Marija Petrović, Danijela Todorović

DOI Number
First page
Last page


Cisplatin (cis-Diamminedichloroplatinum II) is one of the most important chemotherapeutic agents widely used in treatment of many types of solid cancer. Accumulating evidence suggests that the cytotoxic activity of cisplatin involves both nuclear and cytoplasm component, but its biochemical and molecular mechanisms of action are still unclear. Its mode of action is linked to the ability of cisplatin to interact with purine bases on the DNA, causing DNA damage, interfering with DNA repair mechanisms and inducing apoptotic cell death in cancer cells. The major limitations in the clinical application of cisplatin are the numerous side effects and the development of cisplatin resistance by tumors. Mechanisms that can explain cisplatin resistance include the reduction in drug accumulation inside the cell, higher concentration of glutathione and metallothioneins, faster repair of cisplatin adducts and modulation of apoptotic cell death in various cells. In this article we review the pathways that cisplatin can activate in cancer cell, the mechanisms of resistance and clinical toxicities. A deep knowledge of mechanisms of action may lead to design of more efficient platinum-based antitumor drugs and provide new therapeutic strategies in cancer treatment.


cisplatin, DNA damage, cancer cells, drug resistance, platinum-based drugs

Full Text:



Mihajlović J, Pechlivanoglou P, Miladinov-Mikov M, Zivković S, Postma MJ. Cancer incidence and mortality in Serbia 1999-2009. BMC Cancer 2013; 13:18

Vlajinac H, Sipetić-Grujicić S, Janković S, et al. Burden of cancer in Serbia. Croat Med J 2006; 47:134-141.

Ciccarelli RB, Solomon MJ, Varshavsky A, Lippard SJ. In vivo effects of cis-and trans-diamminedichloroplatinum(II) on SV40 chromosomes: differential repair, DNA-protein cross-linking, and inhibition of replication. Biochemistry 1985; 24:7533-7540.

Galanski M, Jakupec MA, Keppler BK. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 2005; 12:2075-2094.

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7:573-584.

Einhorn LH, Williams SD, Loehrer PJ, et al. Evaluation of optimal duration of chemotherapy in favorable-prognosis disseminated germ cell tumors: a Southeastern Cancer Study Group protocol. J Clin Oncol 1989; 7:387-391.

Horácek P, Drobník J. Interaction of cis-dichlorodiammineplatinum (II) with DNA. Biochim Biophys Acta. 1971; 254:341347

Coluccia M, Natile G. Trans-platinum complexes in cancer therapy. Anticancer Agents Med Chem 2007; 7:111-123

Nagai N, Okuda R, Kinoshita M, Ogata H. Decomposition kinetics of cisplatin in human biological fluids. J Pharm Pharmacol 1996; 48:918-924.

Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A. 2002; 99:14298-14302.

Fuertes MA, Alonso C, Pérez JM. Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev. 2003; 103:645-662.

Yen HC, Tang YC, Chen FY, Chen SW, Majima HJ. Enhancement of cisplatin-induced apoptosis and caspase 3 activation by depletion of mitochondrial DNA in a human osteosarcoma cell line. Ann N Y Acad Sci. 2005; 1042:516-522.

Payet D, Gaucheron F, Sip M, Leng M. Instability of the monofunctional adducts in cis-[Pt(NH3)2(N7-N-methyl-2-diazapyrenium)Cl](2+)-modified DNA: rates of -linking reactions in cis-platinum-modified DNA. Nucleic Acids Res. 1993; 21:5846-5851.

Imamura T, Izumi H, Nagatani G, et al.Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein. J Biol Chem 2001; 276:7534-7540.

Zamble DB, Mikata Y, Eng CH, Sandman KE, Lippard SJ. Testis-specific HMG-domain protein alters the responses of cells to cisplatin. J Inorg Biochem 2002; 91:451-462.

Moggs JG, Szymkowski DE, Yamada M, Karran P, Wood RD. Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts. Nucleic Acids Res 1997; 25:480-491.

Reardon JT, Vaisman A, Chaney SG, Sancar A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res 1999; 59:3968-3971.

Woźniak K, Błasiak J. Recognition and repair of DNA-cisplatin adducts. Acta Biochim Pol 2002; 49:583-596.

