha, IL-1 and IL-18 are in-

flammatory cytokines, whose high concentrations are ob-

served in biopsies of grafts in acute rejection [15, 16]. It 

has also been shown that TEC in culture, activated by IL-

1, secrete TNF-α abundantly [17]. Literature data also indi-

cate that the donor phenotype with higher TNF-α produc-

tion leads to an increased risk for delayed graft function 

[18] and rejection [19]. The release of TNF-α induces the 

synthesis of intercellular adhesion molecule type 1 

(ICAM-1) and increases the adhesion of monocytes [20], 

which then differentiate into macrophages in the tissue and 

close the vicious circle of TNF-α production in the in-

flamed tissue. 

The increase of IL-1β in urine was reported to be as-

sociated with acute rejection, as a sign of increased local 

production of this cytokine inside the graft and the possi-

ble benefit of its serial monitoring in the early postoper-

ative period has been reported [21]. However, there is 

much less data on the benefits of determining this param-

eter in the long-term period after transplantation. 

A similar distribution in biopsies was observed in the 

case of IL-18, as well as the fact that this molecule and 

its receptor are synthesized by TEC cultures when acti-

vated by pro-inflammatory cytokines (TNF-α and IFN-

γ). By examining TEC cultures, it was also observed that 

this molecule is an autocrine factor for modulating the 

function and activity of the TEC cells themselves [22, 

23]. These data indicate that IL-18 may play an important 

role in allograft rejection by stimulating leukocyte infil-

tration and the immune activity of TECs. 

One of the most highlighted cytokines in the process of 

T lymphocyte activation and proliferation is IL-2. Secreted 

by the T cells themselves, it activates them back in an auto-

crine and paracrine way. This effect is achieved through 

binding to a specific receptor (IL-2R) and the formation of 

IL2-IL2R complex that starts the cell signaling cascade [24]. 

The existing diagnostic algorithm for monitoring kid-

ney transplant patients is based on monitoring renal func-

tion by determining creatinine clearance, however, in 

about 30% of clinically stable transplant patients, without 

deterioration of graft function, histological signs of rejec-

tion can be found [2]. These subclinical rejection reac-

tions can be detected by repeated analyses of allograft bi-

opsies obtained by protocol biopsies [25], which repre-

sent invasive diagnostic procedures, and the discovery of 

new, reliable and more accessible markers would be of 

great benefit in timely response to subclinical allograft 

damage. 

Thus, the aim of this study was to determine concen-

trations of TNF-α, IL-18, IL-1β and IL-2 and its soluble 

receptor fraction in patients in a long-term period after 

kidney transplantation.  

Materials and Methods 

The research was conducted in the Laboratory of the 

Institute of Biochemistry, Faculty of Medicine, 

University of Nis and at the Clinic for Nephrology, 

University Clinical Center Nis. The study protocol was 

approved by the Ethics Committees of the Faculty of 

Medicine, University of Nis, Nis, Serbia (approval no. 

01-10204-13). The study was conducted in accordance 

with the Declaration of Helsinki and the instructions  for 

good clinical practice. Written informed consent for 

participation in the study was obtained from all study 

participants. 

The study included 65 kidney transplant patients, at dif-

ferent periods after transplantation, divided into 3 groups: 

1. Patients with transplant 12-24 months (15 pa-

tients); 

2. Patients with transplant 24-48 months (20 pa-

tients); 

3. Patients with a transplant longer than 48 months 

(30 patients). 

Most of the patients had TAC- based immunosup-

pressive protocol (56 patients), while the rest (9 patients) 

received CSA as immunosuppressant. 

