CD34 AND C-KIT IMMUNOREACTIVE CELLS IN THE HUMAN EMBRYONAL AND FETAL SMALL BOWEL

Goran Radenković, Mirjana Abramović, Dušan Sokolović, Ljiljana Vasović, Olivera Mitrović, Aleksandra Veličkov

University of Niš, Faculty of Medicine, 1Department of Histology and Embryology, 2Institute of Chemistry, 3Department of Biochemistry, 4Department of Anatomy, Niš, Serbia
5Institute for Medical Research, Department of Histology and Pathology, Belgrade, Serbia

Abstract. Interstitial cells of Cajal (ICC) play important roles in the control of digestive motility: they generate the electrical slow-wave activity (pacemaker component) of the gut musculature and are involved in neurotransmission and stretch sensation. ICC express c-kit and depends on signaling via Kit receptors for development and maintenance of phenotype. The aim of the present study was to investigate if the c-kit immunoreactive (IR) cells present in the wall of the small bowel at the beginning of the fetal period are CD34 immunopositive. Human small bowel specimens were obtained from 5 embryos and 7 foetuses, 7–12 weeks of gestational age. The specimens were exposed to anti-c-kit antibodies to investigate ICC differentiation and anti-CD34 antibodies to identify presumed ICC progenitors. The differentiation of smooth muscle cells was studied with anti-desmin antibodies. At 9–10 weeks, c-kit IR cells were present in the wall of small bowel in the form of a narrow band of cells, at the level of the myenteric plexus, but they were absent in the mucosa and submucosa of the gut. At the same time, CD34 IR cells were present at the level of submucosa and mucosa, and they were not present in the outer parts of gut wall. A clear distinction between the localization of c-kit IR cells and CD34 IR cells was evident. We may conclude that c-kit IR cells present in the small bowel wall at the beginning of fetal period of development, at 9–10 weeks, do not exhibit concurrent CD34 immunoreactivity.

Key words: Small bowel, c-kit, CD-34, immunohistochemistry, human

Introduction

Interstitial cells of Cajal (ICC) are a distinct and unique cell population distributed in the muscle layer of digestive tube of many vertebrates including humans [1, 2]. They are network-forming cells connected electrically with each other and with smooth muscle cells via gap junctions [3, 4]. ICC play important roles in the control of digestive motility: they generate the electrical slow-wave activity (pacemaker component) of the gut musculature [5–7] and are involved in neurotransmission [8, 9] and stretch sensation [10]. ICC express c-kit and depend on signaling via Kit receptors for development and maintenance of phenotype [11]. At the end of the embryonic period of human development, c-kit immunoreactive (c-kit IR) cells are present in the oesophagus and stomach wall in the form of a wide belt of cells around the inception of the myenteric plexus (MP) ganglia [12, 13]. In the small and large bowel, c-kit-IR cells appear later (in the small bowel at 9 weeks, and in the colon at 10–12 weeks), in the form of narrow linear rows of cells, also in the MP region [14–16]. Enteric neurons and glial cells arise from the neural crest (from “vagal” and “sacral” level) [17]. Lecoin et al. [18] were the first to show that ICC in the avian intestine do not arise from the neural crest. The study by Klüppel et al. [19] also suggested strongly that ICC and smooth muscle cells arise from common precursor cells. Smooth muscle markers, such as the heavy chain of smooth muscle myosin, are coexpressed with Kit in the developing gut [19]. However, some of the Kit-positive mesenchymal cells are destined to become smooth muscle cells, and such cells down-regulate the expression of Kit and unregulate the expression of myofilament proteins. ICC maintain their expression of Kit, even in mature animals.

