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Abstract. The paper is devoted to the algebraic and arithmetic structures re-
lated to the two-body problem and discuss the possible generalizations. The role
of the points of finite order on the elliptic curves is emphasized.
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1. Introduction

The standard physical models, as a rule, were created as transcendental ones
and were initially elaborated in transcendental terms. However, during the twen-
tieth century (among lots of complicated processes) we have observed a kind of
algebraisation of physics. The domains of mathematics providing tools used in the
central physical theories have changed several times: the physicists’ attention first
moved from differential equations and functional analysis to differential geometry
and topology, then to the group theory and, finally, to algebraic geometry – see,
e.g., [1] for the general discussion.

The ground field is one of the central issues in algebraic geometry. Initially the field
of complex numbers, being the closest to the transcendental world, was the most
natural partner of physical theories1; among the most known early results of this

Received May 27th, 2016; accepted August 12nd, 2016.
†Acknowledgement: Supported in part by the Simons Foundation
∗E-mail: george.shabat@gmail.com
1The other kind of relations between physics and transcendental algebraic geometry was typical

for the nineteenth century: theta functions emerged as the fundamental solutions of the heat
equation, and Riemann surfaces made of conducting foil provided the initial intuition for the
study of Abelian integrals ...
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period one can mention the (motivated by Yang-Mills equations) description of the
instantons over the 4-sphere in terms of vector bundles over the complex projective
3-space in [2]. This paper was followed by a stream of others, relating physics with
various parts of algebraic geometry: the seminal [16] and [6] started the marriage of
string theory with the geometry of moduli spaces of curves, the monograph [4] had
summarized the early stage of the interaction of conformal Field theory with toric
varieties, etc. In all these papers the algebro-geometric methods coexist naturally
with the transcendental ones, so everything was considered over C.

However, some of the popular physical models turned out to be the complexifica-
tions of the ones, defined over Q. Among many examples one can mention

• replacing of the integration in the string theory over the moduli spaces Mg(C)
by the summation over Mg(Q), [15];
• relating the black holes physics with the arithmetic of elliptic curves with complex
multiplication, [12];
• Studying the instanton numbers for Calabi-Yau manifolds in terms of Frobenius
map on p-adic cohomology, [7].

A general discussion on the arithmetisation of physics can be found in [11].

The present paper is devoted to the algebraic and arithmetic structures related to
the physics that are a couple of centuries earlier than anything mentioned so far.
We are going to find arithmetic in the two-body problem and discuss the possible
generalizations. The author is indebted to P. Dunin-Barkovsky, A. Yu. Morozov,
S. Nedic and A. Sleptsov for the useful discussions and criticism.

2. An algebraic theory of Kepler-Newton dynamics

1.0. Setup. All the relations between physics and the complex algebraic
geometry that we are ultimately going to consider in this paper, are based on the
construction of the form

(physical quantity in a point P ) =

∫ P

P0

ω (1)

where the integrand ω ∈ Ω1(V) is an appropriate rational 1-form on some complex
algebraic manifold V, a fixed point P0 ∈ V on it and a variable point P ∈ V.

Thus the only transcendent component of our models will be integration, while
the basic components will be algebro-geometric, and there will be a certain flexibil-
ity in choosing the ground field.
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2.1. Two-body problem: solving over R

We present a self-contained exposition of the well-known theory, and this expo-
sition is addressed to mathematicians; the physical concepts will be used only on
the level of terminology.

The Kepler-Newton equations are:





ẍ = −γ
x

(x2 + y2)
3

2

ÿ = −γ
y

(x2 + y2)
3

2

.
(2)

for a real γ > 0. We consider this system of ODE’s in the phase space

P := Spec(R[x, y, ẋ, ẏ]) \ {(0, 0, 0, 0)}. (3)

The sector velocity integral

Σ := xẏ − ẋy (4)

fibers P in the integral quadrics (Σ-levels)

P =
∐

σ∈R

QΣ. (5)

A solution (x, y) of Kepler-Newton equations is called non-catastrophic, if (ẋ, ẏ) /∈
R · (x, y). It can be shown that local solution that exists by the main ODE theorem,
can be extended to the whole real line:

R −→ P \Q0. (6)

These solutions are terribly trascendental, and we are not going to work with them
explicitly.

In the polar coordinates x = r cosϕ, y = r sinϕ the Kepler-Newton system im-
plies

r̈ − rϕ̇2 = − γ

r2
, (7)

while the sector velocity integral results in ϕ̇ = Σ
r2
, so the variables separate:

r̈ =
Σ2

r3
− γ

r2
(8)

Solutions of this ODE are the integral curves of the rational vector field
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ṙ
∂

∂r
+ (

Σ

r3
− γ

r2
)
∂

∂ṙ
(9)

on the (r, ṙ)-affine plane; such fields can be considered over any field.
The boxed equation (8) admits a further rational integral (called ”energy”...)