The research used plasma and serum obtained from a 

venous blood sample. The glomerular filtration rate was 

estimated (eGFR) based on the MDRD formula: 

eGFR (mL/min/1.73 m2) =  

32788 × (creatinine in µmol / L)-1.154 × (Years of age)-0.203 ×  

× (0.742 for women) × (1.212 for black race subjects) 

Concentrations of serum creatinine and urea were de-

termined using standard methods on an automatic ana-

lyzer (AU680 Clinical Chemistry Analyzer, Beckman 

Coulter, Brea, CA, USA). 
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Concentrations of the examined cytokines in the sub-

jects' plasma were measured by the ELISA technique, us-

ing commercially available kits: 

▪ ELISA Kit for human IL-18 (MBL International 

Corporation, MDD=12.5 pg/ml); 

▪ Quantikine® Colorimetric Sandwich ELISAs 

hsIL-1β (high sensitivity; R&D Systems, MDD= 

0.063 pg/ml); 

▪ Quantikine® Colorimetric Sandwich ELISAs 

TNF-α (R&D Systems, MDD=6.23 pg/ml); 

▪ Quantikine® Colorimetric Sandwich ELISAs  

IL-2 (R&D Systems, MDD=7 pg/ml); 

▪ ELISA kit for human IL-2 receptor (Abcam, 

MDD=68.75 pg/ml). 

Optical density of the performed ELISA tests was de-

termined at the wavelength stated in the kit protocol us-

ing Thermo Scientific™ Multiskan™ FC Microplate 

Photometer (Thermo Fisher Scientific). 

To compare the obtained results between the groups the 

ANOVA for unpaired samples (with normal distribution of 

parameter values) or the Kruskal-Wallis test (when the nor-

mal distribution of the values is not satisfied) was used. Cor-

relation analysis included Spearman’s correlation coeffi-

cient calculation for non-normally distributed data. Statisti-

cal analysis was performed using the SPSS software pack-

age (version 25) at a significance level of p < 0.05. 

Results 

The groups we examined in our study did not differ in 

terms of age and gender structure (Table 1).  

The results showed statistically significant differ-

ences in values of IL-1β, IL-18 and TNF-α among the 

groups of patients, while IL-2 and IL-2R differences 

were non-significant (Table 2). Group I had significantly 

higher concentrations of IL-1β compared to the III group 

(p<0.05). A similar finding occurred in the case of IL-18 

as well, in which case I group had higher values com-

pared to both II and III group (p<0.05). Tumor necrosis 

factor alpha turned out to be the highest in concentration 

in the I group, significantly compared to the II one 

(p<0.05). 

The correlation analysis we conducted included dos-

age and the concentration of the immunosuppressant 

drug used (TAC or CSA), as well as the time passed since 

the transplantation. The correlation was significant be-

tween years since the transplantation and all other param-

eters examined (p<0.05), except for TNF-α and IL-2R. 

These correlations were negative between the time 

passed since the transplantation and IL-18, IL-1β  and 

dosage of immunosuppressant, whereas IL-2 and immu-

nosuppressant concentration correlated positively (Table 

3). Interleukin 2 correlated negatively with IL-18 and im-

munosuppressant dosage (p<0.05). 

Table 1 Demographic characteristics of the examined patient groups. 

 
I group 

(12-24 months  

after transplantation) 

II group 

(24-48 months  

after transplantation) 

III group 

(more than 48 months  

after transplantation) 

Significance (p) 

Age (years)  42.2 ± 15.09  41.6 ± 9.05  44.2 ± 9.81 p>0.05 

Sex (M/F) 8/7 12/8 14/16 p>0.05 

Serum creatinine 

concentration (sCRE)  

(µmol / L) 

 191.873 ± 41.05  148.74 ± 65.31  134.11 ± 28.29 

I vs II: p=0.03 

I vs III: p<0.0001 

Serum urea 

 concentration (sUrea)  

(mmol / L) 

 11.06 ±  8.07  9.59 ± 5.95  9.52 ± 5.36 
I vs III: p<0.0001 

 

eGFR  

(mL/min/1.73m2) 
 42.72 ± 16.96  48.47 ± 14.19  48.09 ± 17.48 p>0.05 

Data presented as mean ± SD or n of participants. ANOVA test was used to compare the means between the groups. 