Lorincz et al. [20] provided evidence for characterization of potential progenitor cells for ICC in the stomach of adult mice. They have demonstrated that these cells are positive for Kit, CD34 (an adhesion molecule), as well as CD44, insulin receptors and IGF-1 receptors (IGF-IR) [20]. CD34-cells, mostly known as interstitial Cajal-like cells (ICLCs), are present in the submucosa of the entire human gastrointestinal tract [21]. Recently, telocytes, belonging to the group of ICLCs, were described as a distinctive type of cells [22]. The ICC precursor cell could possibly appear as a fibroblast-like (immature)
ICC at the ultrastructural level, identified in W mutant animals; these cells are Kit negative, but have gap junction contact with smooth muscle cells and are also associated with Auerbach’s plexus [23]. The identification of the morphology of the immature ICC, their cytological changes and their organization during differentiation might help in interpreting the significance of abnormalities in the ICC distribution, density and morphology at birth and in the early paediatric age, as well as in understanding the pathophysiology of intestinal motility disorders in neonates and young children.

The aim of the present study was to investigate if the c-kit IR cells present in the wall of the small bowel at the beginning of the foetal period are CD34 immunopositive, respectively if they represent the common precursors of ICC and smooth muscle cells, or already differentiated, mature ICC.

Material and Methods
The human material was obtained after legal abortions (0.5–1 h postmortem) and premature births due to prepartial deaths according to the principles of the Ethical Committee of the Faculty of Medicine of the University of Niš. Both genders are represented in the sample, and no specimens had gastrointestinal disorders. Gestational ages were estimated by anatomic criteria according to the Carnegie Staging system and the crown-rump length, head circumference, and foot length. Each embryo and foetal small bowel specimen was fixed in 10% neutral formalin and paraffin-embedded. The study was approved by the Ethics Committee of the Faculty of Medicine of the University of Niš.

The study material consisted of 5 human embryos and 7 human foetuses, 7–12 weeks gestational age (7 weeks, n=2; 8 weeks, n=3; 9 weeks, n=2; 10 weeks, n=2; 12 weeks, n=3). Small foetuses (9 and 10 weeks) were processed completely, sequentially sectioned at 4 μm, and stained. Immunohistochemical analysis was performed using the detection Kit-Polymer. The sections were deparaffin in xylol and a descending series of alcohol rinses (< 1 min each), then rehydrated in distilled water. The endogenous peroxidase was blocked with 3% H2O2 for 10 min at room temperature. This was followed by incubation with the primary antibodies for 60 min at room temperature, rinsing in a phosphate buffered solution (0.1M PBS, pH 7.4). The primary antibodies were dissolved in Dako antibody diluent (Cat. No. S0809). The sections were incubated with streptavidin horseradish conjugate for 30 min at room temperature. The complex was visualised with DAKO Liquid DAB + Substrate/Chromogen System (Code No. K3468) and DAKO AEC + Substrate/Chromogen System (code no. K3469; Dako). Immunostaining for CD34 was then performed as previously described. All immunolabelled sections were counterstained by Mayer’s haematoxylin. Immunoreactivity was absent in negative controls in which the primary antibody was omitted. Sections were examined with an Olympus BX50 microscope and photographed with an Olympus PM-C35 camera.

The primary antibodies used, and their respective dilutions, are listed in Table 1.

Table 1. Antibodies

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Clone</th>
<th>Supplier</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-kit</td>
<td>CD-117</td>
<td>Dako</td>
<td>1 : 300</td>
</tr>
<tr>
<td>CD34</td>
<td>QBEnd 10 N1632</td>
<td>Dako</td>
<td>Ready to use</td>
</tr>
<tr>
<td>Desmin</td>
<td>DE-R-11</td>
<td>Dako</td>
<td>1 : 100</td>
</tr>
</tbody>
</table>

Results
In the study, we have not considered the initial portions of the small bowel, immediately adjacent to the stomach, developing from the foregut, in which ICC differentiate in the way identical to that in the stomach.