Toft NJ, Winton DJ, Kelly J, et al. Msh2 status modulates both apoptosis and mutation frequency in the murine small intestine. Proc Natl Acad Sci U S A 1999; 96:3911-3915.

Vaisman A, Varchenko M, Umar A, et al. The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res 1998; 58:3579-3585.

Masuda H, Tanaka T, Takahama U. Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 1994; 203:1175-1180.

Saad SY, Najjar TA, Alashari M. Role of non-selective adenosine receptor blockade and phosphodiesterase inhibition in cisplatin-induced nephrogonadal toxicity in rats. Clin Exp Pharmacol Physiol 2004; 31:862-867.

Sharaf el dein O, Gallerne C, Brenner C, Lemaire C. Increased expression of VDAC1 sensitizes carcinoma cells to apoptosis induced by DNA cross-linking agents. Biochem Pharmacol 2012; 83:1172-1182.

Kohno K, Wang KY, Takahashi M, et al. Mitochondrial transcription factor A and mitochondrial genome as molecular targets for cisplatin-based cancer chemotherapy. Int J Mol Sci 2015; 16:19836-19850.

Jamieson ER, Lippard SJ. Structure, recognition and processing of cisplatin-DNA adducts. Chem Rev 1999; 99:24672498.

Petrovic M, Todorovic D. Apoptosis and cell cycle. Racionalna terapija 2014; 6:21-32.

Yu J, Zhang L. The transcriptional targets of p53 in apoptosis control. Biochem. Biophys. Res. Commun 2005; 331: 851-858.

Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22:7265-7279.

Jeffers JR, Parganas E, Lee Y, et al. Puma is an essential mediator of p53-dependent and –independent apoptosis pathways. Cancer Cell 2003; 4:321-328.

Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997; 91:443-446.

Lin Y, Ma W, Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet 2000; 26:122-127.

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014; 740:364-378.

Eliopoulos AG, Kerr DJ, Herod J,et al. The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl2. Oncogene 1995; 11:1217-1228.

Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther. 2003; 1:47-61.

Kuhlmann MK, Burkhardt G, Köhler H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 1997; 12:2478-2480.

Lieberthal W, Triaca V, Levine J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 1996; 270:F700-8.

Li Y, Womer RB, Silber JH. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur J Cancer 2004; 40:2445-2451.

Schaefer SD, Wright CG, Post JD, Frenkel EP. Cis-platinum vestibular toxicity. Cancer 1981; 47:857-859.

Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity. J Toxicol 2012; 2012:645460.

Lu Y, Cederbaum AI. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci 2006; 89:515-523.

Işeri S, Ercan F, Gedik N, Yüksel M, Alican I. Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. Toxicology 2007; 230(23):256-264.

Liao Y, Lu X, Lu C, Li G, Jin Y, Tang H. Selection of agents for prevention of cisplatin-induced hepatotoxicity. Pharmacol Res 2008; 57:125-131.

Yousef MI, Saad AA, El-Shennawy LK. Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem Toxicol 2009; 47:1176-1183.

Meijer C, de Vries EG, Marmiroli P, Tredici G, Frattola L, Cavaletti G. Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuropathy. Neurotoxicology 1999; 20: 883-887.

Hartmann JT, Lipp HP. Toxicity of platinum compounds. Expert Opin. Pharmacother 2003; 4:889-901.

Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 2011; 3:1351-1371.

Holzer AK, Katano K, Klomp LW, Howell SB. Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin Cancer Res 2004; 10:6744-6749.

Nakayama K, Miyazaki K, Kanzaki A, Fukumoto M, Takebayashi Y. Expression and cisplatin sensitivity of copper-transporting P-type adenosine triphosphatase (ATP7B) in human solid carcinoma cell lines. Oncol Rep 2001; 8:1285-1287.

Jansen BA, Brouwer J, Reedijk J. Glutathione induces cellular resistance against cationic dinuclear platinum anticancer drugs. J Inorg Biochem 2002; 89:197-202.

Welsh C, Day R, McGurk C, Masters JR, Wood RD, Köberle B. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int J Cancer 2004; 110:352-361.

Siegsmund MJ, Marx C, Seeman O, et al. Cisplatin-resistant bladder carcinoma cells: enhanced expression of metallotioneins. Urol Res 1999; 27:157-163.