E :=
ṙ2

2
+

Σ2

2r2
− γ

r
. (10)

Using ṙ = dr
dt , it can be rewritten as

dt =
rdr√

2Er2 + 2γr − Σ2
. (11)

In a certain weak sense the 2-body problem is solved: formally integrating the above
differential relation, we arrive at the relation

t− t0 =

∫
rdr√

2Er2 + 2γr − Σ2
, (12)

that can be locally inverted to get the desired r(t), and it can (and will soon) be
shown that it is well-defined globally.

However, we’d like to have an explicit expression for r(t) in a closed form, but
instead arrived at t(r) as a nasty multi-valued expression (the integral will be stud-
ieded below). Besides, this answer makes sense only over R, and it is not our true
goal.

Informally we come to the negative

Conclusion. Trying to parametrize everything by the classical time t fails.

1.2. The angular ”time”. The angle ϕ behaves better than the classical t!

According to the above and using dϕ
dt = Σ

r2
, we arrive at

dϕ =
Σ · dr

r
√
2Er2 + 2γr − Σ2

, (13)

that integrates to

ϕ− ϕ0 = arccos
1
r
− γ

Σ2√
2E
Σ2 + γ2

Σ4

=⇒ r =

Σ2

γ

1 +
√

2Σ2E
γ2 + 1 cos(ϕ− ϕ0)

(14)
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Introducing r0 := Σ2

γ
and ε :=

√
1 + 2EΣ2

γ2 , we get the 2-parametric family of ellipses

r =
r0

1 + ε cos(φ − φ0)
. (15)

For the Earth

r0 ≈ 150 000 000 km, ε ≈ .017 (16)

In terms of the initial phase space P the answers in terms of ϕ can be written down
in quite an explicit form

x =
r0 cosϕ

1 + ε cos(ϕ− ϕ0)
, (17)

y =
r0 sinϕ

1 + ε cos(ϕ− ϕ0)
, (18)

ẋ =

√
γ

r0
(− sinϕ− ε sinϕ0), (19)

ẏ =

√
γ

r0
(cosϕ+ ε cosϕ0). (20)

It would be a perfect answer2 – if ϕ were a TIME.

Thus rather simple and purely mathematical considerations have led us to the deep
philosophical question:

what is a TIME?

We are going to discuss it from purely mathematical positions, but taking into ac-
count the above results, concerning the two-body problem.

3. Times

We start with a standard definition.

2.0. What deserves to be called a time? From now on let P be a con-

figuration space. Basically it means that P is a set (usually with some struc-
ture) whose elements are called events. In the previous section we have considered
P ≃

(
R2 \ {(0, 0)}

)
×
(
R2 \ {(0, 0)}

)
.

Let T be an arbitrary group. In the present paper we are going to consider only the

2among other things, we’ve got for free the periodicity of motions in the two-body problem
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commutative ones.

In a given physical model T will be called ”the” time group.

A mathematician’s answer to the question in the title of this subsection is sim-
ply that the action

T : P . (21)

is assumed.

2.1. The case of rational eccentricity. From now on we assume that

ε ∈ Q. (22)

This assumption is physically harmless since all the physical measurements are
approximate and, say, one can learn from the official sources that the eccentricity

of the Earth’s orbit is currently about

0.0167 ∈ 1

104
Z ⊂ Q. (23)

Consider only the nondimensionalized coordinates of the (ϕ-dependent) position of
the second body:

x

r0
=

cosϕ

1 + ε cos(ϕ− ϕ0)
, (24)

y

r0
=

sinϕ

1 + ε cos(ϕ− ϕ0)
. (25)

Assume additionally that 0 ≤ ε < 1. Then, obviously,

ϕ, ϕ0 ∈ R =⇒ x

r0
,
y

r0
∈ R; (26)

ϕ, ϕ0 ∈ Qπ =⇒ x

r0
,
y

r0
∈ Qab

⋂
R; (27)

N ∈ N, ϕ, ϕ0 ∈ Z
2π

N
=⇒ x

r0
,
y

r0
∈ Q(

N
√
1)

⋂
R. (28)

Taking into account the approximate nature of the physical measurements, we see
that the last two cases are compatible with ALL the celestial observations! Of course,
in the very last one it is assumed that N is large enough.

