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Abstract. In this article, we will focus on a significance of Ben Amor’s result
which reveals an important relationship between Orlicz norm and a capacitary
estimate. We will derive a lower capacitary estimates from spectral analytic
overviews based on the scheme and recent development of stochastic analytic
schemes on the ends of a tree. In particular, as an application of our analytical
approach, we will shed light on a capacitary estimate for singleton given as an
end of the tree.
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1. Introduction

A class of Markov processes on the field of p-adic numbers constructed by Al-
beverio and Karwowski associates the spectral theory for spectral analysis in [1]
and their method was improved so that a more general class of Markov processes
on ends of tree is covered in [2]. It is noteworthy to recall that their transition
semi-groups are explicitly described. This is partly because capacitary estimates
have been discussed in [11] and [10] based on the kernels determined by transition
probability rooted in [8], where the use of probabilistic counterpart of the Bessel
kernels is proposed.
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It is widely accepted that the natural random walk on the binary tree gives a
reinterpretation of a Markov process on the Cantor set equivalently on the ring of
2-adic integers by restricting our attention on the displacements of the random walk
while the particle is traveling on the ends of tree, which are attached to the tree
as geometric ideal boundary points. Historically, Baxter suggested in [3] that such
relationship of random walk on tree and Markov process on the ends of tree can be
discussed. Afterwards, in [14] a clearer potential theoretic relationship is suggested
when those ends constitute a compact set, which covers how the harmonic extension
into the tree is determined by the boundary values given on the ends. In [15], it
is discuss ed that the complete orthonormal system in the family of the square
integrable functions on the ends of tree plays an important role for a construction
of Markov process on the ends of tree and the harmonic extension is taken without
assuming compactness of the ends of tree.

Recently, capacitary estimate on the ends of tree is discussed based on the com-
plete orthonormal system in [7]. However, any comparison of capacity with Radon
measure has not been discussed persistently based on the complete orthonormal
system. The main objective of this article is building a scheme on capacitary es-
timate based on the complete orthonormal system taken as in [15] and [12]. We
will look also at probabilistic significance of Orlicz space theory pointed out in [16],
which showed that an estimate on a reasonably given Orlicz norm implies a lower
estimate on capacity of compact sets. In this article, we will derive a lower capac-
itary estimate for compact sets in space of ends of tree from a spectral analytical
method by closely looking at a relationship between the Orlicz space and spectral
decomposition of functions associated with nodewise given Dirichlet spaces in [12].

More specifically, along the scheme built by Ben Amor, a regular Dirichlet space
on (E ,F) on L2(Σ+, µ) and an Orlicz space L(Φ,m) will be required in our discussion,
where Σ+ stands for the space consisting of ends of a tree, Φ for an N-function and
µ,m for Radon measures on Σ+, respectively. We will rely on Ben Amor’s result
which showed that the validity of the inequality

|u2|L(Φ,ν) ≤M1(E(u, u) + (u, u)L2(Σ+,µ)), for any u ∈ F (1)

with some positive constant M1 is equivalent to the validity of the capacitary esti-
mate

m(K)Ψ−1(1/m(K)) ≤M2Cap(K), for any compact set K in Σ+, (2)

with some positive constantM2, where Cap stands for the capacity associated with
the Dirichlet space (E ,F).

in Section 2, we will look back at that the tree equipped with nodewise given
Dirichlet spaces in [12] is so well-designed as to yield a space Σ+ consisting of
ends of tree and a Dirichlet space on Σ+. In Section 3, we will briefly recapitulate
the notions of Luxemburg norm and Orlicz space. We will pay attention to its
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aspect tightly related to the Dirichlet space theory. In Section 4, we will achieve
our objective based on Ben Amor’s result by showing an upper estimate on Orlicz
norm on Σ+. We will show the key inequality (1.1) so that the lower capacitary
estimate on compact set on Σ+ is obtained by assuming the so called ∇′-condition,
In the final section, we will shift our attention to the scheme on a tree with a root,
which will cover a fundamental capacitary estimate on Cantor-like subsets of Σ+

associated with a tree with a constant branching number.