At the end of the embryonic period of development, at weeks 7 and 8, DES immunoreactivity was faint in the cells that would form the circular muscle layer. In the same period, c-kit IR cells were absent in the wall of the midgut, part of the primitive gut which gives a rise to small bowel. CD34 IR cells were present in the inner parts of the wall of the primitive gut, which will develop in mucosa and submucosa, but not present at the level of the MP ganglia. At 9–10 weeks, DES immunoreactivity was present in all parts of the small bowel. DES immunostaining was observed as a band that encircled the gut (corresponded to the circular muscle layer), and in the form of an extremely thin band of cells located outside the MP (presumptive longitudinal muscle layer) (Fig. 1).

![Desmin immunohistochemistry](image)

Fig. 1. Desmin immunohistochemistry (9 weeks gestational age, small bowel). DES-IR was present in the circular muscle layer and in the very thin band of cells located outside the MP, presumptive longitudinal muscle layer (arrows). cm, circular muscle layer; mp, myenteric plexus; sm, submucosa. Bar: 30 μm.

In this period of development, c-kit IR cells were detected in the wall of small bowel. They were present in the form of a narrow band of cells, at the level of the MP and encircled the ganglia, but neither their bodies nor their processes were present within the ganglia. C-kit IR cells were absent in the mucosa and submucosa of the gut (Fig. 2).
At the same time, CD34 IR cells were present and distributed in the identical way as in the embryonal period, at the level of submucosa and mucosa, and they were not present in the outer parts of gut wall (Fig. 3). A clear distinction between the localization of c-kit IR cells and CD34 IR cells was evident (Figs. 2 and 3).

Discussion

The paper described the time and mode of differentiation of muscle layers of the small bowel wall, primarily aiming to determine in a more precise way the place of appearance and mode of distribution of c-kit IR cells. Namely, at the end of embryonic period, the circular muscle layer differentiated, while the longitudinal appeared at the beginning of foetal period of development. These findings are in agreement with previous results regarding the development of neuromuscular structures in the human small bowel [24, 25].

Our results demonstrated that c-kit IR cells appeared in the small bowel wall (with the exception of its initial portion due to reasons mentioned above) not till the foetal period of development and in the myenteric plexus region, without being present in the inner parts of the wall, in the region of submucosa and mucosa of the bowel. On the other hand, CD34 IR cells were present at the end of embryonic period and the beginning of foetal period, but in both cases only in the inner parts of the small bowel wall, while they were not demonstrated in its outer parts. A difference in distribution of c-kit IR and CD34 IR cells in the small bowel wall was evident—c-kit IR cells did not exhibit simultaneous CD34 immunoreactivity. If the assumption of Huizinga and White [26] was applicable to the ICC development in humans, our findings would indicate that c-kit IR cells described in the small bowel wall in weeks 9–10 are in fact already differentiated, mature ICC. In other words, ICC precursors exhibit simultaneous c-kit and CD34 immunoreactivity, while mature ICC forms cease to exhibit CD34 and retain only c-kit IR properties [26].

On the other hand, according to the assumption by Horiguchi and Komuro [23], ICC precursors are c-kit negative and they could possibly appear as fibroblast-like cells. In that case, ICC precursors could be present in the small bowel wall in embryonal period of development, at 7–8 weeks, and the process of differentiation occurs at the beginning of foetal period when c-kit positive cells appear representing mature ICC. At the same time, the appearance of c-kit IR cells and longitudinal muscle layer is in accordance with the hypothesis by Klüppel et al. [19] who have claimed that ICC and smooth muscle arise from common precursor cells. Common precursors of the above cells are present in the outer parts of the bowel wall at the end of embryonic period of development, and later, at the beginning of fetal period of development a portion of these cells differentiates into smooth muscle cells of the longitudinal layer, while the rest differentiate into ICC. Certainly, the hypotheses stated above require further confirmation.

Conclusion

We may say that c-kit IR cells present in the small bowel wall at the beginning of fetal period of development, at 9–10 weeks, do not exhibit concurrent CD34 immunoreactivity.

Acknowledgments. This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (Projects 43012 and 175092). We thank Mr. Mile Ž. Randelović for his technical assistance.
References