2.2. How bad is the real3 time? Trying to do the same with the physical

time t ∈ R, we have

3this word can be understood either in the common or in the techical sense



On the elliptic time in the adelic gravity 313

t− t0 =

∫
dr

√
γ
√

ε2

r0
− (

√
r0
r

− 1√
r0
)2
. (29)

This integral can be calculated in elementary functions:

t− t0 =
(k + 1)2

4k
[
(k − 1)z

kz2 + 1
+
√
k(k + 1) arctan(

√
kz)], (30)

where k = 1+ε
1−ε

and z = tan ϕ
2 .

But there are no chances to express r or ϕ in terms of t!

2.3. Times over various fields. The above formulas for the motion of the
planet along the elliptic orbits make sense in the affine planes over almost arbitrary
field k, with minor restrictions on the char(k).

The following pairs can provide ”solutions” of the 2-body problem:

Time group T Field

R R
R

2πZ R
Z

NZ

N
√
1 ⊂ k, char(k) ∤ N

Zp k = k, char(k) 6= p

Ẑ ∼=
∏

p Zp k = k, char(k) = 0

As we see, there are lots of possibilities to create algebro-geometric models of the
Kepler-Newton gravity. The natural problem is to choose those of them that are
the most compatible with the actual physical observations.

Among the candidates that are the closest to the classical models, we find the case
of finite cyclic times group (say, for the beginning, with N = 365) and k = Qab; the
orbits will lie in the affine plane of the real subfield Q(cos π

4 , cos
π
5 , cos

π
6 , . . . ) ⊂ Qab.

It would be interesting to study the behavior of heights along the orbits.

The models over Fp can turn out to be quite realistic (in some ways) for the large
p’s. As for the p-adic and adelic times, they are interesting mathematically, and
the corresponding physics deserves thinking about.

4. Elliptic fantasies

To every eccentricity from the ground field we associate an elliptic curve defined
over this field. In the archimedean case all the physically meaningful quantities
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come out as abelian integrals on this curve.

3.0. Divine curves. To every ε ∈ k \ {1} we associate the main parameter
of the orbit

k :=
1 + ε

1− ε
(31)

and the elliptic curve (imaginary Legendre quartic) defined by the equation

w2 = (1 + z2)(1 + k2z2) (32)

In the archimedean case

z := tan
ϕ

2
. (33)

We call such a curve divine for the following reasons: it

• depends on the planet and is defined by its orbit;
• is dimensionless;
• is nowhere (not embedded in the physical space);
• governs ”all” the observable variables related to the planet.

3.1. The remarkable differentials. We introduce them both in the original
notations and in the coordinates of the divine curve.

dϕ =
2dz

1 + z2
; (34)

Σ

r20
dt =

(k + 1)2

2

1 + z2

(1 + kz2)2
dz; (35)

dr

r0
= −(k2 − 1)

z

(1− kz2)2
dz; (36)

The classical distance along the orbit is defined by a symbolic expression (ds)2 :=
(ẋ2 + ẋ2)(dt)2. This quadratic differential is the square of an abelian one

ds

r0
= (k + 1)

wdz

(1 + kz2)2
; (37)

A puzzling observation. All the poles of all the above differentials lie in the

points of 4th order of the divine curve.

”Physically” it means that the torsion group of the divine curve contains the (usu-
ally imaginary) stationary points of meaningful quantities.
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3.2. On the concept of elliptic time. For the time being it is ill-motivated.
However, we have observed three phenomena:

• imposing algebraic structures on the Time clarifies the matters;
• the concept of Time is flexible;
• the physical quantities are naturally defined in terms of divine elliptic curves.

The hope for unifying these phenomena is related to the conjecture that the whole
gravity can be governed by the group structure of the divine curves – or, rather, by
the structure of a group scheme on the universal family of these curves.

5. p-adic and adelic times?

We have discussed above the restriction of the phase space from the manifolds
over R to the ones over R

⋂
Q. While we restrict ourselves with archimedean struc-

tures, we get no new metric effects, even if we consider discrete periodic dynamics.

However, embedding fields of definitions of orbits into p-adic fields and still con-
sidering finite time groups – or, may be, profinite, say, T = Zℓ – we can hope to
meet something interesting. In an analogy with [13] one can hope that the chaotic
behavior of the Q-models will occur in p-directions only for finite number of p’s,
so some adelic measure of chaos will appear. Considering all the p’s together, we
arrive at the adelic time T = Ẑ.

The above mentioned 4-order points (2-isogenies, Landin transforms,...) suggests
special consideration of 2-adic time. A simple 2-adic model of period-doubling onset
of chaos was considered in [5].

6. Jumping to general relativity

Now turn for a while to the adult math, consider a much more advanced gravi-
tational theory and discuss elliptic curves therein. We are going to present briefly
the results of Tod and Hitchin, concerning the anti-self-dual metrics, including the
Einstein ones.

