
FACTA UNIVERSITATIS

Series: Physics, Chemistry and Technology Vol. 14, No 3, Special Issue, 2016, pp. 215 – 224

DOI: 10.2298/FUPCT1603215C

ON THE DE SITTER TARDYONS AND TACHYONS
†

UDC 530.145:530.12:539.12

Ion I. Cotaescu
∗

West University of Timişoara, Timişoara, Romania

Abstract. It is shown that on the de Sitter manifolds the tachyonic geodesics

are restricted such that the classical tachyons cannot exist on this manifold at

any time. On the contrary, the theory of the scalar quantum tachyons is free

of any restriction. The tachyonic scalar and Dirac plane waves are deduced

in this geometry, pointing out that these are well-defined, behaving as tempered

distributions at any moment.
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1. Introduction

In special relativity one knows three types of particles, tardyons (subluminal),
light-like and tachyons (superluminal). The first two types of particles are of our
world, inside the light-cone, while the tachyons seems to live in another one, outside
the light-cone. These two worlds seems to be completely separated as long as there
are no direct physical evidences about the tardyon-tachyon interactions. For this
reason the tachyons are the most attractive hypothetical objects for speculating
in some domain in physics where we have serious difficulties in building coherent
theories. We mention, as an example, the presumed role of the tachyons in the
early brane cosmology [1]. However, here we do not intend to comment on this
topics, restricting ourselves to analyze, from the mathematical point of view, the
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possibility to meet classical or quantum scalar or Dirac tachyons on the de Sitter
backgrounds.

The de Sitter manifold, denoted from now by M , is local-Minkowskian such
that the tachyons can be defined as in special relativity, with the difference that
their properties are arising now from the specific high symmetry of the de Sitter
manifolds. It is known that the isometry group ofM , denoted by I(M) = SO(1, 4),
is in fact the gauge group of the Minkowskian five-dimensional manifold M5 em-
bedding M . The unitary irreducible representations of the corresponding group
S(M) = Spin(1, 4) = Sp(2, 2) are well-studied [2] and used in various applications.
Many authors exploited this high symmetry for building theories of quantum fields,
either by constructing symmetric two-point functions, avoiding thus the canoni-
cal quantization [3], or by using directly these unitary representations for finding
field equations but without considering covariant representations [4, 5]. Another ap-
proach which applies the canonical quantization to the covariant fields transforming
according to induced covariant representations was initiated by Nachtmann [6] many
years ago and continued in few of our papers [7, 8, 9].

In what follows we would like to study the tachyons onM in this last framework
by using the traditional definition of tachyons as particles of real squared masses
but of opposite sigs with respect to the tadyonic ones. For this reason our results
are different from other approaches [4, 5] where particles whose squared masses are
supposed to be complex numbers are considered as tachyon [5]. Thus we find a
result that seems to be somewhat paradoxical, namely that the classical tachyons
cannot exist onM at any time while the quantum scalar and Dirac particles behaves
normally on this manifold, without any restriction.

The paper is organized as follows. In the next section we present the geodesics
depending on a parameter giving their types (tardyonic, tachyonic or light-like) and
we argue why the tachyonic lifetime is restricted onM . The next section is devoted
to the quantum scalar and Dirac tachyons whose theory does not meet difficulties
such that the mode functions are defined correctly as tempered distributions on the
entire space at any moment. Finally, we present the principal conclusion concerning
the discrepancy between the classical and quantum cases.