2. Tree and its ends

We take a set T consisting of countably infinite vertices and a map A : T ×T →
{0, 1}. Each element in T is called a node as well and the pair {x, y} of distinct
nodes satisfying A(x, y) = 1 will be called an edge. A sequence (a0, a1, . . . , an) of
nodes in T is called a path, if A(xi, xi+1) = 1 is satisfied for any i = 0, . . . , n− 1. If
any pair of distinct elements y, z in T admits a path (a0, a1, . . . , an) with a0 = y and
an = z, the pair (T,A) is called a non-directed tree. If a sequence (a0, a1, . . . , an)
satisfies ai 6= aj for any distinct integers i, j, the sequence said to be simple. The
the set V (x) of nodes directly connected with x ∈ T by an edge is given by V (x) =
{y | A(x, y) = 1}. Throughout the present article, we suppose that a non-directed
tree (T,A) satisfying the following properties is given as in [15] and [12]:

(i) the tree does not admit any path (a0, a1, . . . , an) satisfying a0 = an with
distinct edges {a0, a1},{a1, a2}, . . . , {an−1, an},

(ii) V (x) is a finite set and #(V (x)) ≥ 3 at any node x in T .

We introduce the notion of end of the tree in the next, similarly to [15] and [12].
An infinite sequence (a0, a1, . . . ) of nodes is called a geodesic ray if any finite sub-
sequence of (a0, a1, . . . , an, . . . ) is simple path. The set of geodesic rays is denoted
by R. We introduce the equivalence relation “∼” on R defined by

(a0, a1, . . . ) ∼ (b0, b1, . . . ) ⇔ there exists an integer (3)

k satisfying ak+m = bm for any m ≥ 0.

The quotient space R/ ∼ is denoted by Σ and each element in Σ is called an end.
For establishing such hierarchical structure as the one associated with the field of
p-adic numbers, we fix an element ∆ in Σ and denote Σ \ {∆} by Σ+. Let us take
a representative sequence (δ0, δ1, . . . ) for ∆. Then any tree satisfying the these
assumptions provides us with the situation where any node x outside {δ0, δ1, . . . }
and any δi are connected by a unique simple path (a0, . . . , an) as a0 = x and
an = δi. The length of simple path (a0, . . . , an) is defined as n, i.e., the number
of the nodes added to the initial node a0 in the path. Our situation enables us
to take a unique path with minimal length in the set {(a0, . . . , an) | a0 = x, an =
δi, with some positive integer n for some i} of the simple paths. Consequently, we
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can focus only on the path with the minimal length. A path will be denoted by
(x, x′, . . . , δi) and its length by ℓ(x).

Then, the map π : T → T is defined by

π(x) =

{

x′ if x /∈ {δ0, δ1, . . . },
δi+1 if x = δi for some i ≥ 0.

(4)

T is represented as the disjoint union of its subsets {Tm | m ∈ Z} defined by
Tm = {x ∈ T | ℓ(x)− i(x) = m} for m ∈ Z. Then, it turns out that π(Tm) = Tm−1

for any integer m.

Let us define Sx by Sx = {y ∈ T | πk(y) = x for some non-negative integer k}
for any x ∈ T and Σ+

x = {η ∈ Σ+ | η admits a geodesic ray (a0, a1, · · · ) as a
representative sequence of η satsfying a0, a1, · · · ∈ Sx}. We can introduce a topology
on Σ+. As a matter of fact, the family {Σ+

S | S ⊂ T } of subsets Σ+
S = ∪x∈SΣ

+
x

determined by S ⊂ T satisfies the axioms for open sets on Σ+. We will regard Σ+

as a topological space equipped with the family of open sets.

Example 1 (A tree TQp
associated with the field Qp of p-adic numbers). Let

TQp
be the set consisting of all balls in Qp and denote the radius of ball B by r(B).

Then we define AQp
(B,B′) for B,B′ ∈ TQp

by

AQp
(B,B′) =

{

1 if either B ⊂ B′, p r(B) = r(B′) or B′ ⊂ B, p r(B′) = r(B)
0 otherwise.