Table 2 Cytokine concentration difference between the examined groups of patients. 

Cytokine I group II group III group Significance (p) 

IL-2 (pg/ml)  8.07 ± 6.68  9.33 ± 5.49  9.26 ± 3.96 p>0.05* 

IL-2R (pg/ml)  1231.18 ± 730.4  1434.09 ± 400.0  1700.75 ± 1035.74 p>0.05* 

IL-1β (pg/ml)  1.48 ± 1.02  1.15 ± 0.51  0.79 ± 0.2 I vs III p<0.05* 

IL-18 (pg/ml)  3412.83 ± 1384.95  2389.9 ± 1134.53  2578.69 ± 1058.13 I vs II, I vs III p<0.05# 

TNF-α (pg/ml)  7.46 ± 3.83  4.33 ± 1.99  6.3 ± 2.2 I vs II p<0.05* 

Data presented as mean ± SD. ‘#’: ANOVA test was used to compare the means between the groups of normally distributed data. 

‘*’: Kruskal Wallis test was used if data were not normally distributed. Statistical analysis was done at the significance level of p<0.05.  



4 V. Stojiljković, N. Stefanović, K. Danković, et al. 

Discussion 

In the long-term period after transplantation, promptly 
ongoing processes, such as acute and per acute rejection 
of the graft, are less important, while damage to the graft 
by other mechanisms, such as oxidative stress, chronic 
inflammation and vascular damage, receive greater atten-
tion in terms of loss of organ function if they are not rec-
ognized  on time. One of the more prevalent processes is 
chronic allograft nephropathy (CAN), the pathogenesis 
of which is still not well understood, however, inflamma-
tion, mediated by specific (chronic rejection reaction) 
and non-specific (drug toxicity, ischemia) mechanisms, 
remain constant characteristic of this process [7, 26]. 
Macrophage infiltration is a feature of alloimmunity in 
general, but may be intensified by the ongoing stimuli of 
a different nature, such as ischemia [7, 27]. Experimental 
data from animal model based experiments indicate that 
the intensity of macrophage infiltration of the allograft 
after episodes of acute rejection or acute graft damage of 
another nature could be a predictive factor for assessing 
the risk of developing CAN in the later period [28]. One 
group of researchers, also using an animal model, proved 
that the application of inhibitors of macrophage function, 
adenoviral IL-10 and antagonists of TNF-α and IL-12 
(macrophage products), stops the development of clinical 
and histological changes in CAN [29]. Pilmore et al, in 
their study with protocol biopsies of allografts in humans, 
concluded that the intensity of macrophage infiltration in 
early biopsies was predictive of later development of 
CAN [30]. The mechanisms of macrophage participation 
in the development of CAN are complex, but the proin-
flammatory effect mediated by cytokines (TNF-α, IL-1) 
and cell damage by products of oxidative stress reactions 
are mentioned as probable mechanisms [31, 32]. 

Activated macrophages synthesize a large number of 

proinflammatory cytokines including IL-1, IL-18, and 

TNF-α [32, 33]. Interleukin 1 activates endothelial cells 

and induces the production of other cytokines, chemo-

kines, and leukocyte adhesion molecules [34]. Messenger 

RNA (mRNA) for IL-1, as well as IL-1 is increased in the 

rejection reaction, and recipients with the appropriate phe-

notype who produce large amounts of IL-1 receptor antag-

onists are less prone to allograft rejection [35]. Increased 

serum and tissue TNF-α, as well as increased TNF-α 

mRNA levels in graft tissue have been associated with 

acute renal and cardiac graft rejection [36, 37]. 

The results of our research show that the level of 

TNF-α is the highest in the first group of patients, the 

most recently transplanted patients. This result points to 

the possibility of increased vulnerability of the graft to 

the immune response of the recipient in the earlier period 

compared to the later years following transplantation. 