2. Classical de Sitter geodesics

The de Sitter spacetime M is defined as the hyperboloid of radius 1/ω 1 in the
five-dimensional flat spacetime (M5, η5) of coordinates zA (labeled by the indices
A, B, ... = 0, 1, 2, 3, 4) and metric η5 = diag(1,−1,−1,−1,−1). The local charts
{x} can be introduced on (M, g) giving the set of functions zA(x) which solve the
hyperboloid equation,

η5ABz
A(x)zB(x) = − 1

ω2
. (1)

1We denote by ω the Hubble de Sitter constant since H is reserved for the energy operator
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Here we use the chart {t, ~x} with the conformal time t and Cartesian spaces coor-
dinates xi defined by

z0(x) = − 1

2ω2t

[

1− ω2(t2 − ~x2)
]

zi(x) = − 1

ωt
xi , (2)

z4(x) = − 1

2ω2t

[

1 + ω2(t2 − ~x2)
]

This chart covers the expanding portion, M+, of M for t ∈ (−∞, 0) and ~x ∈ R
3

while the collapsing part, M−, is covered by a similar chart but with t > 0. Both
these charts have the conformal flat line element,

ds2 = η5ABdz
A(x)dzB(x) =

1

ω2t2
(

dt2 − d~x2
)

. (3)

We remind the reader that on each portion one can introduce a chart of proper time
defined as,

tproper =







− 1
ω ln(−ωt) on M+ for −∞ < t < 0 ,

1
ω ln(ωt) on M− for 0 < t <∞ ,

(4)

such that this spans the whole real axis, tproper ∈ (−∞,∞), on each portion.

By definition, the de Sitter spacetime M is a homogeneous space of the pseudo-
orthogonal group SO(1, 4) which is in the same time the gauge group of the metric
η5 and the isometry group, I(M), of M . The classical conserved quantities as well
as the basis-generators of the covariant representations of the isometry group can
be calculated with the help of the Killing vectors k(AB) which have the following
components:

k0(0i) = k0(4i) = ωtxi , kj(0i) = kj(4i) −
1

ω
δji = ωxixj − δjiχ , (5)

k0(ij) = 0 , kl(ij) = δljx
i − δlix

j ; k0(04) = t , ki(04) = xi . (6)

where

χ =
1

2ω

[

1− ω2(t2 − ~x2)
]

. (7)

Furthermore, It is a simple exercise to integrate the geodesic equations and to
find the conserved quantities on a geodesic trajectory on M . Using the standard

notation uµ = dxµ(s)
ds we bear in mind that the principal invariant u2 = gµνu

µuν = ǫ
along the geodesics x = x(s) determines the type of this trajectory, i. e. tardyonic
(ǫ = 1), light-like (ǫ = 0) or tachyonic (ǫ = −1). All the other conserved quantities
along the geodesics are proportional to k(AB)µu

µ and can be derived by using the
Killing vectors (5) and (6).
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Figure 1: The worldlines of the tardyons (diamonds) and tachyons (circles) with
the same momentum and the initial conditions x0 = 0 and either t0 = − 1

ω on M+

(left panel) or t0 = 1
ω on M− (right panel). The solid lines represent the light-cones

which tends asymptoticly to the event horizon at x = ± 1
ω .

We assume first that in the chart {t, ~x} the particle of mass m 6= 0 has the
conserved momentum ~p of components p i = ωm(k(0i)µ − k(4i)µ)u

µ so that we can
write

u0 =
dt

ds
= −ωt

√

ǫ+
ω2p2

m2
t2 , ui =

dxi

ds
= −(ωt)2

p i

m
, (8)

using the notation p = |~p |. Hereby we deduce the trajectory,

xi(t) = xi0 +
p i

ωp2

(

√

ǫm2 + p2ω2t20 −
√

ǫm2 + p2ω2t2
)

, (9)

of a massive particle passing through the point ~x0 at time t0. The light-like case
must be treated separately finding that the trajectory of a massless particle reads

xi(t) = xi0 + ni (t0 − t) , (10)

where the unit vector ~n gives the propagation direction.