Let three generators of the space of invariant 1-forms on the 3-sphere 〈σ1, σ2, σ3〉
satisfy
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dσ1 = σ2 ∧ σ3

dσ2 = σ3 ∧ σ1

dσ3 = σ1 ∧ σ2

(38)

Tod in [14] and Hitchin in [8] have found on (0, 1) × S3 a family of SU2-invariant
metrics

(ds)2 =
(dt)⊗2

t(1− t)
+

σ⊗2
1

Ω2
1

+
(1− t)σ⊗2

2

Ω2
2

+
tσ⊗2

3

Ω2
3

, (39)

where





Ω2
1 = (x−t)2x(x−1)

t(1−t) [z − 1
2(x−1) ](z − 1

2x )

Ω2
2 = x2(x−1)(x−t)

t
[z − 1

2(x−t) ][z − 1
2(x−1) ]

Ω2
3 = (x−1)2x(x−t)

1−t
[(z − 1

2x ][z − 1
2(x−t) ],

(40)

the function x(t) solves Painlevé-VI (with parameters 1
8 ,− 1

8 ,
1
8 ,

3
8 )

ẍ =
1

2
(
1

x
+

1

x− 1
+

1

x− t
)ẋ2 − (

1

t
+

1

t− 1
+

1

x− t
)ẋ+

+
x(x− 1)(x− t)

t2(t− 1)2
[
1

8
− t

8x2
+

t− 1

8(x− 1)2
+

3x(x− 1)

8(x− t)2
] (41)

and z(t) is defined from the relation

ẋ =
x(x − 1)(x− t

t(t− 1)
[2z − 1

2x
− 1

2(x− 1)
+

1

2(x− t)
]. (42)

The elements of the metric turn out to be expressible in terms of theta-functions!

In fact, in the above-quoted papers two ways of establishing relations between Ein-
stein and Painlevé equations are presented.

Tod’s way is formal. He proves that the metric

(ds)2 = f(t)(dt)⊗2 + a1(t)σ
⊗2
1 + a2(t)σ

⊗2
2 + a3(t)σ

⊗2
3 (43)

is anti-self-dual if and only if it can be rescaled to

(ds)2 =
(dt)⊗2

t(1− t)
+

σ⊗2
1

Ω2
1

+
(1− t)σ⊗2

2

Ω2
2

+
tσ⊗2

3

Ω2
3

, (44)

where the scalar functions Ω1,2,3 satisfy the system of ODE
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Ω̇1 = − Ω2Ω3

t(1−t)

Ω̇2 = −Ω3Ω1

t

Ω̇3 = −Ω1Ω2

1−t

. (45)

This system reduces to Painlevé-VI with parameters (18 ,
1
8 , c, d), where c+ d = 1

2 ; if
the original metric is Einstein, then c = 1

8 .

Though the Painlevé-VI equation is famous for producing essentially new transcen-

dents, the parameters (18 ,
1
8 ,

1
8 ,

3
8 ) are known to be related to algebraic solutions. It

reminds the claim from the introduction: physical models find the hidden islands
of algebraic structure in the oceans of the transcendent objects...

Hitchin’s way is geometric, based on twistors, families of rational curves on com-
plex 3-manifolds, flat connections with log-singularities, isomonodromic deforma-
tions and so on. The analytic part of his approach is based on the century-old
transformation of Schlessinger equations to Painlevé-VI, and once again we meet
the physically interesting arithmetic structures among the algebraic ones.

Any algebraic solution x(t) of Painleve-VI by definition has an affine model – a
plane curve, defined by a polynomial equation F (t, x) = 0. It can be easily seen
that the ”time” t on this curve can have among the critical values only 0 and 1;
hence, it is a Belyi function on the curve (see, e.g., [10]). It follows then from the
so-called easy Belyi theorem, that the curve is defined over Q.

Hitchin in [9] has constructed an infinite number of algebraic solutions of Painleve-
VI using the Poncelet closure theorem; the dynamic, governed by the finite-order
points of elliptic curves, appears once more!

The p-adic aspects of Painleve-VI equations are studied in [3].

7. Conclusion

In the main part of this paper we have discussed the possible arithmetical theory
of the simplest gravitational model, the two-body problem; in the last section the
general relativity was mentioned. In both, somewhat extreme, cases the arithmetic
of torsion of elliptic curves appeared. The author hopes to clarify the above hints
and to find the generalizations and specializations that would connect the extreme
cases by some intermediate models.
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O ELIPTIČKOM VREMENU U ADELIČKOJ GRAVITACIJI

Rad je posvećen algebarskim i aritmetičkim strukturama problema dva tela i

mogućim generalizacijama. Istaknuta je uloga tačaka konačnog reda na eliptičkim

krivima.

Ključne reči: eliptičko vreme, adelička gravitacija, problem dva tela