(5)

Then it is not difficult to see the pair (TQp
,AQp

) is a tree satisfying condition (i) and
(ii). Take the ball ∆0 centered at the origin 0 and with the radius 1 and a sequence
(∆0,∆1, · · · ) of elements in TQp

specified by ∆i ⊂ ∆i+1 and r(∆i) = pi for any
i = 0, 1, 2, . . . . In accordance with the choice of the end ∆Qp

∈ Σ represented by
the geodesic ray (∆0,∆1, · · · ), the map π is defined by π(B) = B′ with the ball B′

characterized by B ⊂ B′ and p r(B) = r(B′) and in addition a homeomorphism
between Σ+ and Qp is obtained. In fact, any end η ∈ Σ+ admits a geodesic ray
(B0, B1, · · · ) represented by a sequence of balls satisfying B0 ' B1 ' . . . , which
determines a singleton {a} ⊂ Qp by {a} = ∩iBi. The map η 7→ a gives a bijection
from Σ+ to Qp which is viewed as a homeomorphism.

The main assertions in [14] show that a Dirichlet form on the Cantor set is
constructed so as to be a natural counterpart of the classical Douglas integral on
the unit circle, where functions on the unit circle are replaced with ones on the
Cantor set and the standard Brownian motion on the unit disk is replaced with a
random walk on TZ2 for accommodating the Dirichlet form to the generalization of
the classical Douglas integral based on its probabilistic reinterpretation as in [5].
The results in [14] can be viewed as this sort of reconsideration natually arising from
the case that the unit circle is replaced with Z2. A more general scheme founded
on the same motives is built in [15]. A relationship between random walks on tree
and a capacity on the ends of tree is discussed in [3].
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A function taking constant on every Σ+
y for some disjoint open cover {Σ+

y }y∈S

of Σ+ determined by some S ⊂ T is said to be locally constant. The family of
locally constant functions taking constant on every Σ+

y with y ∈ Tm+1 is denoted
by Cm(Σ+). The family of locally constant functions vanishing outside Σ+

x will be
denoted by C(Σ+

x ) for every x ∈ T . The Stone-Weierstrass theorem shows that
C(Σ+

x ) is contained densely in the family of continuous functions with support in
Σ+

x . In what follows, the intersection C(Σ+
x ) ∩ Cm(Σ+) given by x ∈ Tm will play

an important role and be denoted by Cx. In the present article, a node x ∈ T will
be called the confluent node for y, z ∈ T , if there exist positive integers m, ℓ such
that πℓ(y) = πm(z) = x and πℓ−1(y) 6= πm−1(z). The confluent node for y, z ∈ T
will be denoted x by [y, z].

V (x)\{π(x)} will be denoted by S+(x) and the positive integer #(S+(x))−1 =
#(V (x)) − 2 will be denoted by n(x) for every x ∈ T . Throughout this article, we
restrict our attention to the case that Σ+ admits a Radon measure µ on Σ+ with
the support Σ+ and a complete orthonormal system V of L2(Σ+;µ) is given so that
it is divided into orthonormal systems {Vx}x∈T each of which is assigned by Vx =
{ϕ ∈ V ∩ Cx | (ϕ, 1Σ+)L2(Σ+;µ) = 0} and consists of n(x) elements. The existence of
such complete orthonormal system has been substantially ensured in [2] and turns
to be an explicit assumption in [15]. Those authors dealt with the case that the
complete orthonormal system coincides with the system of the eigenfunctions.

We take a regular Dirichlet space (E ,F) on L2(Σ+;µ) equipped with the inner
product E1(u, v) = E(u, v) + (u, v)L2(Σ+;µ) for u, v ∈ F . In accordance with the
context in [2] and [12], we assume that V ⊂ F and look into a relationship between
the Dirichlet form E and the orthogonal projection Px to the linear subspace Cx,0
spanned by Vx at each node x ∈ T . In this article, we assume that there exists some

positive number Λ <
1

2
such that |E(Px1Σ+

w
Pπ(x)1Σ+

w′

)| ≤ ΛE(Pπ(x)1Σ+
w
, Pπ(x)1Σ+

w′

)

for any w,w′ ∈ S+(x) and x ∈ T as in [13].