However, the initial pathology that led to the transplanta-

tion itself, as well as the changes and comorbidities that 

occurred during the hemodialysis that preceded the trans-

plantation should be taken into account. Namely, it has 

been published that there are significant changes in mac-

rophage activity and production of TNF-α and IL-1 in he-

modialysis patients, which was significantly increased 

[38]. In accordance with this, the influence of long-term 

hemodialysis on the production of pro-inflammatory cy-

tokines in these patients should be notified. 

A similar study also looked at the dynamics of 

changes in IL-1β concentration in hemodialysis patients, 

which was also significantly higher compared to controls 

[39]. The level of this cytokine also showed variations 

during the hemodialysis procedure itself, which may in-

dicate the value of this parameter in the earlier detection 

of macrophage function activation [40]. Our results 

showed variations in the level of IL-1β in all examined 

groups, however, only the decrease in the concentration 

of this cytokine in the third group compared to the first 

group of patients was significant. We can associate this 

finding with the relatively stable state of tissue and allo-

graft function in patients who potentially spent the same 

amount of time on hemodialysis and with the functioning 

transplant. Also, this is the group of patients who have been 

on immunosuppressive therapy for the longest time, with 

protocols that include CSA and TAC, whose mechanism of 

action is partially based on the suppression of the synthesis 

Table 3 Correlation analysis between the cytokine concentrations and additional factors. 

 IL-18 IL-2 IL-2R IL-1β TNF-α TAC/CSA dose TAC/CSA 

concentration 

Time since the 

transplantation 

-0.292 

(0.018)* 

0.261 

(0.036)* 

0.233 

(0.062) 

-0.320 

(0.009)* 

-0.145 

(0.249) 

-0.257 

(0.039)* 

0.347 

(0.005)* 

IL-18 
 

-0.261 

(0.036)* 

-0.070 

(0.578) 

0.041 

(0.744) 

0.080 

(0.526) 

0.201 

(0.108) 

-0.076 

(0.549) 

IL-2   0.055 

(0.665) 

-0.114 

(0.366) 

-0.083 

(0.512) 

-0.315 

(0.011)* 

-0.183 

(0.145) 

IL-2R    -0.049 

(0.700) 

0.023 

(0.854) 

0.213 

(0.089) 

0.151 

(0.229) 

IL-1β     -0.170 

(0.175) 

-0.020 

(0.873) 

-0.165 

(0.188) 

TNF-α      0.040 

(0.754) 

0.072 

(0.569) 

TAC/CSA dose       -0.086 

(0.498) 

Data presented as correlation coefficient (Spearman’s) including significance (p). p<0.05 was considered statistically significant. *: p<0.05. 
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of proinflammatory cytokines, including TNF-α and IL-1. 

Squadrito et al examined one of the animal models of arte-

rial occlusive shock and showed that TAC treatment re-

duces the level of circulating TNF-α, the expression of ad-

hesion molecules on blood vessels and leukocytes and tis-

sue infiltration by leukocytes, and concluded that the TAC 

inhibition of TNF-α has a vasculo-protective effect in this 

model of ischemia-reperfusion damage [41]. Accordingly, 

the role of immunosuppressive therapy on the level of these 

parameters should also be considered. 

Systemic neutralization of TNF-α activity signifi-

cantly prolongs allograft maintenance in experimental 

primate models [42] and reduces kidney injury in the 

graft ischemia-reperfusion (IRI) model [43]. All these 

studies suggest that TEC, which produce TNF-α, can 

play an important effector role in kidney allograft rejec-

tion by producing this cytokine within the graft, which 

can later either damage the graft cells directly or indi-

rectly, by activating leukocytes that infiltrate the tissue. 