Among the conserved quantities that can be derived as in Ref. [8] the energy of
the massive particles,

E = ω ~x0 · ~p+
√

ǫm2 + p2ω2t20 , (11)

indicates the allowed domains of our parameters. Thus we see that the tardyonic
particles can have any momentum, ~p ∈ R3

p, since their energies remain always real
numbers. When the tardyonic particle is at rest, staying in ~x(t) = ~x0 with ~p = 0,
then we find the same rest energy E0 = m as in special relativity. Thus we conclude
that the tardyonic particles behave familiarly just as in Minkowski flat spacetime.
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However, the tachyons have a new and somewhat strange behavior. When ǫ =
−1 there are real trajectories only for large momentum with |~p| > m, corresponding
to the superluminal motion. Moreover, we must have p2ω2t20 ≥ m2 which means
that t0 satisfies either the condition t0 ≤ − m

pω onM+ or the symmetric one t0 ≥ m
pω

on M−. Thus we conclude that a classical tachyon of momentum p > m can
exist on the expanding portion only in the time domain −∞ < t ≤ − m

pω while on
the collapsing portion its time domain is m

pω ≤ t < ∞. The corresponding time
domains of the tachyons with momentum p > m in the charts of proper time are
now (−∞, 1

ω ln( p
m )) on M+ and (− 1

ω ln( p
m ),∞) on M−. In Fig. (1) we represent

the worldlines in terms of the proper time with the initial conditions read x0 = 0
at t0 = ∓ 1

ω for which tproper = 0 on both the portions of M .

These restrictions upon the tachyonic lifetime are quite unusual opening the
problem of finding a plausible mechanism explaining the tachyon death on M+ or
how this is born on M−.

3. Quantum modes

The next step is to verify if similar restrictions could could arise in the case of
the quantum fields too. For this purpose we have to analyse the tachyonic solutions
of the scalar and Dirac fields in momentum representation.

The specific feature of the quantum mechanics onM is that the energy operator
does not commute with the components of the momentum operator. Therefore, the
energy and momentum cannot be measured simultaneously with a desired accu-
racy. Consequently, there are no particular solutions of the Klein-Gordon or Dirac
equations with well-determined energy and momentum, being forced to consider
different plane waves solutions depending either on momentum or on energy and
momentum direction. In what follows we restrict ourselves to the plane waves of
determined momentum.

3.1. Scalar plane waves

In an arbitrary chart {x} the action of a charged scalar field φ of mass m,
minimally coupled with the gravitational field, reads

S[φ, φ∗] =
∫

d4x
√
gL =

∫

d4x
√
g
(

∂µφ∗∂µφ− ǫm2φ∗φ
)

, (12)

where g = | det(gµν)| and ǫ is our parameter which gives the tardyonic, tachyonic
or light-like behaviour. This action gives rise to the KG equation

1√
g
∂µ [

√
g gµν∂νφ] + ǫm2φ = 0 , (13)

whose solutions have to be normalized (in generalized sense) with respect to the
relativistic scalar product [10],

〈φ, φ′〉 = i

∫

Σ

dσµ√g φ∗
↔

∂µ φ
′ , (14)
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written with the notation f
↔

∂ h = f(∂g)− g(∂f).

In the chart {t, ~x} we use here the Klein-Gordon equation takes the form,

ω2t2
(

∂2t − 2

t
∂t −∆

)

φ(x) + ǫm2ψ(x) = 0 . (15)

The solutions of this equation may be square integrable functions or tempered
distributions with respect to the scalar product (14) that for Σ = R

3 takes the form

〈φ, φ′〉 = i

∫

d3x e3ωt φ∗(x)
↔

∂t φ
′(x) . (16)

It is known that the KG equation (15) of NP can be analytically solved in terms
of Bessel functions [10]. There are fundamental solutions of positive frequencies and
given momentum, ~p, that read

f~p(x) =
1

2

√

π

ω

e−
1
2
iπk

(2π)3/2
(−ωt) 3

2H
(1)
k (−pt) ei~p·~x , (17)

where H
(1)
ν are Hankel functions, p = |~p| and we denote

k =

√

9

4
− ǫ

m2

ω2
. (18)

Obviously, the fundamental solutions of negative frequencies are f∗
p
(x).