The results obtained in the final section of [2] give us the existence of V satis-
fying our assumptions and they yield that the conditions imposed on u in Lemma
1 in [13] is satisfied with 1Σ+

x
in their framework. Accordingly, without losing the

particular settings as in [13], we may assume that, for every x ∈ T , 1Σ+
x
is described

as the limit of the sequence {P
π(x)

πk+1(x)
1Σ+

x
}∞k=1 with respect to the norm

√

E1(u, u)

on F , where P
π(x)

πk+1(x)
stands for the orthogonal projection to the linear subspace

C
π(x)

πk+1(x),0
spanned by ∪k+1

m=1Vπm(x) in L
2(Σ+;µ). This assumption clarifies the reg-

ularity of the Dirichlet space in terms of the complete orthonormal basis V . In fact,
the linear subspace spanned by V is contained densely in F with respect to the
norm

√

E1(u, u). Due to the Stone-Weierstrass theorem and the discussion as in
Chapter VII in [18], it turns out that the family of continuous functions on Σ+ with
compact support contains the linear subspace spanned by finite linear combination
of elements in {1Σ+

x
| x ∈ T } as a dense subset. We will admit a conventional

notation π0 to represent the identity map on T .
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We suppose that a finite subset S of T with the property y, z ∈ S, y 6= z ⇒
Σ+

y ∩ Σ+
z = Ø and a symmetric bilinear form E on the real linear space C spanned

by {1Σ+
x
| x ∈ S} are given. (E , C) is called a Dirichlet space, if it satisfies

(i) E(u, u) ≥ 0 for any u ∈ C,

(ii) E(1Σ+
y
, 1Σ+

z
) ≤ 0 for any distinct y, z ∈ S,

(iii) v = 1 on ∪x∈SΣ
+
x implies E(u, v) = 0 for any u ∈ C.

When a Dirichlet space (E , C) is given, it admits the adjacent matrix A which
is viewed as a linear operator in the Euclidean space C and specified by E(u, v) =
−
∑

y,z∈S Ay,zu(y)v(z) for any u, v ∈ C. It is easy to see the identities Ay,z = Az,y

for any y, z ∈ S and
∑

y∈S Ay,z = 0 for any z ∈ S. Another representation E(u, v) =
1
2

∑

y,z∈S Ay,z(u(y)−u(z))(v(y)− v(z)) for any u, v ∈ C of the bilinear form follows
from these observations. If a symmetric bilinear form E with domain C satisfies (i),
E said to be non-negative definite.

In proving the following proposition, the Beurling-Deny formula which provides
us with the representation

E(u, v) =
1

2

∫ ∫

Σ+×Σ+∩{η 6=ζ}

(u(η)− u(ζ))(v(η) − v(ζ))J(dη, dζ) (6)

in the Dirichlet space theory (see [6] for the detail) will be crucially applied. In fact,
it is not difficult to see that there is no Σ+-valued continuous function defined on
any intervals in the real line. Hereafter, we take the bilinear form E(Pxu, Pyv) and

denote it by Ex,y(u, v). We will also take the linear subspace C
S+(x)

πk(x)
= ⊕π(y)=xCy,0⊕

Cx,0 ⊕ · · · ⊕ Cπk−1(x),0 ⊕ Cπk(x) of L
2(Σ+;µ) and the symmetric bilinear form

∑

π(y)=π(z)=x

(

Ey,z(u, v) + Ey,x(u, v) + Ex,z(u, v)
)

+ Ex,x(u, v) + (7)

k−1
∑

ℓ=0

(

Eπℓ(x),πℓ+1(x)(u, v) + Eπℓ+1(x),πℓ(x)(u, v) + Eπℓ+1(x),πℓ+1(x)(u, v)
)

for u, v ∈ Cπk(x), which will be denoted by E
S+(x)

πk(x)
(u, v). Similarly to [13], we can

prove the following assertion:

Proposition 2.1. If E(ϕ, ψ) = 0 for any ϕ ∈ Cy,0, ψ ∈ Cz,0 with distinct y, z ∈
T except π(y) = π(z), π(y) = z and π(z) = y, then bilinear form Ey,z defined on

Cy × Cz associated with y, z ∈ T with π(y) = π(z), π(y) = z or π(z) = y and such

bilinear forms constitute a family with the following properties:
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(i) Ey,z(u, v) = Ez,y(v, u) for any u ∈ Cy,0, v ∈ Cz,0,

(ii) Ey,z(u, 1Σ+
z
) = 0 for any u ∈ Cy,0 and Ey,z(1Σ+

y
, v) = 0 for any v ∈ Cz,0,

(ii) the symmetric bilinear form E
S+(x)

πk(x)
determined by

E
S+(x)

πk(x)
(u, v) =

∑

π(y)=π(z)=x

(

Ey,z(u, v) + Ey,x(u, v) + Ex,z(u, v)
)

+ Ex,x(u, v)

+

k−1
∑

ℓ=0

(

Eπℓ(x),πℓ+1(x)(u, v) + Eπℓ+1(x),πℓ(x)(u, v) + Eπℓ+1(x),πℓ+1(x)(u, v)
)

with domain ⊕π(y)=xCy,0 ⊕ Cx,0 ⊕ · · · ⊕ Cπk−1(x),0 ⊕ Cπk(x) is a Dirichlet space

for any x ∈ T and non-negative integer k.