The results of our study showed significantly higher 

concentration of plasma IL-18 in the first group com-

pared to the second and third. In the literature, there are 

data on the possible role of IL-18, originating from mac-

rophages in renal allograft rejection [44]. These studies 

also showed a reduction in allograft damage in macro-

phage-depleted animals, which then showed significantly 

lower levels of IL-18 [37]. The receptor for IL-18 is also 

expressed on TEC and undergoes up-regulation in re-

sponse to TNF-α and other pro-inflammatory cytokines 

[23], suggesting the possibility that IL-18 produced by 

TEC can autocrinally regulate their activity, which some 

studies have shown on TEC cultures [45, 46]. These data 

indicate that IL-18 may play an important role in renal 

allograft rejection by stimulating both leukocyte infiltra-

tion and activation of residual and TEC. However, in a 

fully MHC-incompatible murine model of acute renal re-

jection, neither IL-18 deficiency from recipient leuko-

cytes nor systemic neutralization of IL-18 activity 

showed a protective effect in the allograft rejection reac-

tion [47]. This finding suggests that IL-18 may only have 

a minimal effect in renal allograft rejection, as a co-stim-

ulatory cytokine. 

In this study, IL-1β and IL-18 showed a significant 

negative correlation with the years passed since the trans-

plantation, while the correlation of IL-2 and IL-2R was 

positive. However, since IL-2 and IL-2R did not differ 

significantly among the groups of patients, this correla-

tion should be interpreted carefully. Other studies also 

made different conclusions on this matter. Some proved 

favorable outcomes when IL-2R antibody treatment is 

applied [48], while some reported that there were no sig-

nificant effects [49, 50]. Generally, in protocols using 

TAC as an immunosuppressive agent, IL-2R antibody 

does not seem to have benefits, and in order to get more 

precise conclusions, more randomized trials should be 

conducted [51]. 

Our results also showed a significant negative corre-

lation between IL-2 and IL-18. Although IL-2 and IL-18 

do not have a direct functional connection, they can in-

teract indirectly through their effects on other immune 

cells and cytokines. For example, IL-2 can stimulate the 

production of IFN-γ, which in turn can activate macro-

phages and enhance antigen presentation, leading to an 

enhanced immune response. Similarly, IL-18 can stimu-

late the production of IFN- γ and other cytokines, which 

can activate T and NK cells and promote an immune re-

sponse against infections and tumors [52]. The negative 

correlation obtained in this study could be a result of 

treatment effects to IL-2 production, since there was a 

negative correlation with the immunosuppressant dosage 

as well. However, since the correlation with the concen-

tration of the drug did not prove to be statistically signif-

icant, the explanation is most likely the number of partic-

ipants we included.  

The study we conducted has some limitations that 

might have influenced the results we obtained. The patient 

group we examined had 65 participants, with majority of 

them being treated with TAC based immunosuppression 

protocol. It would be advisable to expand the examined co-

hort and include more CSA treated patients, as well as mul-

tiple cytokine measurements during post-transplant follow 

up period in order to draw more precise conclusions.  

Conclusion 

In this study, patients 12-24 months after kidney trans-

plantation had significantly higher concentrations of IL-

1β, IL-18 and TNF-α compared to the rest of the patients 

who received the allograft 24-48 and more than 48 

months prior to the beginning of this research. All exam-

ined cytokines, except TNF-α, correlated with the time 

passed since the transplantation. 

Accordingly, IL-1β, IL-18 and TNF-α concentrations 

should be considered for monitoring and detecting poten-

tially subclinical allograft damage in the second year af-

ter surgery. Due to their mechanism of action, drugs from 

the immunosuppressive protocols used in the therapy of 

these patients, such as TAC, participate in the modulation 

of the synthesis of pro-inflammatory cytokines, IL-18 

and IL-2 included, thus affecting their concentration. 

Therefore, this influence should be observed more care-

fully, preferably in a larger cohort, in order to explain 

negative correlations such as the one we found between 

IL-2 and IL-18. 
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