Now we observe that the only parameter depending on ǫ is just that given by
Eq. (18) which encapsulates the information about the nature of the scalar particle.
We observe first that there are no major differences between the tardyonic (ǫ = 1)
and tachyonic (ǫ = −1) cases. The only property depending on the particle’s nature
is the behavior of the mode functions in the limit of t → 0, when the proper time
tends to ∞ on M+ or to −∞ on M− as in Eq. (4). The functions (17) are finite in
the considered limit only if we have k ≤ 3

2 which holds only for ǫ = 1. Thus we find
that the tardyonic mode functions remain finite for t→ 0 while the tachyonic ones
diverge in this limit.

However, this is not an impediment as long as the conserved scalar product and
the conserved quantities do not depend explicitly on the functions giving the time
modulation. Tus we can say that the quantum scalar tachyons may live on M at
any time.

3.2. Dirac plane waves

The tardyonic free Dirac field ψ of mass m and minimally coupled to the gravity
of M has the action

S[ψ] =
∫

d4x
√
g
(

LD(ψ) −mψψ
)

. (19)
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where the massless Lagrangian density, [11],

LD(ψ) =
i

2
[ψγα̂Dα̂ψ − (Dα̂ψ)γ

α̂ψ] , ψ = ψ+γ0 , (20)

depends on the covariant derivatives in local frames, Dα̂ [11], that guarantee the

tetrad-gauge invariance. The point-independent Dirac matrices γµ̂ satisfy {γα̂, γβ̂} =

2ηα̂β̂ giving rise to the basis-generators Sα̂β̂ = i[γα̂, γβ̂ ]/4 of the spinor representa-
tion (12 , 0) ⊗ (0, 12 ) of the SL(2,C) group that induces the spinor covariant repre-
sentations [11].

The Lagrangian theory of the Dirac tachyons [12, 13, 14] allows us to introduce
our parameter ǫ for studying simultaneously the tardyonic, neutrino and tachyonic
cases. This can be done on a natural way considering the new action

Sǫ[ψL, ψR] =

∫

d4x
√
g
[

LD(ψL) + ǫLD(ψR)− ǫm(ψLψR + ψRψL)
]

, (21)

depending on the chiral projections ψL = Lψ and ψR = Rψ given by the standard
projectors

L =
1− γ5

2
, R =

1 + γ5

2
. (22)

Note that this action is written in the style of the Standard Model such that the
left-handed term is independent on ǫ in order to do not affect the SU(2)L gauge
symmetry.

The action (21) gives the field equations of the massive fields,

ǫ = 1 (iγα̂Dα̂ −m)ψ = 0 tardyon

ǫ = −1 (iγ5γα̂Dα̂ +m)ψ̃ = 0 tachyon
(23)

while for ǫ = 0 we recover the usual theory of the massless neutrino. It is remarkable
that these equations are related through

ψ̃(x,m) = τψ(x, im) (24)

where the unitary matrix

τ =
1√
2
(1 − iγ5) (25)

has the properties τ+ = τ−1, τ = τ and τ2 = −iγ5. This means that it is enough
to solve the tardyonic equation for finding simultaneously the tachyonic solution by
using Eq. (24)

Let us start with the tardyonic case in the chart {t, ~x} and tetrad-gauge

e00 = −ωt , eij = −δij ωt , ê00 = − 1

ωt
, êij = −δij

1

ωt
. (26)
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where the free Dirac equation for tardyons reads [11],

[

−iωt
(

γ0∂t + γi∂i
)

+
3iω

2
γ0 −m

]

ψ(x) = 0 . (27)

The general solution allows the mode expansion in momentum representation,

ψ(t, ~x) =

∫

d3p
∑

σ

[

U~p,σ(x)a(~p, σ) + V~p,σ(x)a
c†(~p, σ)

]

, (28)

written in terms of the field operators, a and ac, and the particle and antiparticle
fundamental spinors of this basis, U~p,σ and respectively V~p,σ, which depend on
the momentum ~p (with p = |~p|) and polarization σ = ±1/2. According to our
prescription of frequencies separation on the expanding portion (of the Bounch-
Davies type) we find that these spinors, in the standard representation of the Dirac
matrices (with diagonal γ0), take the form [11],