3. N-function, Luxemburg norm and Orlicz space

Throughout the article, we take a finite Radon measure µ on Σ+ with the support
Σ+. We introduce the Orlicz space based on the notion of Luxemburg norm given
by an N-function according to the results stated in [17]. We introduce those notions
on the space Σ+.

Definition 3.1. If a strictly increasing convex function Φ : [0,∞) → [0,∞) with

Φ(0) = 0 satisfies

lim
t→0+

Φ(t)

t
= lim

t→∞

t

Φ(t)
= 0, (8)

then Φ is called an N-function. For any N-function Φ, the function defined by

Ψ(y) = sup{x|y| − Φ(x) | x ≥ 0}. (9)

is called conjugate of Φ.

The following assertions are shown in [17]:

Theorem 3.2. If Φ is an N-function, Φ admits the representation

Φ(x) =

∫ x

0

ϕ(t)dt (10)

with a left-continuous function ϕ which vanishes only at the origin and satisfies

limt→∞ ϕ(t) = ∞. The conjugate Ψ of Φ defined by is represented as Ψ(y) =
∫ y

0 ϕ
−1(t)dt.
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Theorem 3.3. Any N-function Φ satisfies

a, b ≥ 0 ⇒ Φ(a) + Φ(b) ≤ Φ(a+ b) (11)

and

a, b ≥ 0 ⇒ Φ−1(a) + Φ−1(b) ≥ Φ−1(a+ b). (12)

Definition 3.4. If an N-function Φ satisfies

x, y ≥ 0 ⇒ Φ(x)Φ(y) ≤ Φ(xy), (13)

then Φ is said to satisfy ∇′-condition.

Definition 3.5. ([17]) For a Radon measure m on Σ+ and N-function Φ, the
subfamily

{f | sup

{
∫

Σ+

|fg| dm |

∫

Σ+

Ψ(|g|) dm ≤ 1

}

<∞}

of all measurable function on Σ+ is called Orlicz space and denoted by LΦ(Σ+,m).
For each function f in LΦ(Σ+,m), its norm is defined by

|f |L(Φ,m) = sup

{
∫

Σ+

|fg| dm |

∫

Σ+

Ψ(|g|) dm ≤ 1

}

.

One can propose another norm

|f |(Φ,m) = inf

{

λ > 0 |

∫

Σ+

Φ(|f |/λ) dm ≤ 1

}

for any f ∈ L(Φ,m). It is well known that

|f |(Φ,m) ≤ |f |L(Φ,m) ≤ 2|f |(Φ,m). (14)

For any regular Dirichlet space (E ,F) on L2(Σ+;µ) with a Radon measure µ on
Σ+, as pointed out in [16], we see that that the following conditions (i) and (ii) are
equivalent:

(i) there exists a positive constant M1 such that

|u2|L(Φ,m) ≤M1(E(u, u) + (u, u)L2(Σ+;µ)) for any u ∈ F , (15)

(ii) there exists a positive constant M2 such that

m(K)Ψ−1(1/m(K)) ≤M2Cap(K) for any compact set K in Σ+, (16)

where Cap(K) stands for the capacity of K associated with (E ,F).
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4. Estimate on Orlicz norm in Dirichlet space theory

In this section, we focus on the regular Dirichlet space (E ,F) on L2(Σ+;µ)
satisfying the conditions in Propositon 2.1 and make an attempt on establishing
estimate which bridges the Orlicz norm and capacitary estimate on compact sets
in Σ+. In our scheme already built in [12], the set {x} × {1, . . . , n(x)} is denoted
by N(x) and each element of the complete orthonormal system V of L2(Σ+

o ;µ) is
specified by the notation vν with some ν ∈ N(x) so that Vx = {vν | ν ∈ N(x)} is
satisfied for any x ∈ T consistently with Section 2.