Meijer C, Timmer A, DeVries EG, et al. Role of metallothionein in cisplatin sensitivity of germ-cell tumors. Int J Cancer 2000; 85:777-781.

Surowiak P, Materna V, Meciejczyk A, et al. Nuclear metallothionein expression correlates with cisplatin resistance ovarian cancer cells and poor clinical outcome. Virchows Arch 2007; 450:279-285.

Selvakumaran M, Pisarcik DA, Bao R, Yeung AT, Hamilton TC. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res 2003; 63:1311-1316.

Metzger R, Bollschweiler E, Hölscher AH, Warnecke-Eberz U. ERCC1: impact in multimodality treatment of upper gastrointestinal cancer. Future Oncol 2010; 6:1735-1749.

Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006; 355:983-991.

Sakamoto M, Kondo A, Kawasaki K, et al. Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray. Hum Cell 2001; 14:305-315.

Fuertes MA, Castilla J, Alonso C, Pérez JM. Novel concepts in the development of platinum antitumor drugs. Curr Med Chem Anticancer Agents 2002; 2:539-551.

Machover D, Diaz-Rubio E, de Gramont A, et al. Two consecutive phase II studies of oxaliplatin L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann Oncol. 1996; 7:95-98.

Akshintala S, Marcus L, Warren KE, et al. Phase 1 trial and pharmacokinetic study of the oral platinum analog satraplatin in children and young adults with refractory solid tumors including brain tumors. Pediatr Blood Cancer. 2015; 62:603-610.

Arendse, M.J., Anderson, G.K., Majola, R.N. and Rath, N.P. Synthesis and reactions of platinum(IV) complexes with sodium ascorbate. Inorg Chim Acta 2002; 340: 65-69.

Choy H, Park C, Yao M. Current status and future prospects for satraplatin, an oral platinum analogue. Clin Cancer Res 2008; 14:1633-1638.

Hall MD, Amjadi S, Zhang M, Beale PJ, Hambley TW. The mechanism of action ofplatinum(IV) complexes in ovarian cancer cell lines. J Inorg Biochem 2004; 98:1614-1624.

Vujić JM, Kaluđerović GN, Zmejkovski BB, et al. Stereospecific ligands and their complexes. Part X: Synthesis, characterization and in vitro antitumoral activity of platinum(IV) complexes with O,O0-dialkyl-(S,S)-ethylenediamine-N,N0- di-2-(4-methyl)pentanoate ligands. Inorganica Chimica Acta 2012; 390:123-128.

Arsenijević М, Milovanović М, Volarević V, et al. Cytotoxic properties of platinum(IV) and dinuclear platinum(II) complexes and their ligand substitution reactions with guanosine-5'-monophosphate Trans Met Chem 2012; 37:481-488.

Hamilton G. Picoplatin pharmacokinetics and chemotherapy of non-small cell lung cancer. Expert Opin Drug Metab Toxicol 2013; 9:1381-1390.

Abu-Surrah AS, Kettunen M. Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr Med Chem 2006; 13:1337-1357.

Spiegel K, Magistrato A, Carloni P, Reedijk J, Klein ML. Azole-bridged diplatinum anticancer compounds. Modulating DNA flexibility to escape repair mechanism and avoid cross resistance. J Phys Chem B 2007; 111:11873-11876.

Gornowicz A, Kałuża Z, Bielawska A, Gabryel-Porowska H, Czarnomysy R, Bielawski K. Cytotoxic efficacy of a novel dinuclear platinum(II) complex used with anti-MUC1 in human breast cancer cells. Mol Cell Biochem 2014; 392:161-174.

Machover D, Diaz-Rubio E, de Gramont A, et al. Two consecutive phase II studies of oxaliplatin L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann Oncol 1996; 7:95-98.

Rice JR, Gerberich JL, Nowotnik DP, Howell SB. Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminocyclohexane-platinum tumor-targeting drug delivery system. Clin Cancer Res 2006; 12:2248-2254.


  • There are currently no refbacks.

© University of Niš, Serbia
Creative Commons licence CC BY-NC-ND
ISSN 0354-4699 (Print)
ISSN 2406-050X (Online)