U~p,σ(t, ~x ) = iN(ωt)2

(

e
1
2
πµH

(1)
ν− (−pt) ξσ

e−
1
2
πµH

(1)
ν+ (−pt) ~σ·~p

p ξσ

)

ei~p·~x (29)

V~p,σ(t, ~x ) = −iN(ωt)2

(

e−
1
2
πµH

(2)
ν− (−pt) ~σ·~p

p ησ

e
1
2
πµH

(2)
ν+ (−pt) ησ

)

e−i~p·~x . (30)

The notation σi stands for the Pauli matrices while H
(1,2)
ν± are the Hankel functions

of indices ν± = 1
2 ± iµ with µ = m

ω . The normalization constant N has to be
calculated according to a normalization condition on M+ that will not be discussed
here. Similar solutions can be obtained on M− by changing ω → −ω.

Now we can write directly the tachyonic fundamental solutions using Eq. (24).
We obtain the final result as

Ũ~p,σ(t, ~x ) =

iÑ(ωt)2





(

e
i
2
πµH

(1)
ν̃+

(−pt)− ie−
i
2
πµH

(1)
ν̃−

(−pt) ~σ·~p
p

)

ξσ
(

e−
i
2
πµH

(1)
ν̃−

(−pt) ~σ·~p
p − ie

i
2
πµH

(1)
ν̃+

(−pt)
)

ξσ



 ei~p·~x , (31)

Ṽ~p,σ(t, ~x ) =

−iÑ(ωt)2





(

e−
i
2
πµH

(2)
ν̃+

(−pt) ~σ·~p
p − ie

i
2
πµH

(2)
ν̃−

(−pt)
)

ησ
(

e
i
2
πµH

(2)
ν̃−

(−pt)− ie−
i
2
πµH

(2)
ν̃+

(−pt) ~σ·~p
p

)

ησ



 e−i~p·~x , (32)

where now all the indices ν̃± = 1
2 ± m

ω are real numbers. These fundamental spinors
are definite on the whole expanding portion without restrictions despite of their
complicated form. On the collapsing portion we meet similar solutions but with
ω → −ω.

We note that, as in the scalar case, there are mode functions that diverge in the
limit of t → 0 but only for the tachyonic mass m > 3

2ω while for m < 3
2ω these
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functions remain finite as in the tardyonic case. This situation is different from
the scalar case where all the tachyonic scalar functions are divergent in this limit.
However, this phenomenon has no physical consequences since only the conserved
quantities (scalar products and expectation values) have physical significance.

Thus we can say that the Dirac tachyons on the de Sitter background have
fundamental solutions well-defined on the entire physical space at any moment.

4. Conclusion

Finally, we must stress that the tachyon physics on the de Sitter manifold seems
to lead to a fundamental contradiction between the classical and quantum cases.
Thus in the classical approach the trajectory must end when the energy becomes
imaginary. On the contrary, in the quantum theory there are no time restrictions
upon the mode functions that behave as tempered distributions on the whole phys-
ical space at any moment.

The present paper is unable to solve this discrepancy since this presents the
tachyonic solutions without studying the conserved quantities which could offer
new arguments in what concerns the relation between the classical and quantum
tachyons. However, in this domain one could face to serious difficulties but that
could be overdrawn by using new analytical or even numerical methods [15]
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O DE SITEROVIM TARDIONIMA I TAHIONIMA

Pokazano je da na de Siterovim mnogostrukostima tahionski geodezici su ograni-

čeni tako da klasični tahioni ne mogu da postoje na ovakvoj mnogostrukosti u bilo

kom trenutku. Naprotiv, teorija skalarnih kvantnih tahiona je slobodna od bilo kakvih

ograničenja. Skalarni i Dirakovi ravni talasi su izvedeni u ovoj geometriji, ukazujući

da su dobro definisani, ponašajući se kao generalisane funkcije u svakom trenutku.

Ključne reči: de Siter, klasični tahioni, skalarni tahioni, Dirakovi tahioni