For the purpose, we assume

(C.1) µ(Σ+
x ) ≥ 1 for any x ∈ Tk with k ≤ 0,

(C.2) there exists a sequence {gk}
∞
k=0 of measurable functions defined on Σ+ sat-

isfying
∫

Σ+ Ψ(|gk(x)|)dµ(x) ≤ 1 such that |E(ux, uπ(x))| ≤
1

3

∫

Σ+
π(x)

|uxuπ(x)|

× |gk(x)|dµ(x) for any x ∈ Tk,

(C.3) |E(uy, uz)| ≤
1

12n(x)2
(E(uy , uy) + E(uz, uz)) for any y, z ∈ T with π(y) =

π(y) = x.

In what follows, min{Ex,x(u, u) | u ∈ F satisfying ‖u‖L2(Σ+
x ;µ) = 1} will be denoted

by λ(x). First we show the following theorem aiming at the capacitary estimate:

Theorem 4.1. For any N-fucntion Φ satisfying ∇′-condition and Radon measure
µ on Σ+, if there exists some non-decreasing sequence {cn} satisfying infn cn ≥ 1
and

∑∞
n=0 1/c

2
n <∞ such that

λ(x) + 1 ≥ c2n sup
y∈S+(x)

Φ−1(µ(Σ+
y ))

µ(Σ+
y )Φ−1(1)

(17)

is satisfied with n determined by x ∈ Tn for any x ∈ T , then there exists some
positive conctant M1 such that

|u2|L(Φ,µ) ≤M1(E(u, u) + (u, u)L2(Σ+;µ)) for any u ∈ F . (18)

5. Tree with a root

As established in Section II in [7], we can start also with a tree To with its root
o. Namely, we consider the case that there exists a node o ∈ To such that any
x ∈ To is connected with o by a unique simple path (o, . . . , x) and any element
in the quotient space R/ ∼ admits representative element (o, a1, a2, . . . ). Such a
unique vertex o will be called a root and R/ ∼ will be denoted by Σ+

o . Then, the
map π : To \ {o} → T is defined by



252 R. IIJIMA, H. KANEKO

π(x) =

{

x′ if (o, . . . , x′, x) is a simple path connecting o and x,
o if (o, x) is a simple path connecting o and x.

(19)

To is represented as the disjoint union of its subsets Tm with m = 0, 1, 2 . . . defined
by Tm = {x ∈ T | πm(x) = o} for positive integer m and T0 = {o}. It turns out
that π(Tm) = Tm−1 for any positive integer m. Similarly to Section 2, for the the
set V (x) of nodes directly connected with x ∈ T , V (x) \ {π(x)} will be denoted by
S+(x) for any x ∈ To. We consider the case that the condition

V (x) is a finite set and #V (x) ≥ 3 for any x ∈ To

is satisfied as Section 2.

We take a regular Dirichlet space (E ,F) on L2(Σ+
o ;µ) equipped with the inner

product E1(u, v) = E(u, v) + (u, v)L2(Σ+
o ;µ) for u, v ∈ F . As in the previous section,

we assume that a complete orthonormal system V ⊂ F of L2(Σ+
o ;µ) is divided into

orthonormal systems {Vx}x∈To
each of which is assigned by Vx = {ϕ ∈ V ∩ Cx |

(ϕ, 1Σ+
o
)L2(Σ+

o ;µ) = 0} with n(x) = #S+(x)− 1 elements for every x ∈ To \ {o} and

by Vo = V ∩ Co with n(o) = #S+(o) elements. Similarly again to Section 2, the
orthogonal projection to the linear subspace Cx,0 spanned by Vx is denoted by Px

at each node x ∈ To and we assume that there exists some positive number Λ <
1

2
such that |E(Px1Σ+

w
Pπ(x)1Σ+

w′

)| ≤ ΛE(Pπ(x)1Σ+
w
, Pπ(x)1Σ+

w′

) for any w,w′ ∈ S+(x)

and x ∈ To \ {o}. Due to this assumption, similarly to Section 2, we can prove the
following fundamental assertion:

Proposition 5.1. If E(ϕ, ψ) = 0 for any ϕ ∈ Cy,0, ψ ∈ Cz,0 with distinct y, z ∈
To except π(y) = π(z), π(y) = z and π(z) = y, then bilinear form Ey,z defined on

Cy × Cz associated with y, z ∈ T with π(y) = π(z), π(y) = z or π(z) = y and such

bilinear forms constitute a family with the following properties:

(i) Ey,z(u, v) = Ez,y(v, u) for any u ∈ Cy,0, v ∈ Cz,0,

(ii) Ey,z(u, 1Σ+
z
) = 0 for any u ∈ Cy,0 and Ey,z(1Σ+

y
, v) = 0 for any v ∈ Cz,0,

(iii) for any non-negative integer k, the symmetric bilinear form E
S+(x)

πk(x)
deter-

mined by

E
S+(x)

πk(x)
(u, v) =

∑

π(y)=π(z)=x

(

Ey,z(u, v) + Ey,x(u, v) + Ex,z(u, v)
)

+ Ex,x(u, v)

+

k−1
∑

ℓ=0

(

Eπℓ(x),πℓ+1(x)(u, v) + Eπℓ+1(x),πℓ(x)(u, v) + Eπℓ+1(x),πℓ+1(x)(u, v)
)
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with domain ⊕π(y)=xCy,0 ⊕ Cx,0 ⊕ · · · ⊕ Cπk−1(x),0 ⊕ Cπk(x) is a Dirichlet space

for any x ∈ To, where x ∈ ∪∞
ℓ=kTℓ.

In this section, we do not assume (C.1)-(C.3). However, by taking a regular
Dirichlet space (E ,F) satisfying the conditions in Proposition 5.1, we can prove the
following assertion similarly to the theorem in the previous section:

Proposition 5.2. Let Φ be an N-function satisfying ∇′-condition and µ,m be
both Radon measures on Σ+

o . If

λ(x) + 1 ≥ c2n sup
y∈S+(x)

Φ−1(µ(Σ+
y ))

m(Σ+
y )Φ−1(1)

(20)

is satisfied with n given by x ∈ Tn at every x ∈ To, for some non-decreasing sequence
{cn} satisfying inf cn ≥ 1 and

∑

x∈T 1/c2x <∞, then there exists a positive constant
M such that

m(K)Ψ−1(1/m(K)) ≤MCap(K) (21)

for any compact set K ⊂ Σ+
o .

For any integer q ≥ 2, let us denote the tree with a root satisfying #S+(x) = q at
each vertex x by T (q). We take trees T (r) and T (s) and Radon measures µ on Σ+(r)

and m on Σ+(s) determined by µ(Σ
+(r)
x ) = r−n (x ∈ T

(r)
n ) and m(Σ

+(s)
z ) = s−n

(z ∈ T
(s)
n ) respectively. In the case r > s, we see that T (s) is naturally embedded

in T (r) and Σ+(s) is in Σ+(r). By taking p = (1/ log 1
r

1
s
) and the N-function Φ(x) =

xp/p, we see the following corollary:

Corollary 5.3. Let r, s be a pair of integers satisfying r ≥ 4 and r > s ≥
3. If there exists some non-decreasing sequence {cn} satisfying inf cn ≥ 1 and
∑∞

n=1 1/c
2
n <∞ at every x ∈ T

(r)
n such that λ(x) + 1 ≥ c2n supy∈S+(x) µ(Σ

+(r)
y )

1
p
−1

with n determined by x ∈ Tn for any x ∈ To, then there exists some constant M
such that

m(Σ+(s)
z ) ≤MCap(Σ+(r)

x )

for any x ∈ T (r), z ∈ T (s) satisfying x ∈ T
(r)
n , z ∈ T

(s)
n with some n.
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PROCENA KAPACITETA NA PROSTORU KRAJEVA DRVETA
BAZIRANA NA ORLICZ NORMI

U ovom članku, fokusiraćemo se na značaj Ben Amorovog rezultata koji otkriva

važnu relaciju izmedju Orlicz norme i procene kapaciteta. Izvešćemo donje procene

kapaciteta pomoću spektralnih analitičkih pregleda na osnovu šeme i nedavnih razvoja

stohastičkih analitičkih šema na krajevima nekog drveta. Kao primenu našeg anal-

itičkog pristupa, posebno ćemo rasvetliti procenu kapaciteta za singleton dat kao kraj

drveta.

Ključne reči: procena kapaciteta, drvo, Orlicz norma


